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Abstract

This thesis proposes Hierarchical Agent-based Adaptation (H2A), a scalable

platform-based design paradigm for the rapidly expanding parallel embed-

ded systems. With the constant progress of semiconductor industry, the

available hardware resources are steadily increasing, while the constraints in

power/energy consumption and dependability issues pose tougher challenges

than ever before. This phenomenon calls for a system-level paradigm shift

towards self-aware and adaptive (SAA) systems, which are able to provide dy-

namic performance optimization based on self-monitored status and incidents.

The thesis motivates the paradigm shift towards SAA systems by examin-

ing the technology trends in parallel computing and embedded systems. Then

it explores the existing techniques for run-time monitoring and reconfigura-

tion, either with centralized, clustered or purely distributed architectures. The

design and integration of these existing techniques and potential mechanisms

require a scalable management backbone to provide global and local services,

in particular for energy management and dependable computing. Answering

this need, the thesis introduces the H2A system architecture, which integrates

self-adaptation controllers, Agents, for monitoring and reconfiguring systems

on hierarchical levels. The thesis overviews the functional partition of agents

for coarse- and fine-grained services, and formulates the software/hardware

(SW/HW) co-synthesis guidelines to implement the agents in a scalable man-

ner.

To demonstrate the design of agents for run-time adaptation, the thesis

first presents hierarchical energy management service. Energy-aware mapping

is performed on the top-level platform agent. Cluster-level energy manage-

ment is designed as clustered decision-making and distributed reconfiguration

(CDDR), which is jointly contributed by both the cluster and cell agents. To

support CDDR, hybrid monitoring of local traffic loads and application mile-
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stones is performed by each cell agent. In addition to the energy management

services, the thesis presents the design of H2A architecture for dependable

computing. In particular, an approach for dynamic clusterization is proposed,

where processing elements can be flexibly organized into different clusters lest

run-time failures or performance degradation. Three-level supporting struc-

tures and a full-mesh-based physically separate monitoring network are de-

signed to enable the dynamic clusterization. The supporting structures can

be extended for other run-time adaptation services, such as energy manage-

ment, thus achieving a portable and compatible system architecture.

As a proof-of-concept for the H2A design paradigm, a RTL(register trans-

fer level) implementation of Self-Aware and Adaptive Network-on-Chip (SAA-

NoC) is presented. The platform agent is implemented as software running on

a dedicated Leon processor. Each cluster agent integrates a software thread

running on a processor and a hardware-based CLT (cluster look-up table).

Each cell agent is implemented as hardware circuits wrapped within one NoC

node. Both hierarchical energy management and dynamic clusterization ser-

vices are implemented. Experiment results validate that the H2A system

architecture can fully exploit coarse- and fine-grained adaptation services to

reduce the energy consumption under the influence of unpredictable errors,

while meeting both system and local performance requirements. The over-

head analysis shows that both software and hardware overheads are minimal

and scalable for the agent subsystem.
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Chapter 1

Introduction

To achieve high computing performance with reduced power consumption,

massively parallel processing has become a mainstream computing platform

[4]. The constant scaling of CMOS technology enables the integration of an

increasing number of components onto a single die, leading to multi-core and

many-core on-chip computing [11]. Meanwhile, considerable deep submicron

effects, such as variations, leakage currents and noises, strongly challenge the

embedded system design. Self-adaptive computing [99] is a novel paradigm

to provide the system with superior performance, efficiency and variability

compared to conventional static worst-case-based design. This thesis presents

a design platform, Hierarchical Agent-based Adaptation (H2A), to realize Self-

aware and Adaptive (SAA) parallel embedded systems.

1.1 Era of Massively Parallel Computing

Parallel and distributed computing has become one major focus of research

community in computer science and engineering [4]. Parallel computing pro-

vides much higher performance than sequential processors. For instance, Ter-

aFLOPS [119], an 80-core processor, achieves over 1.0 TFLOPS ( 1012 floating-

point operations per second). The Tile64 [8] processor is able to execute 192

billion 32-bit operations per second at 1GHz. As the processing engines for

a large amount of data, massively parallel processors are expected to serve

in a wide variety of civil and military applications, including (but surely not

limited to) multi-media processing, scientific applications, large data centers

and personal computers or servers.
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The promise of parallel computing is supported by the technology devel-

opment, in particular in the semiconductor industry. The CMOS transistor

size is constantly shrinking. In 2011, the DRAM pitch reaches 40nm, and

will reach 25nm in 2015 [30]. With the progress of semiconductor indus-

try, the technological feasibility of massively parallel on-chip processing has

been demonstrated by many industrial examples, including Intel 80-core Ter-

aFLOPS processor [119], 48-core SCC (Single-chip Cloud Computer) [48] and

Tilera 64-core TILE64 processor [8].

The many-core multi-processor is one primary form of parallel systems.

By integrating a large number of simple processors, high performance can

be achieved by parallelizing the applications while keeping the voltage lower

to reduce the power consumption [4, 10]. The generic architecture does not

exclude the utilization of dedicated accelerators, for instance, graphic engines,

which are needed to perform specific processing with better efficiency than

general-purpose processors [118].

One major challenge in many-core multi-processor is the communication

network. For one thing, the large amount of parallel data processing may

incur intensive communication volume [122]. The communication network

is required to provide high bandwidth to avoid becoming the bottleneck of

system performance [26]. In modern technology, the interconnect delay is

much larger than the processing delay (a 9 : 1 ratio in 2010 [Dally:2002a]).

In addition, the power consumption of interconnect is significant compared

to that of data processing. For instance, transferring 32-bit data across a

10mm chip consumes 17pJ in 50nm CMOS, while a 32-bit ALU operation

only consumes 0.3pJ [25]. Thus, how to provide high-bandwidth, low-power

communication is an essential design challenge, the so-called interconnect-

centric design [94], in many-core parallel systems.

The Network-on-Chip (NoC) [54] has been proposed as a scalable archi-

tecture for high-performance many-core systems. It represents a new design

methodology, which separates the design concerns of communication from

computation [94]. In terms of the communication performance, NoCs achieve

much higher bandwidth than conventional bus-based systems. Instead of re-

serving a whole channel for a single communication, NoC allows the simul-

taneous utilization of different network segments and/or timeslots for a large

number of communication flows, thus providing much better throughput and

scalability. In addition, most NoC architectures adopt modularized architec-
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Figure 1.1: An 8*8 Network-on-Chip in TILE64 processor [8]

tures, in order to provide reusability and predictability [94]. Thus the NoC

architecture can be applied to different parallel applications of various sizes.

Due to these benefits, NoCs have been widely used for many-core VLSI sys-

tems, for instance, in TeraFLOPS processor [119] and TILE64 processor [8]

(Fig. 1.1). In this thesis, the term NoCs is generally referred to NoC-based

many-core systems, unless specifically stated otherwise.

1.2 Design Challenges of Parallel Embedded Sys-

tems

The parallel embedded system is an important and widely applied domain of

parallel computing. Embedded components are extensively used for control-

ling, processing, and storage purposes in a large variety of applications, such

as automotive, consumer electronics, spacecrafts and electronic medical de-

vices. Compared to other parallel processing domains (e.g., supercomputers),

embedded systems are more limited in hardware and software resources, and

have specific requirements, e.g., real-time constraints or high reliability [88].

In addition, commercial embedded systems and products have strict time-to-
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market constraints. This thesis is mostly concerned with the following three

aspects of design challenges:

1.2.1 Energy Efficiency

Power and energy consumption is the primary design concern for resource-

limited embedded systems. On one hand, many embedded systems have lim-

ited power provision, e.g., portable battery-charged devices. On the other, the

cooling capacity of embedded systems is lower than, e.g., desktop applications

(with a heat sink on package [31]). While the transistor density is consistently

increasing, the power budget remains flat. As analyzed by [118], future multi-

core smartphones need to support 100GOPS(i.e., 1011 operations per second)

with 1W power budget. Clearly how to efficiently utilize the limited power

and energy resources for an ever increasing computation capacity will pose a

major challenge to parallel embedded systems.

Instead of being a unified goal, power and energy consumption actually

concerns several related but different metrics. Power consumption can be

measured as the temporary peak power or the average power during a pe-

riod. Energy is the integration of power over a period of time (Energy =
∫ t=t1

t=t0 Power(t) × dt). Energy can be measured as energy per operation or the

total energy consumption of the system in a period of time. Both power and en-

ergy can be divided into the dynamic part and the static part. Dynamic power

is consumed by the switching of capacitances, and only exists when there are

activities on the datapath, control path or the clock tree. Static power is con-

sumed by leakage in the semiconductor materials, in particular subthreshold

and gate leakage [61]. Static power consumption exists as long as the circuits

are powered on. Power and energy in a many-core system are contributed by

all components, including processors, networks, memories and I/O interfaces.

With an increasing number of high-speed on-chip interconnects, the network

contributes a significant part of power and energy consumption. For instance,

TeraFLOPS reports 28% power consumption attributed to the on-chip com-

munication [119]. Thus minimizing the power and energy consumption of the

on-chip network is one of the major low-power methods in parallel embedded

systems [107].

Different power and energy metrics are considered in various design sce-

narios. The energy consumption is usually considered for battery-charged

portable devices, for instance, mobile phones or digital players. The average
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power consumption is a general metric for comparison of different systems,

and is also used to determine the required cooling capacity. The peak power

gives the requirement on the maximal driving capacity of the power supply.

The power-aware and energy-aware design may have a strict power budget,

e.g., for a system with stringent cooling capacity. In other cases, a best-effort

design is followed to reach as low power and energy consumption as possible.

Among different metrics, energy efficiency is of primary interest to the

embedded systems. It indicates how much energy is consumed to achieve the

expected performance with either hard or soft constraints. For a real-time

system with hard deadlines, the energy should be minimized while the per-

formance deadline is met. On the other hand, for scenarios without hard

constraints, the design is usually made towards as low energy consumption as

possible. For instance, [77] presents algorithms to reduce the energy consump-

tion and the execution time with a best-effort approach. This thesis addresses

maximizing energy efficiency as one of the primary design targets.

1.2.2 Dependable Computing

Dependability is an integral concept that encompasses the attributes of avail-

ability, reliability, safety, integrity and maintainability [6]. A dependable sys-

tem should provide the expected performance under different situations, so

that the system can be trusted [6]. In general-purpose many-core systems

that may potentially host diverse applications, the dependability issues be-

come more challenging due to the different requirements of applications and

heterogeneity of components.

Hardware variations pose one major threat to dependable computing in

deep-submicron era. Different sources of variations are generalized as PVT

(Process, Voltage and Thermal) variations [9], which significantly affect the

system performance and dependability.

Process variations refer to the deviation of actual physical parameters from

nominal values due to the manufacturing process or post-manufacture aging.

Such parameters include geometry sizes (e.g., effective transistor size Leff,

metal line width and thickness, etc.) and material parameters (e.g., the level

of doping in the semiconductor) [121]. With technology scaling, the process

variation is increasing. For instance, the deviation of Leff increases from 32%

in 1997 to 47% in 2006 [5]. Voltage variation refers to the difference of voltage

values, in particular the supply voltage, on different places in the power deliv-
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ery network [44]. The aggressive voltage scaling to reduce power consumption

makes the nominal voltage very low, thus the effect of voltage drop is more

severe than before [44]. As the supply voltage determines the propagation

delay of interconnects, its variation will affect the communication speed of

on-chip networking. Thermal variations refer to the different temperatures at

various places in a VLSI chip [106], which are also changing with time. The

temperature not only affects the stability of circuits, but also influences the

leakage power [69].

