3 research outputs found

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Exploiting the GPU power for intensive geometric and imaging data computation.

    Get PDF
    Wang Jianqing.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 81-86).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview --- p.1Chapter 1.2 --- Thesis --- p.3Chapter 1.3 --- Contributions --- p.4Chapter 1.4 --- Organization --- p.6Chapter 2 --- Programmable Graphics Hardware --- p.8Chapter 2.1 --- Introduction --- p.8Chapter 2.2 --- Why Use GPU? --- p.9Chapter 2.3 --- Programmable Graphics Hardware Architecture --- p.11Chapter 2.4 --- Previous Work on GPU Computation --- p.15Chapter 3 --- Multilingual Virtual Performer --- p.17Chapter 3.1 --- Overview --- p.17Chapter 3.2 --- Previous Work --- p.18Chapter 3.3 --- System Overview --- p.20Chapter 3.4 --- Facial Animation --- p.22Chapter 3.4.1 --- Facial Animation using Face Space --- p.23Chapter 3.4.2 --- Face Set Selection for Lip Synchronization --- p.27Chapter 3.4.3 --- The Blending Weight Function Generation and Coartic- ulation --- p.33Chapter 3.4.4 --- Expression Overlay --- p.38Chapter 3.4.5 --- GPU Algorithm --- p.39Chapter 3.5 --- Character Animation --- p.44Chapter 3.5.1 --- Skeletal Animation Primer --- p.44Chapter 3.5.2 --- Mathematics of Kinematics --- p.46Chapter 3.5.3 --- Animating with Motion Capture Data --- p.48Chapter 3.5.4 --- Skeletal Subspace Deformation --- p.49Chapter 3.5.5 --- GPU Algorithm --- p.50Chapter 3.6 --- Integration of Skeletal and Facial Animation --- p.52Chapter 3.7 --- Result --- p.53Chapter 3.7.1 --- Summary --- p.58Chapter 4 --- Discrete Wavelet Transform On GPU --- p.60Chapter 4.1 --- Introduction --- p.60Chapter 4.1.1 --- Previous Works --- p.61Chapter 4.1.2 --- Our Solution --- p.61Chapter 4.2 --- Multiresolution Analysis with Wavelets --- p.62Chapter 4.3 --- Fragment Processor for Pixel Processing --- p.64Chapter 4.4 --- DWT Pipeline --- p.65Chapter 4.4.1 --- Convolution Versus Lifting --- p.65Chapter 4.4.2 --- DWT Pipeline --- p.67Chapter 4.5 --- Forward DWT --- p.68Chapter 4.6 --- Inverse DWT --- p.71Chapter 4.7 --- Results and Applications --- p.73Chapter 4.7.1 --- Geometric Deformation in Wavelet Domain --- p.73Chapter 4.7.2 --- Stylish Image Processing and Texture-illuminance De- coupling --- p.73Chapter 4.7.3 --- Hardware-Accelerated JPEG2000 Encoding --- p.75Chapter 4.8 --- Web Information --- p.78Chapter 5 --- Conclusion --- p.79Bibliography --- p.8

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore