1,256 research outputs found

    Linear response for spiking neuronal networks with unbounded memory

    Get PDF
    We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allows us to predict the influence of a weak amplitude time-dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how linear response is explicitly related to neuronal dynamics with an example, the gIF model, introduced by M. Rudolph and A. Destexhe. This example illustrates the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike statistics. We illustrate our results with numerical simulations.Comment: 60 pages, 8 figure

    Synchronization and oscillatory dynamics in heterogeneous mutually inhibited neurons

    Full text link
    We study some mechanisms responsible for synchronous oscillations and loss of synchrony at physiologically relevant frequencies (10-200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile. In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time to the period of repetitive action potentials (Ï„s/T\tau_s/T), where TT can be determined either from the network or from a single, self-inhibiting neuron. With Ï„s/T>2\tau_s/T > 2, corresponding to large applied current, small synaptic strength or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively independently. With Ï„s/T<1\tau_s/T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors; cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks can be related to the behavior of single, self-inhibiting cells, which can be studied analytically.Comment: 17 pages, 6 figures, Kluwer.sty. Journal of Compuational Neuroscience (in press). Originally submitted to the neuro-sys archive which was never publicly announced (was 9802001

    Locking of correlated neural activity to ongoing oscillations

    Full text link
    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.Comment: 57 pages, 12 figures, published versio

    Sparse Codes for Speech Predict Spectrotemporal Receptive Fields in the Inferior Colliculus

    Get PDF
    We have developed a sparse mathematical representation of speech that minimizes the number of active model neurons needed to represent typical speech sounds. The model learns several well-known acoustic features of speech such as harmonic stacks, formants, onsets and terminations, but we also find more exotic structures in the spectrogram representation of sound such as localized checkerboard patterns and frequency-modulated excitatory subregions flanked by suppressive sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported in the Inferior Colliculus (IC), as well as auditory thalamus and cortex, and our model neurons exhibit the same tradeoff in spectrotemporal resolution as has been observed in IC. To our knowledge, this is the first demonstration that receptive fields of neurons in the ascending mammalian auditory pathway beyond the auditory nerve can be predicted based on coding principles and the statistical properties of recorded sounds.Comment: For Supporting Information, see PLoS website: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100259

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Full text link
    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.Comment: 31 pages, 5 figure

    Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    Full text link
    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials, in parameter regimes characterised by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime, and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables
    • …
    corecore