PVT variations lead to unpredictable errors at the run-time. For one thing,

the variations lead to more hardware defects [60], if the deviation is so large as

to cause short or open circuit. In addition, the variations may lead to timing

errors [103]. For instance, large voltage drop causes the supply voltage to

be lower than the nominal value, thus the circuits run slower than expected.

Moreover, temperature variations may lead to inaccurate estimation of power

consumption due to the leakage power [69].

In addition to PVT variations, other deep-submicron effects also influence

the dependability of the circuits and systems, such as crosstalk, radiation-

induced errors and NBTI (Negative bias temperature instability). Crosstalk

refers to the noise between adjacent wires. Radiation-induced faults [16] are

caused by particle hits in the silicon substrate, which are strong enough to flip

the values stored in the latches. NBTI causes the shift of the threshold voltage.

With technology scaling, the distance between wires becomes smaller, and the

node capacitance decreases, thus the circuit is more susceptible to crosstalk

and radiation-induced errors [16].

On-chip interconnects, among other components in parallel embedded sys-

tems, suffer from the PVT variations and other deep-submicron effects. As

summarized by Table 1.1, the propagation delay of on-chip communication is

affected by the process and voltage variations. Its reliability is influenced by

the permanent or transient errors of various causes.

1.2.3 Scalability

With the size and complexity of parallel systems dramatically increasing, the

scalability of design methods and system architectures becomes essential. This

is in particular important for embedded systems, due to the time-to-market

requirements. Scalability is also a broad topic, whose specific criteria are

dependent on the design tasks. Generic criteria for scalability can be found
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Table 1.1: Sources of Variations and Unpredictability in On-Chip Intercon-
nects

Source Influence on On-chip Interconnects

Physical geometry varia-
tions

physical defects (permanent failure),
threshold voltage deviation (causing
change of delay and leakage power),
clock skew mismatch

radiation/ soft-error transient data error
crosstalk transient data error, delay variation

[85]
voltage variation propagation delay variation, timing

error
thermal variation leakage power variation [69]

in [114], which include: 1) the system can integrate an increasing number

of components; 2) the components can be located in geographically distant

locations; 3) the administration of the system can still be convenient with

more components and larger system size. The second requirement is related

to physically distributed computing, which is beyond the scope of this thesis.

In the context of parallel systems, the following three aspects of scalability are

of particular interests:

• Performance scalability. As the classic requirement of parallel systems,

the performance scalability is often quantified by the speedup of the

same problem on a parallel computing compared to a single processor

[66]. For applications that require an extensive amount of data process-

ing, for instance, scientific computing, the speedup as a performance

scalability metric is highly important. However, in the embedded com-

puting domain, we concern much less for the speedup. For one thing,

many applications, for instance, multimedia processing, have real-time

requirements, thus increasing the processing speed beyond the require-

ment is meaningless. For another, embedded systems are resource lim-

ited, thus achieving higher speedup without considering the incurred

overhead is often unfeasible in the practical implementation.

• Overhead scalability. As the intrinsic constraints of embedded comput-

ing system, area and power/energy overheads are major limiting factors
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to the scalability. The area overhead is a conventional concern especially

for portable embedded systems. With the constant increasing of tran-

sistor densities and multi-metal-layer fabrication technology, the power

or energy consumption has replaced area as the primary constraint [95].

Generally speaking, the software and hardware resources should incur

linear or sub-linear power and area overheads when more functions and

components are integrated into the system.

• Design effort scalability. Embedded systems have stringent time-to-

market requirements, thus the scalability in terms of the design effort

is essential to the system development. With more components inte-

grated into a complex parallel embedded system, the involved design

effort should be minimized to keep a reasonable development cycle. De-

sign orthogonalization and design reuse are system-level principles to

reduce the design effort, as embodied in the state-of-the-art Platform-

based Design (PBD) paradigm [58, 100]. In particular, the design process

should be performed on a high-level abstraction that hides the unnec-

essary low-level details. The components should be modularizable thus

easily integrated. The system architecture itself should be generically

applicable to different applications and support a wide diversity of func-

tions.

1.3 Thesis Objectives

As embedded systems become highly parallel and distributed, the design of

such systems incurs overwhelming complexity to deal with the variations,

power budget and dependability issues. Static design and external recon-

figuration become either infeasible or inefficient, since the run-time system

status is often unpredictable and fast changing. The thesis aims to develop

a scalable approach for the design of parallel embedded systems, which can

autonomously achieve the optimization of performance, power consumption

and dependability under the variations of workloads and system status.

To achieve the goal of this thesis, firstly, the paradigm shift towards self-

aware and adaptive (SAA) computing in embedded system domain will be

motivated. Self-aware and adaptive properties enable the system to optimize

itself by observing the internal and external status. Even though the topics

of self-adaptive computing has been discussed in software engineering domain
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[99], its application in embedded computing systems is still in the emergent

stage. The justification of such paradigm shift is required from the perspectives

of current technology challenges and potential design benefits.

To enable the aforementioned paradigm shift, a generic and scalable ar-

chitecture for SAA computing in parallel embedded systems needs to be pro-

posed. Most existing works utilize run-time management techniques to opti-

mize specific performance metrics. However, ad-hoc approaches incur design

complexities when the system expands or the techniques are ported to a dif-

ferent platform. Instead, a generic system architecture, where a wide diversity

of self-aware and adaptive services can be provided, is able to exploit design

reuse and offer scalability in terms of the design effort (Section 1.2.3).

To demonstrate the proposed architecture, a proof-of-concept prototype is

needed. The implementation should prove the feasibility of the architecture in

the current or emerging technology. SAA features should be experimented on

the implementation, with practical applications. Measurement and analysis of

concrete performance results, for instance, power, energy and area, are needed

to show the power efficiency, dependability and scalability of the system.

1.4 Thesis Contributions

To reach the objectives, the thesis develops H2A (Hierarchical Agent-based

Adaptation) design paradigm. The work contributes to the state-of-the-art

embedded system design with the following achievements:

1. SAA computing is introduced and motivated in the embedded system

domain. The thesis identifies monitoring and reconfiguration services

as the main enabler of SAA computing. It presents an abstract model

of the SAA system. To realize such systems with design efficiency and

scalability, the thesis proposes the orthogonalization of monitoring and

reconfiguration services as a dedicated design dimension. Such orthog-

onalization is reasoned from the perspective of design reuse of existing

computation and communication platforms.

2. The thesis develops H2A architecture for SAA systems, where agents on

different organizational levels make a joint effort to monitor and recon-

figure the system. The functional partition among agents is studied. The

SW/HW(software/hardware) co-design guidelines of agents are formu-
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lated to provide physical scalability. The design process from functional

partition, architectural design to microarchitecural implementation is

presented. On an architectural-level network simulator, extensive simu-

lations are performed to demonstrate the benefits and efficiency of agent

operations. Examples are given for hierarchical energy management and

run-time dynamic clusterization for dependable computing in NoCs.

3. Self-adaptive NoC is implemented as a proof-of-concept for H2A archi-

tecture. Functions of different levels of agents and the inter-agent com-

munication are implemented on Nostrum [65] NoC with Leon3 processors

and distributed shared memory. Various monitoring services, including

hierarchical energy management and dependability-driven clusterization,

are realized with SW/HW co-design and synthesis. A cycle-accurate

RTL (register transfer level) simulator is utilized to experiment on the

self-adaptive NoC with representative applications. Performance, energy

consumption and area overhead are analyzed.

1.5 Organization of Thesis

The thesis is composed of eight chapters. Following introduction, Chapter 2

motivates the paradigm shift towards SAA systems, in the domain of paral-

lel embedded computing. It achieves the first objective of the thesis. The

thesis will discuss the definition SAA systems, and then overview the current

monitoring and reconfiguration techniques in parallel embedded computing.

In order to reduce the design complexity for scalable system development, it

proposes a dedicated design layer for adaptive services.

Chapter 3 to 6 address the second objective of the thesis, i.e., a generic

and scalable architecture for SAA computing. Firstly Chapter 3 examines

the current monitoring and reconfiguration architectures in parallel embedded

systems, including centralized, clustered and distributed architectures. Simu-

lations are performed on energy management in NoCs. Based on this study,

the pros and cons of different architectures can be identified. And the need

of a systematic approach for various levels of services is reasoned. Chapter 4

introduces the H2A design paradigm, starting with an overview of the agent

concept and the hierarchical organization of agents. To provide the scalability

in terms of agent overheads, it proposes implementation guidelines for each

level of agents. Chapter 5 presents a concrete service, energy management,
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with H2A in NoCs. Energy-aware mapping and clustered decision-making with

distributed reconfiguration are designed as coarse- and fine-grained services on

three levels of agents. Simulations are performed to demonstrate the efficiency

and effectiveness of the energy management architecture. Chapter 6 presents

the enhancement of agent architecture to provide dependable computing with

dynamic clusterization.

Chapter 7 achieves the third objective of the thesis by presenting a proof-of-

concept implementation of H2A design on NoCs. Based on the Nostrum NoC

architecture, with Leon 3 processors and distributed shared memory, software

and hardware agents are implemented. The software agent (platform agent) is

realized on a dedicated Leon processor. The cluster agent is implemented as a

software thread running on a processor and a hardware-based Cluster Look-up

Table (CLT). The cell agent is implemented as hardware circuits attached to

each NoC node. The implementation is done at register transfer level, and

the results in terms of performance, energy consumption, area and timing

overhead are analyzed.

The thesis is concluded in Chapter 8 with a summarizing presentation of

the status quo of H2A design paradigm and a visionary discussion of its future

application in a wider scope of parallel systems.
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Chapter 2

Paradigm Shift towards

Self-Aware and Adaptive

Systems

This chapter motivates the paradigm shift towards Self-Aware and Adaptive

(SAA) systems in the embedded computing domain. The continuous develop-

ment of technology calls for a more efficient manner of dealing with complexity,

which necessitates autonomous management of computing systems. For em-

bedded systems, the needs for better performance, dependability and power

consumption are addressed by diverse monitoring services and the correspond-

ing reconfiguration operations. To design monitoring services in a scalable and

portable manner, a dedicated design layer for SAA properties is proposed to

separate the design concerns and reuse existing computation/communication

architectures.

2.1 SAA Systems

The technology development of computing systems call for SAA properties.

The concept originates from the classic Autonomic Computing [47]. The defi-

nitions of SAA have been discussed by some existing works in various contexts

[99, 51] with similar explanation and wordings. This thesis defines a SAA em-

bedded system as

One that is monitoring its own state and the environment in or-

der to achieve the expected performance under potential envi-
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ronmental changes. The performance refers to both functional

(e.g., execution time) and non-functional metrics (e.g., energy

efficiency), either as hard constraints (e.g., power budget) or

soft requirements (e.g., with as low power as possible).

