90 research outputs found

    Neuromorphic Systems for Pattern Recognition and Uav Trajectory Planning

    Get PDF
    Detection and control are two essential components in an intelligent system. This thesis investigates novel techniques in both areas with a focus on the applications of handwritten text recognition and UAV flight control. Recognizing handwritten texts is a challenging task due to many different writing styles and lack of clear boundary between adjacent characters. The difficulty is greatly increased if the detection algorithms is solely based on pattern matching without information of dynamics of handwriting trajectories. Motivated by the aforementioned challenges, this thesis first investigates the pattern recognition problem. We use offline handwritten texts recognition as a case study to explore the performance of a recurrent belief propagation model. We first develop a probabilistic inference network to post process the recognition results of deep Convolutional Neural Network (CNN) (e.g. LeNet) and collect individual characters to form words. The output of the inference network is a set of words and their probability. A series of post processing and improvement techniques are then introduced to further increase the recognition accuracy. We study the performance of proposed model through various comparisons. The results show that it significantly improves the accuracy by correcting deletion, insertion and replacement errors, which are the main sources of invalid candidate words. Deep Reinforcement Learning (DRL) has widely been applied to control the autonomous systems because it provides solutions for various complex decision-making tasks that previously could not be solved solely with deep learning. To enable autonomous Unmanned Aerial Vehicles (UAV), this thesis presents a two-level trajectory planning framework for UAVs in an indoor environment. A sequence of waypoints is selected at the higher-level, which leads the UAV from its current position to the destination. At the lower-level, an optimal trajectory is generated analytically between each pair of adjacent waypoints. The goal of trajectory generation is to maintain the stability of the UAV, and the goal of the waypoints planning is to select waypoints with the lowest control thrust throughout the entire trip while avoiding collisions with obstacles. The entire framework is implemented using DRL, which learns the highly complicated and nonlinear interaction between those two levels, and the impact from the environment. Given the pre-planned trajectory, this thesis further presents an actor-critic reinforcement learning framework that realizes continuous trajectory control of the UAV through a set of desired waypoints. We construct a deep neural network and develop reinforcement learning for better trajectory tracking. In addition, Field Programmable Gate Arrays (FPGA) based hardware acceleration is designed for energy efficient real-time control. If we are to integrate the trajectory planning model onto a UAV system for real-time on-board planning, a key challenge is how to deliver required performance under strict memory and computational constraints. Techniques that compress Deep Neural Network (DNN) models attract our attention because they allow optimized neural network models to be efficiently deployed on platforms with limited energy and storage capacity. However, conventional model compression techniques prune the DNN after it is fully trained, which is very time-consuming especially when the model is trained using DRL. To overcome the limitation, we present an early phase integrated neural network weight compression system for DRL based waypoints planning. By applying pruning at an early phase, the compression of the DRL model can be realized without significant overhead in training. By tightly integrating pruning and retraining at the early phase, we achieve a higher model compression rate, reduce more memory and computing complexity, and improve the success rate compared to the original work

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Measuring Information Security Awareness Efforts in Social Networking Sites – A Proactive Approach

    Get PDF
    For Social Network Sites to determine the effectiveness of their Information Security Awareness (ISA) techniques, many measurement and evaluation techniques are now in place to ensure controls are working as intended. While these techniques are inexpensive, they are all incident- driven as they are based on the occurrence of incident(s). Additionally, they do not present a true reflection of ISA since cyber-incidents are hardly reported. They are therefore adjudged to be post-mortem and risk permissive, the limitations that are inacceptable in industries where incident tolerance level is low. This paper aims at employing a non-incident statistic approach to measure ISA efforts. Using an object- oriented programming approach, PhP is employed as the coding language with MySQL database engine at the back-end to develop sOcialistOnline – a Social Network Sites (SNS) fully secured with multiple ISA techniques. Rather than evaluating the effectiveness of ISA efforts by success of attacks or occurrence of an event, password scanning is implemented to proactively measure the effects of ISA techniques in sOcialistOnline. Thus, measurement of ISA efforts is shifted from detective and corrective to preventive and anticipatory paradigms which are the best forms of information security approach

    Learning and recognition of hybrid manipulation tasks in variable environments using probabilistic flow tubes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.This thesis was scanned as part of an electronic thesis pilot project.Cataloged from PDF version of thesis. This thesis was scanned as part of an electronic thesis pilot project.Includes bibliographical references (p. 139-144).Robots can act as proxies for human operators in environments where a human operator is not present or cannot directly perform a task, such as in dangerous or remote situations. Teleoperation is a common interface for controlling robots that are designed to be human proxies. Unfortunately, teleoperation may fail to preserve the natural fluidity of human motions due to interface limitations such as communication delays, non-immersive sensing, and controller uncertainty. I envision a robot that can learn a set of motions that a teleoperator commonly performs, so that it can autonomously execute routine tasks or recognize a user's motion in real time. Tasks can be either primitive activities or compound plans. During online operation, the robot can recognize a user's teleoperated motions on the fly and offer real-time assistance, for example, by autonomously executing the remainder of the task. I realize this vision by addressing three main problems: (1) learning primitive activities by identifying significant features of the example motions and generalizing the behaviors from user demonstration trajectories; (2) recognizing activities in real time by determining the likelihood that a user is currently executing one of several learned activities; and (3) learning complex plans by generalizing a sequence of activities, through auto-segmentation and incremental learning of previously unknown activities. To solve these problems, I first present an approach to learning activities from human demonstration that (1) provides flexibility and robustness when encoding a user's demonstrated motions by using a novel representation called a probabilistic flow tube, and (2) automatically determines the relevant features of a motion so that they can be preserved during autonomous execution in new situations. I next introduce an approach to real-time motion recognition that (1) uses temporal information to successfully model motions that may be non-Markovian, (2) provides fast real-time recognition of motions in progress by using an incremental temporal alignment approach, and (3) leverages the probabilistic flow tube representation to ensure robustness during recognition against varying environment states. Finally, I develop an approach to learn combinations of activities that (1) automatically determines where activities should be segmented in a sequence and (2) learns previously unknown activities on the fly. I demonstrate the results of autonomously executing motions learned by my approach on two different robotic platforms supporting user-teleoperated manipulation tasks in a variety of environments. I also present the results of real-time recognition in different scenarios, including a robotic hardware platform. Systematic testing in a two-dimensional environment shows up to a 27% improvement in activity recognition rates over prior art, while maintaining average computing times for incremental recognition of less than half of human reaction time.by Shuonan Dong.Ph.D

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    corecore