4,696 research outputs found

    Comparison of different optimization criteria for optimal sizing of hybrid active power filters parameters

    Get PDF
    Praise Worthy Prize granted a permission for Brunel University London to archive this article in BURA.Harmonic distortion in power systems has increased considerably due to the increasing use of nonlinear loads in industrial firms and elsewhere. This distortion can give rise to overheating in all sectors of the power system, leading to reduced efficiency, reliability, operational life and sometimes failure. This article seeks to propose a new methodology for the optimal sizing of hybrid active power filter (HPF) parameters in order to overcome the difficulties in hybrid power filters design when estimating the preliminary feasible values of the parameters. Sequential Quadratic Programming based on FORTRAN subroutines is used to find out the planned filter size in two different optimization criteria depending on design concerns. The first criterion is to minimize the total voltage harmonic distortion. The second one is to maximize the load power factor, while taking into account compliance with IEEE standard 519-1992 limits for the total voltage harmonic distortion and the power factor.The effectiveness of the proposed filter is discussed using four exemplary case

    Practical considerations regarding power factor for nonlinear loads

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2004 IEEEThe choice of LC compensator may be constrained by the availability of manufacturers units. To account for this, the capacitor values are chosen from among standard values and for each value the transmission losses is minimized, or power factor is maximized, or transmission efficiency is maximized. The global minimum or maximum is obtained by scanning all local minims or maxims. The performance of the obtained compensator is discussed by means of numerical examples

    Análisis de armónicos variando en el tiempo en sistemas eléctricos de potencia con parques eólicos, a través de la teoría de la posibilidad

    Get PDF
    This paper focuses on the analysis of the connection of wind farms to the electric power system and their impact on the harmonic load-flow. A possibilistic harmonic load-flow methodology, previously developed by the authors, allows for modeling uncertainties related to linear and nonlinear load variations. On the other hand, it is well known that some types of wind turbines also produce harmonics, in fact, time-varying harmonics. The purpose of this paper is to present an improvement of the former method, in order to include the uncertainties due to the wind speed variations as an input related with power generated by the turbines. Simulations to test the proposal are performed in the IEEE 14-bus standard test system for harmonic analysis, but replacing the generator, at bus two, by a wind farm composed by ten FPC type wind turbines.En este trabajo se analiza el impacto de la conexión de parques eólicos, en el flujo de cargas armónicas en un sistema de potencia. Algunos generadores eólicos producen armónicos debido a la electrónica de potencia que utilizan para su vinculación con la red. Estos armónicos son variables en el tiempo ya que se relacionan con las variaciones en la velocidad del viento. El propósito de este trabajo es presentar una mejora a la metodología para el cálculo de incertidumbre en el flujo de cargas armónicas, a través de la teoría de la posibilidad, la cual fue previamente desarrollada por los autores. La mejora consiste en incluir la incertidumbre debida a las variaciones de la velocidad del viento. Para probar la metodología, se realizan simulaciones en el sistema de prueba de 14 barras de la IEEE, conectando en una de las barras un parque eólico compuesto por diez turbinas del tipo FPC. Los resultados obtenidos muestran que la incertidumbre en la velocidad del viento tiene un efecto considerable en las incertidumbres asociadas a las magnitudes de las tensiones armónicas calculadas.Fil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Suvire, Gaston Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Zini, Humberto Cassiano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Ratta, Giuseppe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentin

    Voltage harmonic reduction for randomly time-varying source characteristics and voltage harmonics

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. Copyright @ 2006 IEEEPotential applications of probabilistic modeling of current and voltage harmonics concern many aspects of power system engineering as accurate prediction of power system harmonic behavior provides important information to utility companies and equipment designers. In this paper, a method of reducing the expected value of the total voltage harmonic distortion for a specified range of source impedance values at different buses by using LC compensators, where it is desired to maintain a given power factor at a specified value, is presented. The criterion is based on mean value estimation of source and load characteristics, which are enabled by sampling measurements performed on the examined electrical plant as well as statistical analysis

    New trends in active filters for improving power quality

    Get PDF
    Since their basic compensation principles were proposed around 1970, active filters have been studied by many researchers and engineers aiming to put them into practical applications. Shunt active filters for harmonic compensation with or without reactive power compensation, flicker compensation or voltage regulation have been put on a commercial base in Japan, and their rating or capacity has ranged from 50 kVA to 60 MVA at present. In near future, the term of active filters will cover a much wider sense than that of active filters in the 1970s did. The function of active filters will be expanded from voltage flicker compensation or voltage regulation into power quality improvement for power distribution systems as the capacity of active filters becomes larger. This paper describes present states of the active filters based on state-of-the-art power electronics technology, and their future prospects toward the 21st century, including the personal view and expectation of the author</p

    Review on power quality solution technology

    Get PDF
    This paper presents a comprehensive study of various possible solutions for power quality improvement in common applications and supply system. This includes improved power quality converters (IPQC), multi-pulse converters, active compensation, passive compensation and their hybrid configurations. Various configurations and topologies of custom power devices such as DSTATCOM (Distribution Static Compensator), DVR (Dynamic Voltage Restorer) and UPQC (Unified Power Quality Compensator) are also described in detail. Main applications of these devices are for reactive power compensation, harmonic elimination, voltage sag/swell mitigation, voltage regulation, load balancing, neutral current reduction etc. Many such cases of power quality problems have been taken up and suitable solutions have been identified for those cases. As an example, a model of DSTATCOM is developed and its performance is presented for a distribution system feeding nonlinear loads
    corecore