The profound variations in system status and the increasing system complex-

ity call for SAA properties. As discussed in Section 1.2.2, circuits and systems

in modern technology suffer from various variations. Thus the system charac-

teristics, for instance, path-delay/performance, follow statistical distribution

[120]. The conventional worst-case design leaves a big design margin to accom-

modate the worst-case scenarios, which leads to extra power consumption or

low performance. [95] proposes that the system should be adaptively adjusted

based on internal and external conditions, the so-called Always-Optimal de-

sign. In addition to variations, the complexity of computing systems in general

calls for autonomous management, as the proliferation of applications and in-

creasing requirements for computing performance, efficiency and dependability

pose overwhelming challenges to development [47].

The functional overview of a SAA system can be illustrated by Fig. 2.1.

With the objectives determined by application scenarios, the system traces pa-

rameters from the application, the environment and its own resources. Given

the observed information, it models the state of the application, the envi-

ronment and its own resources using cost functions. Cost functions are pre-

configured or dynamically reconfigurable models used for evaluating the states

of the relevant entities. The results returned by the cost functions are used

to determine if any actions are needed. Key objectives for a SAA system

are dependability, scalability (so that the system can manage any number of

resources) as well as power and energy efficiency (so the power consumption

of the system can be optimized when other objectives are achieved). Major

actions include logic reconfiguration (for instance, new network structure),

physical reconfiguration (for example, new voltage supply), as well as out-

puts to external environment. In a parallel system, each component may be

a SAA entity, and the cooperation of all entities should result in the general

self-awareness and adaptation of the whole system.

Compared to the classic concept of autonomic computing with the four

aspects of self-management (self-configuration, self-optimization, self-healing

and self-protection [57], the notion of self-aware and adaptiveness focuses on

the two distinct phases, awareness and adaptation, which are pillar processes
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Self-Aware System

Monitoring

Environment
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Application

Major Actions

Logic reconfiguration

Physical reconfiguration

Communication with the 

environment

Modelling & Processing
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Power/energy efficiency

Economical benefits: 

sustainability, manufacturability

Cost functions

Figure 2.1: Functional Overview of Self-Aware and Adaptive Systems

in any type of closed-loop self-management. As illustrated in Fig. 2.2, aware-

ness is the prerequisite for effective reconfiguration. A platform with a generic

support for adaptation triggered by self-awareness is able to provide different

types of autonomic operations, given proper configuration of the algorithms

and microarchitectures. Specific to embedded computing, our research is fo-

cused on the system architecture to trace and reconfigure proper parameters

with scalability in cost and design efficiency.

Compared to another closely-related concept, reconfigurable computing,

SAA computing again emphasize on the architectural integration from observ-

able parameters to corresponding reconfiguration. Reconfigurable computing,

on the other hand, explores the vast design space of possible reconfiguration

techniques on each implementation level. The SAA system utilizes the re-

configurable technologies as needed by the design task. For instance, when

the system notices that its performance is worse than expected, it may seek

adaptation to improve the performance by reconfiguring the FPGA-based pro-

cessing fabric.

14



Chapter 2 Paradigm Shifts towards Self-Aware and Adaptive Systems

Awareness

Self-configuration

Self-optimization

Self-healing

Self-protection

objectives

Run-time status

Run-time errors

Future status (predicted 

based on current status)

Automatic configuration 

based on high-level policies

Constantly seek possibilities to 

improve run-time performance

Automatically detect and repair 

software and hardware errors

Automatically protect itself 

from potential failures

Adaptationthe four ”Self-”

Figure 2.2: Self-Aware and Adaptive Systems: A Particular Perspective on
Autonomic Computing.

2.2 Monitoring and Reconfiguration Operations

Run-time monitoring and reconfiguration are essential operations to enable

SAA systems. Monitoring operations perform diagnosis and state tracing of

systems and circuits via physical (e.g., thermal) and logic (e.g., cycle counter)

sensors. Reconfiguration is the operation to adjust the systems based on the

collected information in the monitoring process. A large diversity of monitor-

ing and reconfiguration operations have been proposed on parallel embedded

systems (Table 2.1), with the main purposes to improve system performance,

energy efficiency, and dependability.

Performance is a conventional concern of monitoring and reconfiguration

operations. Major components of a parallel embedded system, including pro-

cessing elements, networks, memory and I/O, are all targets of performance

monitoring and reconfiguration. For instance, cache misses and CPI (cycle-

per-instruction) can be traced for each processing element [125] to monitor

its performance and identify possible causes. Reconfiguration can be issued

based on the monitored information to improve the performance. For example,

the schedulers can reduce the simultaneous execution of memory-bound tasks

when the processor-memory interconnection becomes heavily loaded [125].

In addition to performance, reconfiguration towards energy-efficiency is

also applied in many works [80, 37]. There are techniques addressing differ-

ent power or energy metrics, including dynamic power [71], dynamic energy

consumption [37], and static power [80]. The run-time power or energy opti-

mization is usually performed as a tradeoff with performance or dependabil-
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Table 2.1: The Diversity of Monitoring and Reconfiguration Operations in
Parallel Embedded Systems

Targets Explanation Examples Monitored Pa-
rameters

Function To support
new functions
(application-
specific)

Monitoring soil humidity to
adjust watering in an agricul-
tural scenario [23]

soil humidity

Performance To achieve higher
speedup, resolve
contention

Adaptive routing to reduce
network congestion;
Dynamic buffer allocation for
intensive traffic flow [84];
Dynamic resource allocation
(suggested in [108])

network load,
buffer occu-
pancy ratio,
processing
speed

Hard Fail-
ures

To detect and re-
cover the system
from permanent
errors

Using redundant cores to re-
place failed processors [105];
Using redundant wires to re-
place broken links [68]

CPU failure;
interconnect
error

Temporary
Errors

To detect and re-
cover system from
transient errors

Dynamic retransmission for
transient faults in communi-
cation;
Error detection and correction
in processor and links using
Razor architecture [27]

Run-time com-
munication
data;
Flip-flop con-
tent (Razor)

Power/ En-
ergy

To reduce
power/energy
consumption or
provide energy-
performance
tradeoff

Adaptive power reduction
with dynamical voltage and
frequency scaling [37];
Dynamic power gating to re-
duce static power [80]

current (either
in active or
idle states);
timing slack

Temperature To avoid temper-
ature hotspot or
thermal break-
down

Run-time sensing of thermal
hotspot and dynamic volt-
age scaling to avoid thermal
breakdown[106]

temperature
(thermal sen-
sors using,
e.g., current)
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ity. Thus the monitoring is instrumented via tracing the activity profiles (e.g.,

buffer occupancy and link utilization [110]) and the error profile [126]. The sys-

tem is reconfigured to reduce the power or energy consumption while meeting

the performance or dependability constraints (e.g., error rate [126]). Common

reconfiguration techniques include Dynamic Voltage and Frequency Scaling

(DVFS) and its many variations, dynamic buffer allocation [63], clock/power

gating and dynamic mapping [2].

Besides, monitoring and reconfiguration to provide dependability are also

much needed operations [68, 105]. Dependability is a broad concept, covering

the notions of availability, reliability, safety, integrity and maintainability [6].

In practice, fault tolerance is a major design concern for high-performance

embedded computing [105, 27]. A diversity of monitoring interfaces have been

proposed, including error detection coding, specific counters to identify per-

formance degradation [56] and inline testing [68]. With the awareness of per-

manent and transient errors, proper reconfiguration can be performed, such as

ARQ (automatic repeat query) for transient faults, and spare wire replacement

for permanent errors [68].

From these existing works on run-time monitoring and reconfiguration, we

can firstly observe that such techniques are so widely applied to different types

of components (processors, networks, memory, etc.) that dedicated design to

integrate proper monitoring and reconfiguration services becomes essential for

modern embedded systems. Secondly, the techniques addressing performance,

energy efficiency and dependability are often related to each other. For in-

stance, Razor II architecture [27] employs aggressive voltage scaling on the

processor to minimize the energy consumption, while tracing the soft errors

caused by voltage scaling and PVT variations. While error-observing voltage

scaling is applied to processors in [27], [126] performs error transmission rate

based Dynamic Voltage Scaling (DVS) for energy-efficient on-chip intercon-

nects. In order to integrate the large diversity of monitoring and reconfigura-

tion operations in a real-life complex system, systematic approaches that can

be utilized on various platforms need to be developed.
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2.3 Paradigm Evolution towards 3-Dimensional De-

sign Space

The development of SAA embedded systems is a highly complex process, with

many considerations in the design of computation, communication and control

logic. To reduce the development efforts and maintain an affordable time-to-

market, two system-level approaches need to be applied: design orthogonal-

ization to narrow down the design exploration, and Platform-Based Design

(PBD) to reuse existing architectures.

The orthogonalization of design concerns [58] is one major system-level

principle to reduce the design complexity. The focus of study on specific

concerns does not exclude the interactions with other aspects, but rather mo-

tivates the concentration of design efforts to improve the efficiency of the

system development. Current design space exploration mainly consists of two

dimensions: data processing and communication. The studies of data process-

ing address the data parallelization, processing on individual elements and the

performance of overall parallel systems. The studies of communication involve

the analysis of communication architectures (e.g., message passing or shared

memory space), specific implementation of communication channels (such as

physical and virtual channels), as well as functional and non-functional opti-

mization techniques on these architectures, e.g., power optimization.

PBD [100, 58] is a modern paradigm, which originates from the classic

concept of Model-Based Design (MBD) [104, 53]. MBD abstracts the compo-

nents (processing elements, communication components or control logics) into

models with functional, timing and communication specification. It was the

initial design revolution towards efficient design reuse and easier verification

at an early design stage. With numerous types of hardware components and

software libraries to be integrated, constructions from individual models may

not be efficient for a highly complex system. Instead, PBD, which groups com-

ponents at a specific level into a development platform, is widely adopted for

system development. The definitions of platforms vary depending on the ap-

plication domain. Conceptually we can perceive the platform as an abstraction

layer that captures the functional and non-functional features of a particular

design level. PBD is intrinsically hierarchical since each architectural level

is characterized by a specific platform. Compared to MBD, it improves the

design efficiency by allowing the reuse of a platform at a high level of abstrac-
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tion for various applications. In the meantime, PBD still supports flexible

implementation alternatives, especially by exploiting reconfigurable technolo-

gies to modify the details of the platform and tailor it to different application

requirements. Common platform stacks in PBD [101] and its comparison with

MBD are illustrated in Fig. 2.3.

The design principles of orthogonalization and PBD have motivated the

design evolution of communication-centric design (Fig. 2.4). Previously, the

design was focused on data processing, while the communication was dealt

with in an application-specific manner, either using buses or point-to-point

connection. Communication-centric design, in particular NoC, separates the

functional behaviors of cores (processing) and the interaction between the

cores (communication) [93], in order to improve design efficiency and provide

a generic communication architecture for reuse.

