1,012 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Self-adaptivity of applications on network on chip multiprocessors: the case of fault-tolerant Kahn process networks

    Get PDF
    Technology scaling accompanied with higher operating frequencies and the ability to integrate more functionality in the same chip has been the driving force behind delivering higher performance computing systems at lower costs. Embedded computing systems, which have been riding the same wave of success, have evolved into complex architectures encompassing a high number of cores interconnected by an on-chip network (usually identified as Multiprocessor System-on-Chip). However these trends are hindered by issues that arise as technology scaling continues towards deep submicron scales. Firstly, growing complexity of these systems and the variability introduced by process technologies make it ever harder to perform a thorough optimization of the system at design time. Secondly, designers are faced with a reliability wall that emerges as age-related degradation reduces the lifetime of transistors, and as the probability of defects escaping post-manufacturing testing is increased. In this thesis, we take on these challenges within the context of streaming applications running in network-on-chip based parallel (not necessarily homogeneous) systems-on-chip that adopt the no-remote memory access model. In particular, this thesis tackles two main problems: (1) fault-aware online task remapping, (2) application-level self-adaptation for quality management. For the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a cross-layer approach that aims at graceful performance degradation by addressing permanent faults in processing elements mostly at system-level, in particular by exploiting redundancy available in multi-core platforms. We propose an optimal solution based on an integer linear programming formulation (suitable for design time adoption) as well as heuristic-based solutions to be used at run-time. We assess the impact of our approach on the lifetime reliability. We propose two recovery schemes based on a checkpoint-and-rollback and a rollforward technique. For the latter, we propose two variants of a monitor-controller- adapter loop that adapts application-level parameters to meet performance goals. We demonstrate not only that fault tolerance and self-adaptivity can be achieved in embedded platforms, but also that it can be done without incurring large overheads. In addressing these problems, we present techniques which have been realized (depending on their characteristics) in the form of a design tool, a run-time library or a hardware core to be added to the basic architecture

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast

    Flexible Spare Core Placement in Torus Topology based NoCs and its validation on an FPGA

    Get PDF
    In the nano-scale era, Network-on-Chip (NoC) interconnection paradigm has gained importance to abide by the communication challenges in Chip Multi-Processors (CMPs). With increased integration density on CMPs, NoC components namely cores, routers, and links are susceptible to failures. Therefore, to improve system reliability, there is a need for efficient fault-tolerant techniques that mitigate permanent faults in NoC based CMPs. There exists several fault-tolerant techniques that address the permanent faults in application cores while placing the spare cores onto NoC topologies. However, these techniques are limited to Mesh topology based NoCs. There are few approaches that have realized the fault-tolerant solutions on an FPGA, but the study on architectural aspects of NoC is limited. This paper presents the flexible placement of spare core onto Torus topology-based NoC design by considering core faults and validating it on an FPGA. In the first phase, a mathematical formulation based on Integer Linear Programming (ILP) and meta-heuristic based Particle Swarm Optimization (PSO) have been proposed for the placement of spare core. In the second phase, we have implemented NoC router addressing scheme, routing algorithm, run-time fault injection model, and fault-tolerant placement of spare core onto Torus topology using an FPGA. Experiments have been done by taking different multimedia and synthetic application benchmarks. This has been done in both static and dynamic simulation environments followed by hardware implementation. In the static simulation environment, the experimentations are carried out by scaling the network size and router faults in the network. The results obtained from our approach outperform the methods such as Fault-tolerant Spare Core Mapping (FSCM), Simulated Annealing (SA), and Genetic Algorithm (GA) proposed in the literature. For the experiments carried out by scaling the network size, our proposed methodology shows an average improvement of 18.83%, 4.55%, 12.12% in communication cost over the approaches FSCM, SA, and GA, respectively. For the experiments carried out by scaling the router faults in the network, our approach shows an improvement of 34.27%, 26.26%, and 30.41% over the approaches FSCM, SA, and GA, respectively. For the dynamic simulations, our approach shows an average improvement of 5.67%, 0.44%, and 3.69%, over the approaches FSCM, SA, and GA, respectively. In the hardware implementation, our approach shows an average improvement of 5.38%, 7.45%, 27.10% in terms of application runtime over the approaches SA, GA, and FSCM, respectively. This shows the superiority of the proposed approach over the approaches presented in the literature.publishedVersio

    A middleware approach to achieving fault-tolerance of Kahn process networks on networks-on-chips.

    Get PDF
    Kahn process networks (KPNs) is a distributed model of computation used for describing systems where streams of data are transformed by processes executing in sequence or parallel. Autonomous processes communicate through unbounded FIFO channels in absence of a global scheduler. In this work, we propose a task-aware middleware concept that allows adaptivity in KPN implemented over a Network on Chip (NoC). We also list our ideas on the development of a simulation platform as an initial step towards creating fault tolerance strategies for KPNs applications running on NoCs. In doing that, we extend our SACRE (Self-Adaptive Component Run Time Environment) framework by integrating it with an open source NoC simulator, Noxim. We evaluate the overhead that the middleware brings to the the total execution time and to the total amount of data transferred in the NoC. With this work, we also provide a methodology that can help in identifying the requirements and implementing fault tolerance and adaptivity support on real platforms

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast
    • …
    corecore