As monitoring and reconfiguration operations become instrumental to the

realization of SAA systems, the design of these operations deserves focused

attention. Currently, these operations are designed in an application-specific

or ad-hoc manner, which prevents efficient design reuse. In fact, as discussed in

Section 2.2, various monitoring and reconfiguration techniques can be applied

to different platforms. To effectively design SAA systems with minimized

design efforts, we propose a dedicated design dimension for adaptivity, leading

to a 3-D design space for parallel embedded system (Fig. 2.4). The separation

of a design layer enables the designers to focus on building a portable and

scalable architecture for SAA properties, which can be added upon existing

data processing and communication infrastructure (design reuse). The thesis

19



Chapter 2 Paradigm Shifts towards Self-Aware and Adaptive Systems

Ad-hoc manner of 

communication architecture

Point-to-point interconnection

buses

A systematic and reusable manner to 

resolve communication bottleneck

Sw

PE

NI

NoC Platform

Separation of 

processing and communication

A systematic and reusable manner to realize 

monitoring and reconfiguration operations/services

Hierarchical Agent-based Adaptation Design Platform

NoC Backbone

R R

R R

R R

R R

R R

R R

Platform 

Agent Cluster 

Agent

Agent Layer

Cluster 

Agent

Cluster 

Agent

Cell 

Agent

Cluster

Cell 

Agent

Cell Cell

Conventional Platforms

Communication
Processing

processing units

communication components

Self-Adaptivity

Figure 2.4: SAA as a Separate Design Dimension

20



Chapter 2 Paradigm Shifts towards Self-Aware and Adaptive Systems

is dedicated to the design and realization of such a design layer.

2.4 Chapter Summary

This chapter motivates SAA systems in parallel embedded computing, and

reasons the necessity of a dedicated design layer for SAA properties. To deal

with the increasing complexity under hardware variations and diverse applica-

tion scenarios, a self-managing system is more capable of achieving run-time

optimization compared to worst-case-based design. This chapter presents an

abstract model of the SAA system, and explains its difference from autonomic

and reconfigurable computing. Then it overviews the monitoring and recon-

figuration services in modern embedded systems, which are utilized to realize

SAA properties. Following the principle of design orthogonalization and PBD,

the chapter proposes a separate design dimension addressing monitoring and

reconfiguration operations for self-adaptation services. Adding such a design

layer will achieve a reusable platform where SAA properties can be designed

upon existing processing and communication architectures.
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Chapter 3

Design Exploration of

Self-Adaptation Architectures

While self-aware and adaptive systems may be realized in various architec-

tures with different functions and objectives, the self-adaptation procedure is

fundamentally composed of three distinct but related processes: monitoring

(M ), decision-making (D) and reconfiguration (R). Most existing works ad-

dress novel techniques in specific M, D and R processes [29, 62]. In particular,

for many-core systems, energy management has been one primary target of

self-adaptation, where the tradeoff between power/energy and performance

can be made at the run-time [64]. What misses in the previous efforts is a

study of the integration of all M, D and R processes into a self-adaptation

architecture, and a comparative study of diversely integrated architectures.

In addition, current physical design may have specific support for run-time

reconfiguration, for example, on-chip voltage regulators. Thus, this chapter

presents a comparative evaluation of various self-adaptation architectures for

many-core systems. In particular, centralized, clustered and distributed tech-

niques are differentiated to categorize these architectures. These architectures

are simulated on a NoC simulator for the examination of the communication

energy, latency and energy-delay product, with the network congestion as an

exemplified performance metric under monitoring. Based on the compara-

tive studies, we also identify the need for hybrid management architectures to

enable wider utilization of self-adaptation techniques.
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3.1 Monitoring, Decision-Making and Reconfigura-

tion Processes

Monitoring (M), decision-making (D) and reconfiguration (R) form the closed-

loop self-adaptation procedure (Fig. 3.1). Monitoring ensures the system visi-

bility of its own status and performance, which is the prerequisite for justified

reconfiguration addressing the actual system needs. Decision-making is the

analysis process, where a controller decides on the proper reconfiguration to

be performed, given the built-in objectives or goals. Reconfiguration is the

changing process of system parameters via actuators, for instance, the updat-

ing of a multiplexer. In a parallel system, when the monitors, decision-makers

and actuators are distributed, monitoring communication is needed between

them.
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3.1.1 Monitoring

Monitoring, or the tracing and sampling of system and circuit status is a

widely studied process. In particular, distributed monitoring in parallel em-

bedded systems has become highly feasible, efficient and low-cost in modern

technology [29, 56]. Before the wide emergence of multi-core or many-core

architectures, the monitoring of single processor performance (e.g., the mem-

ory access) using dedicated hardware with affordable overhead, has already

been common practices [111]. In the many-core system era, different proces-

sor architectures are integrated as IP blocks into parallel systems, thus the

distributed monitoring in each processor is feasible as an internal structure

of each IP block. The distributed monitoring of network components, for in-

stance, routers or links, is also technically feasible. For instance, distributed

probes are added to network interfaces in a NoC[29], which can monitor in-

formation such as throughput, timing or latency. The area overhead is only

27% of a network interface’s area. In addition, fault detection can also be

provided by distributed monitoring. For instance, a hop counter can be added

to the packet [56], which increments by one when passing a new switch. If

the counter overflows, a routing error may have occurred, as the packet goes

through on a much longer path than it should (assuming the routing algorithm

is livelock free).

3.1.2 Decision-Making

With the monitored information, the decision-making process determines the

reconfiguration operations based on specific cost functions. Common cost

functions include performance, power consumption and dependability. The

decision-maker can be centralized or distributed (Fig. 3.2), with trade-offs in

scalability, local and global optimization as well as overheads.

In case of centralized decision-making, the overhead is small since only one

decision-maker is required for the whole system. In particular, a software-

based decision-maker is able to support extensive, flexible and reconfigurable

functions. ElastIC [113] proposes an architecture composed of many tunable

processing elements and one centralized DAP (diagnostic and adaptivity pro-

cessing) unit. Each tunable processing element needs to have the interfaces

for run-time monitoring and reconfiguration, while the DAP unit dynamically

performs diagnosis and reconfiguration for the processing elements. Central-
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ized decision-making suffers from non-scalable burden on the decision-maker

as the system expands. Firstly, the control module will become highly complex

if the decision-maker needs to respond to many requests from all components.

Besides, the communication from every component to a centralized decision-

maker can easily create communication congestion (Section 3.2.2). Also there

will be energy overhead for such communication.

In case of distributed decision-making, if each controller is a general pur-

pose processor (i.e., a software-based decision-maker), the system overhead is

very large. Using individual threads for decision-making is much more cost-

effective (to be elaborated in Section 7.3. If the decision-making function is

simple, hardware-based controllers are suitable with low overhead. For in-

stance, [115] presented hardware-based controllers for per-core DVFS in each

processor on a 167-core computing platform. The controller is very small,

only covering 3% of each processor area. With distributed decision-makers,

the monitoring communication overhead is minimized as the system status and

reconfiguration commands are transmitted locally (Fig. 3.2). However, the

distributed controllers do not have the global information, thus are unable to

target global optimization. In contrast, centralized controllers have the global

view to optimize the overall system performance. For instance, in a chip with 2

processors and two media-processing hardware IPs [98], a small processor core

(centralized) controls the chip temperature while meeting the real-time con-

straints. As the computation may be performed on more than one processing

element, the centralized controller can decide on the proper reconfiguration

based on its awareness of the status of all involved components.

3.1.3 Reconfiguration

After the decision-making process, reconfiguration can be performed either

uniformly to the whole system (centralized reconfiguration) or individually

to different components (distributed reconfiguration). For power and energy

management or dependability, there exist a wide range of reconfiguration tech-

niques [39] such as voltage and frequency switching, dynamic buffer alloca-

tion, clock and power gating, and dynamic mapping. Our discussion omits

technology-dependent mechanisms, for instance, the partial reconfiguration in

FPGAs.

In terms of local optimization, the distributed reconfiguration is more effec-

tive than the centralized reconfiguration, as the workload or traffic spatiality

26



Chapter 3 Design Exploration of Self-Adaptation Architectures

Synchronizer

CK1

CKref
Frequency synthesizer CK2

Vin

Vdd1
Level 

shifter

M/N M/N

Transmitter Transmitter

DC-DC DC-DC

Vdd2

Vdd1

Vdd2

Voltage 

regulator

Figure 3.3: Overheads of Fine-grained Reconfiguration for Individual Voltage
and Frequency Domains

can be better accommodated with individual reconfiguration. For instance, it

is shown in [62] that per-core DVFS achieves up to 21% energy saving com-

pared to conventional centralized DVFS applied uniformly to the whole chip.

However, the realization of distributed reconfiguration is more challenging

than centralized reconfiguration, particularly due to the synchronization issues

and reconfiguration overheads (Fig. 3.3). The synchronization between two

frequency domains requires synchronizers to minimize metastability. Level

shifters are needed to interface two different voltage domains. Both synchro-

nizers and level shifters incur time, area and energy overheads [81, 33]. For

instance, a bi-synchronous FIFO [81] can be added between two asynchronous

routers. The minimal FIFO depth to provide 50% throughput is 5, which

clearly incurs area and energy overhead. In addition, the timing overhead of

the FIFO structure is between two and three reading clock cycles. In addition,

the voltage regulator for dynamic voltage scaling, despite the improvement in

its conversion efficiency, still pose considerable area and power overhead [45].

3.1.4 Monitoring Communication

Interconnection is needed to support the communication between monitors,

decision-makers and actuators. We generalize such networking as the moni-

toring communication. Specific properties are required for such communica-

tion. Firstly, it has to be provided with guaranteed service. In particular, the

flow should be isolated from the application data communication. Otherwise,

if the network is unpredictably congested by the application data, the moni-

toring information will be lost. Second, the latency and energy overheads of
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the monitoring communication should be minimized, if not with strict bound-

aries. Several alternative architectures can be applicable, including physically

separate network [76], TDM (time-division multiplexing) [36] and CDM (code-

division multiplexing). The simple architecture of physically separate networks

reduces the design and verification efforts, which is desirable in modern parallel

embedded systems. In contrast to intuitive assumptions, physically separate

networks are highly feasible in current technology, as multi-layer fabrication

provides abundant wiring resources on-chip [124]. For instance, TILE64 multi-

processor integrates 5 physically separate networks, each only accounting for

1.1% of the die area [124]. Other more complex communication architectures

may require significant design effort and incur energy overhead. For instance,

TDM-based monitoring network consumes much more energy than physically

separate monitoring networks based on [36]. Considering that the future sys-

tems are strongly energy-limited, in this chapter a physically separate network

for the monitoring communication is assumed (Fig. 3.2). Section 6.3 will fur-

ther explore this issue.

3.2 Centralized, Clustered and Distributed Archi-

tectures

Run-time self-management architectures need to integrate the M,D and R

processes. Modern VLSI technology has been giving physical and circuit-level

support to enable run-time monitoring and power reconfiguration on many-

core systems. Based on these supports, we can design coarse- and fine-grained

self-adaptation architectures.

3.2.1 Physical Support for Voltage and Frequency Reconfigu-

ration

Voltage regulators (VR), either on-chip or off-chip, are the classical techniques

to enable voltage reconfiguration (Fig. 3.4). Conventional off-chip regulators

are usually slow, due to the large parasitics [34]. To increase the speed of volt-

age scaling, on-chip voltage regulators are proposed, which achieve frequencies

on the scale of 100MHz [62]. Regardless of the improvement on speed and

energy efficiency, VR-based approaches incur noticeable area overhead. For

instance, [102] presents a highly-efficient on-chip voltage regulator in 65nm
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CMOS consuming 0.77mm2 area. If each processor on a 80-core chip required

such a regulator, the total area overhead for voltage switching would amount

to 61.6mm2 on a 275mm2 chip [119].

Considering the overhead of voltage regulators, a new technique, multi-

ple on-chip power delivery networks (MPN), provides a fast and lower-cost

approach (Fig. 3.5 [115]). Several global power delivery networks are imple-

mented on high metal layers. The local power networks inside each component

are routed on middle metal layers. The voltage of each component can be dy-

namically connected to one of the global power lines via power switches. As

demonstrated by [115], the voltage scaling from 0.9V to 1.3V takes less than

4ns with clock halting, which is significantly faster than voltage regulators.

Power switches are implemented as parallel transistors, whose area overhead is

analyzed as only 4% of a node area [115]. However, the MPN-based platform

is demanding in the physical design process, including the layout of multiple

power delivery networks and the design of fine-grained power switches to pro-

vide low voltage-drop and dependable voltage transition. Thus this technology

has not been widely adopted except in few works such as [115, 14].

Compared to voltage regulators, the frequency synthesizers used for run-

time frequency scaling incur much lower overhead in time and area. Even with

90nm technology, the clock generator in [89] only covers 0.05mm2 area with

4.5ns switching time. As the frequency switching delay is overlapped with the
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voltage regulation time, no additional timing penalty is incurred.

3.2.2 Centralized Architecture

In conventional energy management architecture, a centralized decision-maker

[71] supervises the monitoring and reconfiguration for the whole system (Fig.

3.6), while the run-time information is still gathered locally. The decision-

maker reconfigures the network (e.g., its voltage and frequency) in a unified

manner. Despite that the network runs at the same frequency, it is difficult to

ensure that all clocks in every router keep the same phase, thus mesochronous

interface is needed [119].
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The centralized architecture has low area overhead, since only one set of

voltage regulator and frequency synthesizer are needed. However, chip-wide

reconfiguration cannot address the spatial locality of the workloads, as will

be demonstrated in Section 3.3. It is only suitable for networks that have

uniform traffics across the system. In addition, as all nodes send monitoring

information to a single decision-maker, congestion may appear when there are

a large number of nodes.

3.2.3 Clustered Architecture

As the centralized architecture cannot account for the workload’s locality,

cluster-based energy-management has been proposed [90, 129]. Instead of a

centralized decision-maker, the system is divided into several clusters, each of

which being supervised by a decision-maker (Fig. 3.7). The reconfiguration is

applied to the whole cluster. Between the clusters, asynchronous interface is

needed as frequencies can be different at the two ends.

The overhead of VR-based clustered architecture, due to the voltage regu-

lators, is higher than that of the centralized architecture. But the total number

of regulators only grows with the number of clusters, not with the number of

processors. For instance, with the voltage regulator as in [102] (0.77mm2), a

system with four clusters will consume 3.08mm2, as 1.12% of a 275mm2 chip.

The major benefit of this architecture lies in its adaptation to regional traf-

fic loads, thus it is suitable for systems with multiple applications. However,

the voltage regulator still incurs considerable timing overhead (in the range of

100ns including the voltage stabilizing time on the power line [62]). In case
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of fast-changing on-chip communication, such slow voltage switching may pre-

vent the network from adapting to the traffic variation on time, resulting in

low energy efficiency (Section 3.3 will demonstrate this issue). In addition,

the workload variations within a cluster cannot be addressed when all nodes

in the cluster receive the same reconfiguration.

3.2.4 Distributed Architecture

In the distributed architecture, each local decision-maker supervises the recon-

figuration of the corresponding node, as illustrated by Fig. 3.8. Thus, there is

no global networking between the monitors and the decision-makers. To enable

such fine-grained reconfiguration, especially for voltage switching, the multiple

voltage delivering networks with power switches are necessary. As discussed in

Section 3.2, the parallel-transistor-based power switch only requires 4% of each

network node’s area [115], thus significantly smaller than distributed voltage

regulators. Since each router may run on a different frequency and voltage,

asynchronous interface (e.g., with FIFOs and level shifters) is needed on each

link.

Compared to the clustered architecture, distributed energy-management

can respond to even more fine-grained workload locality, as each router can

run on a different frequency. More importantly, as MPN-based voltage switch-

ing is significantly faster than voltage regulators, the energy-management can

capture the fast changes in the traffics, leading to superior energy-performance

tradeoff. However, the asynchronous interface on each link incurs noticeable

energy and timing overheads. In addition, local adaptation may overact to

temporary workload variations, which may lead to oscillation with worse per-
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formance.

3.3 Quantitative Comparison

Here extensive quantitative evaluation is performed to compare the effective-

ness and efficiency of various self-adaptation architectures. In particular, the

energy consumption, performance and energy-performance tradeoff in NoC

communication will be analyzed. The influences of switching delay, syn-

chronization overhead and monitoring communication will be identified and

compared. A set of representative synthetic traces are utilized to provide a

generally-applicable conclusion. The quantitative study in this chapter ex-

cludes area overhead comparison, as it becomes a secondary design concern

with constant technology scaling. Besides, previous works [37, 115] have shown

the feasibility of clustered and distributed energy management in NoCs.

3.3.1 Platform Setting

A flit-level accurate and trace-driven NoC simulator is built for simulating

monitoring and reconfiguration techniques (see Appendix A).Each tile in the

NoC is a 2mm×2mm square. In case of centralized and clustered architectures,

there are two routers in each tile for the data and monitoring communication

respectively. The distributed architecture only has routers for the data com-

munication. The data router is input buffered with 2-flit input buffers. The

router utilizes wormhole-based switching and X-Y deterministic routing. Ev-

ery packet is in the form of one header flit followed by 7 payload flits. Each

flit is 32-bit wide, so each channel has 32 bits per direction. The monitoring

network uses a similar router architecture with one-flit-deep input buffers and

8-bit channel width, as its communication volume is typically lower than that

of the data traffic.

Based on the analysis of a bi-synchronous FIFO architecture [81], a 5-flit

FIFO is assigned on each asynchronous interface with 3 reading cycle laten-

cies between different frequency domains, while a 4-flit FIFO is used for each

mesochronous interface with 2 reading cycle latencies. The delay on the level

shifter is negligible compared to the FIFO delay [33], thus omitted. During

the voltage switching, the involved nodes are paused. For VR-based switch-

ing, the delay is set as 100ns (Section 3.2.3). For the MPN-based switching,
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the delay is much lower as 10ns with clock gating (realistic based on [115]

including the voltage stabilizing time on the power line).

Energy is modeled by calculating the consumption of each packet traversing

the routers and links. The choice of voltage and frequency pairs is dependent

on the implementation, for instance, the critical path. In this work, we adopt

the values from [14] for experimental purposes, as the detailed circuit-level de-

sign is beyond the interests of our architectural comparison. Two pairs of volt-

age and frequency values are (VH=2V,FH=1GHz),(VL=1.05V,FH=1

3
GHz). As

SoC approaches lower voltages, designing more than two discrete voltages re-

turns little benefits [19] while the overhead of power network distribution in-

creases. Given the voltage and frequency, the energy consumption of routers

and links can be obtained from Orion 2.0 tool [55]. We estimate the energy

consumption of synchronization interfaces also with Orion 2.0, since the FI-

FOs are usually designed with the same shift register structure as the input

buffers of the router. In terms of energy overhead of voltage regulators, it

follows E = C × (1 − µ) ×
∣

∣V 2
dd2

− V 2
dd1

∣

∣ [112]. C is the filter capacitance of the

power-supply regulator. µ is the conversion efficiency. Vdd2 and Vdd1 are the

voltages before and after the transition. In the experiments, C is configured

as 2.5nF and µ as 82.5% [45]. Th energy consumption of the level shifter is

from the figure in [33].

3.3.2 Traffic Generation

In order to evaluate the energy-performance tradeoff for a general-purpose

many-core platform, a set of synthetic traces with distinctive temporal and

spatial variation patterns are devised and simulated. The synthetic traffic

traces are categorized by two features- the temporal injection rate and the

destination locality:

• In terms of injection temporal rates from each processing element, we

consider uniform and b-model traffics [123]. Uniform pattern represents

an ideal case of network traffic. To accommodate traffic variations in the

experiments, we generate b-model traffics [123]. It models self-similar

and temporally varying traffics, which are demonstrated to be realistic

in practical network environments [123] and utilized in on-chip commu-

nication microbenchmarks [74]. A single parameter b(0.5 ≤ b < 1) can

be set to configure the burstiness of the injection. The closer b is to 1,
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Figure 3.9: An Example of B-model Traffic (b=0.6)

the more bursty the traffic becomes. Fig. 3.9 illustrates a b-model traffic

trace with b = 0.6.

• In terms of packet destination distribution, we consider uniform and

hotspot traffic. Uniform traffic assumes the same probability of destina-

tion for all packets. Hotspot pattern assigns a high transmission proba-

bility to certain regions of the network. Such pattern of communication

is likely to appear when certain processors are major data consumers in

a parallel computing platform. Eq. 3.1 and Eq. 3.2 model the probabili-

ties of a node in the hotspot region and other region as the transmission

destination respectively. ρ is the fraction of the traffic targeted to the

hotspot region. Nhotspot is the number of nodes in the hotspot region.

Nnetwork is the total number of nodes in the network.

P (hotspot) = ρ/Nhotspot (3.1)

P (other) = (1 − ρ)/(Nnetwork − Nhotspot) (3.2)

The combination of temporal and spatial patterns results in four traffic

traces, which run simultaneously on an 8x8 mesh-based NoC, as illustrated

by Fig. 3.10. The traffic pattern is labelled as a pair listing the temporal and

spatial pattern. For instance, (U, U) stands for uniform temporal injection

rate and uniform destination distribution. The temporal injection rate (R),
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Figure 3.10: Experimental Platform Running Four Traffic Traces (each trace
runs in a 4*4 cluster)

hotspot location, bursty parameter b, and decision-maker locations are also

labeled with experimental values.

3.3.3 Simulation Results

The energy management, in particular energy-performance tradeoff, with dif-

ferent architectures is simulated with DVFS adapting to the network traffic.

Buffer load, the percentage of buffers occupied in routers and synchronizing

FIFOs of the interested area (individual router, a cluster, or the whole net-

work), indicates the traffic congestion. The higher the buffer load is, the longer

waiting time on average the packets have. Thus the decision-makers adjust

the frequency and voltage of the corresponding routers, in order to keep the

buffer load within a design-specific range. For the distributed architecture

(DI ), per-router DVFS is performed, where each local decision-maker adjusts

the voltage and frequency based on the buffer load of the corresponding router.

For the clustered architecture (CL), per-cluster DVFS is performed, where the

buffer load is an average from all routers in the cluster. For the centralized

architecture (CE), the buffer load is an average of all routers in the NoC. In

our simulation, the design-specific buffer load range is chosen as (0.1, 0.2). If
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Figure 3.11: Temporal Latency of Four Traffic Traces in Different Energy
Management Architectures

the buffer load is above 0.2, the corresponding routers are reconfigured with

the high frequency and voltage. Likewise, the routers are reconfigured to the

low frequency and voltage in case the load is below 0.1. The report of buffer

load in the monitoring communication, in case of the clustered or centralized

architecture, contains 2 flits. The buffer load is always, on the timescale, an

average of figures in each time window of 200 cycles.

3.3.4 Performance

The average flit latencies of the four traces running in the three architectures

(CE-centralized, CL- clustered, DI - distributed) are depicted in Fig. 3.11.

The latency is reported in every time window (200 cycles at 1GHz). For anal-

ysis purposes, an additional setting (DL) with distributed DVFS with a long

switching delay (100ns, the same as the voltage regulator) is also simulated

to identify the influence of the switching delay.

It can be observed from Fig. 3.11 that there are clear performance differ-

ences with different energy management architectures. The average latency

of the centralized architecture (CE) drastically changes in different periods.

It is caused by the centralized reconfiguration that does not consider the run-
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Table 3.1: Average Flit Latency (Cycles) in Monitoring Network

CE Trace (U,U) Trace (U,H) Trace (B,U) Trace (B,H)
in CL in CL in CL in CL

558 64 84 70 84

time network load of each application. The clustered architecture (CL) has

significantly lower and more stable latency compared to CE. The distributed

architecture (DI ) has the lowest and the most stable performance.

The performance differences under different energy management architec-

tures are caused by four factors. Firstly, the granularity of reconfiguration

process determines if the system can adapt to traffic’s spatial locality. Thus,

the finest-grained distributed architecture has the lowest latency. Second,

the switching delay affects if the network can speedily complete the recon-

figuration. This issue can be further elaborated through the experiment of

distributed DVFS with a long switching delay (DL). As can be observed from

Fig. 3.11, when the delay is configured as long as the voltage regulator, the

latency of the distributed architecture is significantly increased to be compa-

rable with CL. Third, the congestion in the monitoring network is an issue

for the centralized architecture, as can be seen from Table 3.1. Last but not

least, if the network switches too often to induce oscillation, the performance

is negatively influenced. From Fig. 3.12, it can be seen that the distributed

architecture suffers from the largest number of switching. Frequent switching

incurs performance penalty, which is clearly seen when the delay is configured

longer in the case of DL.

3.3.5 Energy Efficiency

The average communication energy consumption of all four traces with dif-

ferent architectures is reported in Fig. 3.13, labeling also the overheads of

synchronization FIFOs and monitoring communication. It can be observed

from Fig. 3.13 that the energy consumption of the CE,CL and DI is compa-

rable with no convergent winners in the four traffic traces. It is not a surprise

that the energy consumption of distributed DVFS is not necessarily the low-

est, since the other two architectures may reduce more energy by sacrificing

the performance. The synchronization FIFOs add a small but steady share of
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Figure 3.12: Number of Switchings in Different Energy Management Archi-
tectures

energy consumption (around 2.5%). Besides, the monitoring communication

also adds small energy overhead (maximal 4.8% for the centralized architec-

ture, 4.6% for the clustered architecture), due to its low volume compared to

the data communication. In addition, the relative energy overhead from the

voltage regulator in clustered and centralized architectures is very small (less

than 1%), thus omitted. As the data communication volume steadily increases

in NoCs, the relative energy overhead from the voltage switching will become

insignificant given a small number of regulators.

As the latency values of the three architectures differ significantly, to com-

pare the energy efficiency, Energy-Delay Product (EDP) can be analyzed (Fig.

3.14). In this context, the delay is interpreted as the communication latency.

From Fig. 3.14, it can be observed that the clustered architecture is 12.1%

and 43.9% lower in EDP for (U,U) and (B,U) traffics compared to the cen-

tralized architecture. The per-core DVFS has a more clear advantage. Its

maximal saving is 50.7% compared to the centralized architecture, and 43.9%

compared to the clustered architecture. The only counter-example is the (B,H)

traffic. Since the centralized architecture utilizes extra energy for this traffic

based on the average buffer load in the whole network, (B,H) traffic alone gets

good performance while the other three traces suffer from long and drastically

changing latencies. The analysis on EDP further demonstrates the energy

efficiency of clustered and distributed management in NoCs.

39



Chapter 3 Design Exploration of Self-Adaptation Architectures

CE CL DI 0 CE CL DI 0 CE CL DI 0 CE CL DI
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

 F
lit

 E
ne

rg
y 

(e
−

13
J)

 

 

data communication
synchronization
monitoring communication

(U,U) (U,H) (B,U)

(B,H)

Figure 3.13: Average Communication Energy of Four Traces in Three Energy
Management Architectures

(U,U) (U,H) (B,U) (B,H)
0

1

2

3

4

5

6

7
x 10

5

E
ne

rg
y 

D
el

ay
 P

ro
du

ct
 (

e−
13

J*
C

yc
le

)

 

 

Centralized
Clustered
Per−Router

Figure 3.14: Energy-Delay Product of Four Traces with Different Energy Man-
agement Architectures (CE, CL and DI )

40



Chapter 3 Design Exploration of Self-Adaptation Architectures

3.4 Summarizing Comparison

Based on the qualitative and quantitative comparison in Section 3.2 and 3.3,

the pros and cons of the centralized, clustered and distributed architectures

can be summarized as in Table 3.2.

The centralized architecture, though with the most simple design, lacks in

adaptation to spatial locality. The monitoring communication also leads to

congestion in this architecture. The clustered architecture, with much better

scalability, is enabled with high-speed voltage regulators, and significantly

improves the energy-performance tradeoff. However, the switching delay of

voltage regulators is still noticeable for fast-changing on-chip traffics. Thus the

distributed architecture with MPN is proposed. The simulation result shows

that the energy efficiency of the distributed DVFS is higher or similar to the

clustered DVFS, while the performance is more stable with lower maximal

temporal latency. Such advantage is due to that distributed DVFS has more

fine-grained local adaptation with faster switching frequency. However, none of

the architectures directly addresses performance metrics, for instance, latency.

Hence the communication performance varies with time and traffic patterns.

3.5 Chapter Summary

This chapter studies and compares the design of adaptive services in paral-

lel embedded systems evolving from the centralized architecture towards the

distributed architecture. The study exemplifies the adaptive energy manage-

ment service in NoCs, in particular the energy-performance tradeoff. The

comparison shows that the centralized architecture is in general non-scalable,

when addressing localized parameters, e.g., network load. Distributed manage-

ment, on the other hand, supports fine-grained adaptation, though with high

demands on the physical support. Clustered-based management provides a

tradeoff between the energy efficiency and the required physical platform.

From the chapter’s study, we can identify that self-management opera-

tions on each architectural level have specific tradeoff between performance,

energy and overheads, which points out that a systematic integration of these

operations may exploit the benefits of all levels’ adaptation. In particular, al-

though distributed DVFS is shown to have better energy-performance tradeoff

than clustered or centralized approaches, its limitations are still noticeable. In
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Table 3.2: Summarizing Comparison of Centralized, Clustered and Per-Router DVFS in Energy-Performance Tradeoff

Architecture Temporal Spatial Monitoring Complexity Energy Efficiency
Adaptation Adaptation Communication

Overhead

Centralized Slow Not addressing Congested monitoring Low Low
(in decision- locality network
making and
switching

Clustered Moderate Addressing No congestion Moderate High
(due to the intra-cluster very low (VR needed)
VR delay traffic energy overhead

Distributed Fast Very fine-grained No global High Highest
(due to (with possible monitoring communication (MPN required) (too frequent
power switches) oscillations) switchings incur

penalties)
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addition to oscillation, distributed decision-maker is not aware of global perfor-

mance. For instance, the application or network latency can not be captured

locally, as the latency depends on the status of multiple routers. The clus-

tered architecture, on the other hand, has a per-cluster decision-maker that

can be designed with cluster performance awareness beyond average traffic

load (Chapter 5). A hybrid architecture, which combines the fast local recon-

figuration and clustered decision-making, may exploit both of their benefits.

In the following chapters, a systematic paradigm to design self-aware and

adaptive services on all architectural levels will be introduced. The paradigm,

Hierarchical Agent-based Adaptation (H2A), will integrate the pros of different

self-management architectures when providing run-time energy management

and dependability.

43



Chapter 4

Hierarchical Agent-based

Design Platform

Hierarchical Agent-based Adaptation (H2A) is a new design paradigm address-

ing the monitoring, decision-making and reconfiguration (MDR) processes.

The previous chapters have motivated a dedicated design dimension for self-

adaptation services in parallel embedded systems. This chapter starts to intro-

duce H2A as a systematic paradigm to design SAA systems. The backbone of

H2A is an agent hierarchy, from the top-level platform agent, the middle-level

cluster agent, to the bottom-level cell agent. Each level of agents is responsi-

ble for services of different scopes, priorities and granularities. Such partition

ensures that both high- and low-level services can be fulfilled without incur-

ring bottlenecks. Each level of agents follows specific SW/HW co-design for

implementation, so that the flexibility of services is provided without incur-

ring non-scalable overhead. This chapter is an overview of the H2A paradigm,

while the following chapters will present the architectural design and imple-

mentation.

4.1 Agent as a Design Abstraction

The term Agent originally comes from artificial intelligence and software en-

gineering, with a diversity of meanings. One classic definition can be found in

[97]: ”an agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators”.

Based on the classic definition, we use Agent as a design abstraction, refer-
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Figure 4.1: The Integration of Agents for Self-Adaptation on Processing and
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ring to any control entity in the MDR processes. Such an abstraction enables

the separation of the design space into the processing, communication (conven-

tional) and self-adaptation. In the self-adaptation subsystem, agents control

all monitoring (upon the monitors) and reconfiguration (upon the actuators),

and serve as the decision-makers (Fig. 4.1). With a separate self-adaptation

design layer, the designers will consider the MDR processes as a unified sub-

system generically applicable to different processing and communication plat-

forms, instead of a set of ad-hoc techniques.

In terms of functions, agents share similar behavioral patterns. They ob-

serve (via monitors) and reconfigure (via actuators) resources. The monitoring

operations provide self-awareness of the system. The agents process the infor-

mation gathered from the monitoring operations with built-in cost functions

(Section 2.1). Accordingly, they determine if and how reconfigurations should

be performed on the resources, which lead to self-adaptation. If the system’s

environment is considered in the adaptation process, the agents also observe

and act upon the environment. Between multiple agents, there is also com-

munication to exchange information. In terms of implementation, agents can

be realized as software, hardware, or any type of hybrid entities. There can

be a single agent or multiple agents.
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4.2 H2A Architecture

To integrate agents for monitoring, decision-making and reconfiguration op-

erations in a scalable manner on parallel embedded systems, multi-layered

agents with hierarchical scopes and priorities are constructed, i.e., Hierarchical

Agent-based Adaptation (H2A)(Fig. 4.2). In this thesis, the agent hierarchy

is composed of three levels: platform agent, cluster agent and cell agent.

To enable the self-adaptation of a system, firstly the application should be

embedded with metadata, which includes the application progress and per-

formance requirement. The information of the performance requirement sets

the performance objective for the adaptation. Common requirements include

timing constraints, e.g., soft/hard deadlines, and dependability requirements,

e.g., MTTF (mean-time-to-failure). The application progress indicates the im-

portant timestamps for the platform agent to measure the performance. One

example of specifying the application progress is Application Heartbeats [46], as

illustrated in Fig. 4.3. In the program, certain locations are inserted with API

functions (i.e., heartbeats), which indicate the progress of the application. By

checking the timestamps of heartbeats, the system is aware of the execution

speed of the application. The metadata can be specified by the application

designers, and is independent of the platform that will run the application.

The thesis does not provide in-depth exploration of the application design to

integrate the meta-data, instead it assumes that such information is already

embedded in the applications.

The platform agent is the top level monitor, which receives the meta-data

from the application and accordingly configures the whole system at a coarse

granularity. It is responsible for resource allocation, including mapping pro-

cessors to application tasks, and network configuration. At run-time, it traces

parameters indicating overall system performance, for instance, the total sys-

tem power or the speedup. Based on these parameters, the platform agent

may reconfigure coarse-grained system settings, for instance, reconfiguring the

network topology. The coarse-grained monitoring operations handled by the

platform agent usually require a large amount of data processing. For instance,

power and performance aware application mapping, including dynamic map-

ping, goes through many iterations of searching of all resource information [20].

In addition to monitoring the platform, the platform agent is also monitoring

the performance of the cluster agent. As agents themselves are also victims of
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errors and failures, each level of agent is responsible for the fault-management

of its lower-level agents.

Cluster agents work on the lower level of the platform agent. Each cluster

agent is responsible for a region, i.e., a cluster, in the platform. The range of a

cluster is design specific, for instance, a group of cores in the same voltage is-

land on a many-core platform. In terms of monitoring, the cluster agent traces

the performance of and the errors within a cluster, for instance, the network

communication in one voltage island. In terms of reconfiguration, each cluster

agent can only reconfigure the settings in the corresponding cluster. For in-

stance, if each cluster has its own voltage and frequency controller, the cluster

agent will be responsible for the controller’s setting. In addition, all cluster

agents need to follow the coarse-grained reconfiguration set by the platform

agent. For instance, the platform agent can decide on a dynamic update of the

clusterization (Chapter 6) with different cells grouped to the cluster. Then

the cluster agent will be responsible for the newly formed cluster. In addition,

the cluster agent is monitoring the cell agent, while being monitored by the

platform agent.

The lowest-level agents, cell agents, work on a fine granularity. Each cell

agent tightly monitors and reconfigures a cell, which can be a processor, router

or a NoC node composed of one processor and one router. The partitioning

of cells depends on the smallest granularity for adaptation in the system, and

can be specified by the designers. Each cell agent monitors the parameters

indicating the local status and errors. For instance, link errors can be detected

by the cell agent with repetitive checking upon transient errors. The cell agent

also reconfigures the local settings, if tunable parameters are given for each

48



Chapter 4 Hierarchical Agent-based Design Platform

cell. For instance, [115] presents a many-core platform, where each core can

adjust its power scheme independently. In this case, such fine-grained power

management lies in the functions of cell agents.

Following the discussion above, the functional partitioning of agents in

H2A can be summarized as in Table 4.1. The functions of the platform agent,

cluster agents and cell agents complement each other to perform the monitor-

ing and reconfiguration operations on all architectural levels. Such partitioning

provides performance (of adaptation services) scalability, as the low-level fine-

grained operations are captured by the cell agents, thus alleviating the burdens

on the platform agent. In terms of design productivity, the systematic parti-

tioning avoids ad-hoc designs by providing a generically applicable monitoring

and reconfiguration framework. The following chapters will present examples

where various services can be designed with such a framework.

While Fig. 4.2 gives the basic form of agent monitoring and reconfiguration

in H2A, additional features can be added as extensions. Firstly, in massively

parallel systems, it is likely that one level of cluster still can not distribute

the monitoring and reconfiguration roles efficiently. In this case, more levels

of clusters can be added into the hierarchy in the form of Superclusters. In

addition, the adaptation operations can involve multiple levels of agents, or

flow across multiple levels (Table 4.1). For instance, a platform may have a

certain amount of spare nodes. In case a cluster runs out of normal nodes,

the cluster agent may ask for a spare node from the platform agent. If the

platform agent decides to grant a certain spare node, it will configure the spare

node to be included into the cluster. In this case, the platform agent directly

configures a cell. In Chapter 6, related designs will be presented.

4.3 Agent Implementation Guidelines

Self-adaptation operations introduce implementation overheads. In order to

ensure physical scalability of the proposed H2A architecture, SW/HW co-

design is followed in choosing proper implementation alternatives for the self-

adaptive operations. In particular, agents on different levels are implemented

as software, hardware or hybrid, based on the diversity of functions, complexity

of algorithms and timing requirements.
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Table 4.1: Generic Functional Partition of Agents on the Platform

Level Priority Resource Monitoring and Monitored Agents Features
Reconfiguration

Platform agent Highest Platform performance and energy; Cluster agents; Coarse granularity;
Major failures; Cell agents Global influence;
Low-level status upon request Diverse functions;
upon request Long-latency operations

Cluster agent Medium Cluster status; Cell agents Intra-cluster influences
Energy-performance tradeoff; Moderate amount of processing
Local network configuration;
Low-level performance
upon request

Cell agent Lowest Cell reconfiguration; None Fine granularity
Local errors Low-latency, fast response

Minimal amount of processing
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4.3.1 Alternatives

Agent functions can be implemented with various software and hardware al-

ternatives, including dedicated processors, time-sharing on processors, recon-

figurable micro-controller, or custom hardware.

When implemented as an embedded general-purpose processor, an agent

can perform diverse monitoring and reconfiguration operations as software

functions. For example, ElastIC architecture [113] adopts a single processing

unit for dynamic testing operations and as the global-level scheduler. A soft-

ware agent has high flexibility as the instructions can be reloaded at run-time

to reconfigure the functions. In case of complicated algorithms, such manner

of agent design saves the area overhead compared to purely hardware-based

design, but it is usually slower than dedicated hardware implementation.

As another alternative, sharing a physical processor with the data pro-

cessing saves the physical overhead compared to a dedicated processor for the

agent. In Chapter 7, an example of a cluster agent running as a thread on a

general purpose processor will be presented. However, such an alternative in-

troduces design complexity, for instance, the coupling of the errors of the data

processing and the agent function. If the processor fails, both data processing

and the agent function may stop working properly.

Micro-controller is another alternative for agent implementation [17]. It

has a much simplified processing core compared to a general-purpose processor,

thus is low in complexity. It can run different instructions (though with limited

memory), thus provides more flexible functions than custom hardware. Micro-

controller is a suitable trade-off between flexibility and overheads for agents

with low-complexity monitoring algorithms. It is also faster than a general

purpose processor.

The fourth alternative is custom hardware. Implementing agents as dedi-

cated hardware supports low-latency operations and minimizes the area over-

head compared to the same number of software-based agents (e.g., a pro-

cessor). It is suitable for agents with very simple and standardized opera-

tions. When the parameters for monitoring and reconfiguration are similar

for different applications (e.g., link error, network load, latency counter), the

hardware-based agent can be wrapped into an IP block with the processing or

communication component.
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Table 4.2: Agent Implementation Guidelines

Level Complexity Timing Implementation
Platform Agent Highly complex; Long processing General-purpose

Various system time; processor (possibly
configuration Latency-tolerant with additional
algorithms hardware logic)

Cluster Agent Moderately complex; Shorter than SW/HW co-design
Simpler algorithms; platform-level
Less diversity algorithms

Cell Agent Simple; Low-latency; Hardware;
Dedicated operations Frequently issued Micro-controller

4.3.2 SW/HW Co-Design for Agents

Based on the pros and cons of each alternative, the implementation guidelines

for each level of agents can be discussed. The major considerations are the

diversity of monitoring functions, the operations’ timing requirements and

complexity of algorithms (Table 4.2).

Platform agent, at the top level, has a wide range of monitoring operations

and needs to perform complex processing for global optimization. A software

implementation with general-purpose processor provides the flexibility and

reconfigurability. In addition, the global-level reconfiguration is usually al-

lowed very long latency, for instance, the mapping process. Thus the speed

disadvantage of general-purpose processor is not an issue. Such manner of

implementation is also scalable in terms of physical overhead as only one such

processor is required for any-sized platforms. The software agent may require

certain hardware circuits for pre-processing (Chapter 6 will present an example

on this).

The cell agent, distributed for each fine-grained functional component, is

suitably implemented in custom hardware or micro-controller. Firstly, low-

level services, for instance, fault detection and network load collection, require

fast operations. Custom hardware or micro-controller-based agents provide

the required fast operation. In addition, low-level services are usually simple

and easily modularized. For instance, a set of sensors (e.g., load, temperature,

fault) controlled by one cell agent can be added to a network node. Gener-

ally speaking, hardware-based implementation fulfills the simple operations
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in the low level with much lower overhead than a general-purpose processor.

Since each cell requires a cell agent, a software-based approach is infeasible for

parallel embedded system.

The complexity of cluster agents lie in between the platform and cell agents,

thus their implementation is design-specific.When the cluster agent is respon-

sible for simple monitoring operations, it can utilize hardware-based approach.

Chapter 5 will present a case study where the cluster agent is performing DVFS

with hardware logic. When the cluster agent handles a diversity of monitor-

ing operations, a software implementation is more suitable. Currently, some

software-based approach is already proposed even for each individual core.

For instance, [48] allows operating system threads to be loaded for each core.

With the constant increase of cores on a single chip, the size of current platform

may be comparable to a cluster in the future platform, thus a software-based

approach for cluster-level agent is reasonable for large clusters.

4.4 Agents and Operating System

A computer-based system is generally composed, from the highest-level, of

application, operating system1 and hardware. Based on this generic system

partition, the software agents belong to the function of operating system, while

the hardware agents and the affiliated components provide the architectural

support to the operating system. While the thesis does not aim to design an

operating system, a discussion on the positioning of the agent architecture in

the general computer system is necessary.

As illustrated in Fig. 4.4, the hierarchical agent architecture can be in-

tegrated into a multiprocessor operating system with hierarchical prioritized

processes for monitoring and reconfiguration services. The design needs to

address the following considerations:

• Software agents which manage the coarse-grained adaptation services

(e.g., resource allocation, global network configuration) should be de-

signed as multiple processes. These processes need to have hierarchical

priorities, as the platform agent and cluster agents have different scopes

in the system management.

1Discussion on the relation/difference between operating system and middleware is omit-
ted, as such differentiation is beyond the scope of this thesis.
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• Hardware agents, in particular the lowest-level cell agents, realize uni-

form and simplified functions, for instance, load monitoring, voltage

switching, etc. With less flexiblity than software-based agents, they

enable fast processing of predetermined monitoring and reconfiguration

functions. Microcontroller or reprogrammable technologies improve the

flexiblity of hardware agents by allowing limited manners of reconfigu-

ration.

• Hardware supports for software agents are needed as ancillary circuits to

enable the adaptation services. For instance, status look-up tables will

be designed in Section 6.2 to support the dynamic clusterization and

run-time resource management of platform and cluster agents.

• Regardless of software or hardware agents, they are both orthogonal in

function to data computation and communication services (Fig. 2.4), as

they are monitoring and reconfiguring the normal application operations.

As a proof-of-concept prototype, Chapter 7 will implement a software-

based platform agent, thread-based cluster agents with specific hardware sup-

port, and hardware-based cell agents for modularized fine-grained services.

Though the implementation is based on distributed shared memory architec-

ture, the paradigm itself is not confined to any parallel/distributed operating

system architectures.
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4.5 Related System Architectures

Multi-agent-based or SW/HW co-design control systems for monitoring and

self-adaptation services have been proposed in previous works [82, 83, 113, 24,

2, 21, 109, 50]. A representative set of these related system architectures are

discussed below and compared with H2A.

Some works address generic system architectures for run-time adaptation.

For instance, [82, 83] propose multi-agent control system on reconfigurable

platforms. They suggested that both software and hardware agents can be

modeled with their beliefs, desires and intentions. The agents implemented on

reconfigurable hardware were demonstrated to be much faster than a software

implementation, for a sensor fusion system. In H2A, software and hardware

agents co-exist and are chosen based on the complexity and flexibility of the

functions, the speed requirement and the silicon overhead. The agent hierar-

chy not only relates to the functional scope of each level of agents, but also

their implementation style (Section 4.3). Another work, ElastIC [113], is an

adaptive system architecture for self-healing in many-core System-on-Chip. A

centralized DAP (diagnostic and adaptivity processing) unit is supervising a

pool of adaptive processing elements. Each processing element contains ob-

servable and tunable parameters, for instance, power monitors. The DAP

unit dynamically tests (e.g., by taking each processing element offline) and

reconfigures cores with degraded performance. However, this work does not

provide in-depth architectural exploration for different adaptive services or the

implementation of the system architecture. In [109], a system architecture is

presented for evolvable systems, partitioned into application, operation sys-

tem and hardware architectural layers. This work compares using software or

hardware implementation libraries for self-adaptive operations (observe, de-

cide and act). In comparison, H2A emphasizes on utilizing both software and

hardware agents upon parallel embedded systems, while the libraries proposed

in [109] can be integrated in H2A for realizing agents.

More efforts on self-adaptive architectures have been proposed to address

specific components, functions or services. A two-level controlling architecture

is presented in [24]. In this architecture, a software-based global manager de-

termines the management policies of the whole network. Each hardware-based

delegate manager decides on the local reconfiguration based on the manage-

ment policies. The architecture is mostly applied to building self-adaptive
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network interface, without the discussion on supporting generic monitoring

and reconfiguration services. In [2], a two-level agent architecture is proposed

for run-time application mapping. The lower-level agent, cluster agent, is re-

sponsible for mapping within each cluster. The higher-level global agent stores

resource utilization information for selecting and organizing clusters. The work

focuses on a specific type of run-time operation, application mapping, without

exploring other services. In addition, the work mainly addresses the algorithm

design of the agent functions, without exploring the SW/HW implementation

of the agents. [21] proposes a monitoring-aware system architecture and de-

sign flow for NoC. It presents hardware-based probes for transaction debug-

ging and QoS (Quality-of-Service) provision. H2A, in contrast, emphasizes

on a widely-applicable hierarchical control backbone for both functional and

non-functional design goals, e.g., energy efficiency and dependability.

Compared to existing generic system architectures (e.g., [82, 83, 113, 109]),

H2A presents in-depth architectural exploration for various adaptive services,

including energy management (Chapter 5) and dependability (Chapter 6). In

addition, different levels of agents are implemented in a self-aware and adaptive

Network-on-Chip (Chapter 7) with quantitative discussion on the physical

scalability. Compared to works addressing specific self-adaptive services or

algorithms (e.g., [24, 2, 21, 50]), the focus of H2A is to propose a generic and

compatible system architecture for various coarse- and fine-grained services.

Hence a hierarchical agent-based control backbone is integrated. In addition,

agents can be either software, hardware, or SW/HW co-design, instead of

being limited to one specific type of implementation.

4.6 Chapter Summary

This chapter presents H2A as a generic design paradigm and system archi-

tecture for SAA systems. It firstly introduces agent as a design abstraction

to separate the design concerns for adaptivity from conventional processing

and communication infrastructure. Then it presents the agent hierarchy, the

functional partitioning and the implementation guidelines of agents. The func-

tions of each agent level is partitioned based on the scope of the specific level,

in order to distribute the monitoring and reconfiguration workload. The im-

plementation of agents follows the SW/HW co-design approach to provide

physical scalability while supporting the function of each agent level.
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With the generic H2A architecture explained, from the next chapter, the

thesis elaborates on the architectural design and implementation of agents for

various monitoring and reconfiguration services. The implementation of agent

functions as software, hardware or SW/HW co-design will be demonstrated

respectively with discussion on their performance, efficiency and overheads.
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Chapter 5

Coarse- and Fine-Grained

Energy Management

Energy management is one of the major services in self-adaptive systems [39],

due to the stringent power and energy budget in parallel embedded systems.

Energy saving or energy-performance trade-off can be provided on different

system levels, from coarse-grained resource allocation to low-level buffer or

link reconfiguration. Most existing works address monitoring or reconfigu-

ration techniques on specific levels. A hierarchical approach, where energy

efficiency is contributed by all architectural levels, is presented in this chap-

ter, following the H2A design paradigm. The platform agent is designed as a

software module, performing energy-aware mapping of applications onto the

system. Within each cluster, dynamic energy-performance trade-off is per-

formed by the cluster agent via directly monitoring the execution time of

the application(s). The direct performance monitoring is enabled by the cell

agents, which trace application milestones and report them to the correspond-

ing cluster agents. In addition, each cell agent monitors and reports the local

network load to the cluster agent. Architectural design and simulation will be

presented to evaluate the effectiveness and efficiency of the proposed hierar-

chical agent-based energy management architecture.

5.1 System Architecture

To improve the energy efficiency, or dynamically fine-tune energy-performance

trade-off, diverse system, architectural and circuit-level approaches can be uti-
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Table 5.1: Monitoring and Reconfiguration Techniques for Energy-Efficient
NoCs

Recon- Monitored Power/Energy Saving
figuration Parameters

Dynamic voltage and & Time slack; Dynamic power/energy;
frequency scaling (DVFS) Link/buffer utilization; Static power/energy

[115, 37, 14] Traffic congestion
Dynamic buffer Traffic congestion Dynamic power/energy
allocation [84] Static power/energy
Energy-aware Communication volume; Dynamic energy
mapping [49] Hop counts
Clock gating Activity prediction Clock power

Power gating [110] Activity prediction [80]/ Static power/energy
Activity tensity [110]

Driver and Receiver Current Link power/energy
reconfiguration[86]

lized. For instance, on many-core systems, methods addressing the power/energy

consumption of different components (such as processing elements, routers,

memory) have been proposed (Table 5.1), from high-level resource allocation

(e.g., energy-aware mapping) to low-level circuit techniques (e.g., driver re-

configuration). As can be observed from Table 5.1, most existing approaches

address the energy saving on specific architectural levels by monitoring partic-

ular activity or status parameters. The H2A paradigm enables the design of a

hierarchical energy management backbone, which exploits the energy saving

of multiple architectural levels. Fig. 5.1 overviews such a system.

As illustrated in Fig. 5.1, the system allows for distributed power recon-

figuration. Multiple power lines of different supply voltages are laid out on

the chip (Section 3.2.1). Each processor or router can be switched to one of

the power supplies via power switches, which enables fine-grained voltage re-

configuration. In addition, the system supports distributed frequency switch-

ing, with a frequency synthesizer attached to each network node. Given such

GALS (globally asynchronous locally synchronous) timing, a bi-synchronous

FIFO [81] is inserted on every inter-router channel.

Upon the power reconfigurable many-core system, the partitioning of cells

and clusters can be performed as follows. Each cell includes a router and
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its connecting links, the corresponding processor, and the memory. With dis-

tributed power switches and frequency synthesizers, the voltage and frequency

of each cell can be individually configured without influencing the operation

of other cells. Every cell is monitored by a cell agent, which is a hardware

module attached to the router. Each cluster is assigned as a group of cells.

The cluster agent can be a software- or hardware-based module running in one

cell. The cluster agent communicates with any cell agent within the cluster

via the monitoring network (Section 3.1.4). The platform agent, hosted by one

processor, runs software instructions. The platform agent can configure any

cell or cluster with the monitoring network. The partitioning and SW/HW

design of agents in Fig. 5.1 imply no restriction from the design paradigm’s

perspective, but serve as a demonstrating example (for instance, in Chapter 7,

a hybrid cluster agent with both software and hardware parts will be designed

and implemented).

Three-level operations are designed for each level of agents, to achieve

hierarchical energy management. As the coarse-grained controller, the plat-

form agent performs energy-aware mapping, which has system-wide influence

on the energy consumption. Each cluster agent performs CDDR (Clustered

Decision-Making, Distributed Reconfiguration), to adaptively reduce the en-

ergy consumption in the local cluster by directly monitoring the application

performance. CDDR is supported by the hybrid monitoring service of each

cell agent. In particular, both the local router traffic load and the application

milestones are traced by each cell agent, and reported to the cluster agent. Su-

perior to the clustered and distributed architectures in Chapter 3, the hybrid

CDDR technique combines the energy saving potential of distributed recon-

figuration and the performance awareness of the cluster agent. The choices of

energy-saving reconfiguration- mapping and DVFS, are exemplified techniques

among the vast design space of energy-efficiency communication (Table 5.1).

The system architecture itself is not limited to these reconfiguration meth-

ods. The quantitative study will focus on energy saving of on-chip networks

(routers and interconnects). Both energy-aware mapping and DVFS signif-

icantly influence the communication energy [49, 37]. The following sections

elaborate the design of each agent and its energy management operations.
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5.2 Energy-Aware Application Mapping

Application mapping is a coarse-grained resource allocation technique. Energy-

aware mapping allocates application tasks to the processing elements, in a way

that minimizes the communication energy between the processors [49]. It is ef-

fective in energy reduction, as [49] reports 51.7% saving in energy consumption

with a branch-and-bound algorithm compared to random mapping.

In a NoC system where applications are expected to be loaded at the

run-time, we are considering a scenario where multiple applications are to be

mapped onto different areas dynamically. With an increasing number of re-

sources integrated on a chip, multiple applications can simultaneously run on

a single chip. For instance, on a 167-core computing platform [115], 9 cores are

used to realize a JPEG encoder, and 15 cores are utilized to implement a H.264

encoder. Such mapping is performed by the platform agent, which needs to

know the application graph (or the application characterization graph in [49])

and the available resources before mapping. The application graph, in partic-

ular the inter-task communication graph, is a set of triples < Ti, Tj , Vi−j >.

Each triple denotes the communication volume Vi−j from task Ti to Tj . The

application graph can be encapsulated in the application as metadata, and

stored in the system memory, which is accessible by the platform agent. The

resource availability information can be logically stored as a SLT (status look-

up table), where each entry stores the run-time status of a node.

The system architecture has no limitation on the applicable mapping al-

gorithms, which are design-specific. Since application mapping is in general

NP-hard [49], fast algorithms are desirable for run-time mapping where the

timing is a major consideration. Here we exemplify an in-house two-step al-

gorithm for the energy-aware mapping process [127], illustrated by Fig. 5.2.

The first step, MER(maximal empty rectangle)-based application mapping,

finds suitable rectangular areas for each application. The second step, tree-

model-based task mapping, assigns processors to tasks in each application.

As modeled by Eq. 5.1 ([49]; Eb is the communication energy of one bit;

ES and EL are the communication energy of the bit traversing the switches

and links respectively), the dynamic energy consumption is proportional to

the hop counts of packets. Hence both steps aim to reduce the hop counts of

inter-processor communication.
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Eb = nhops × ES + (nhops − 1) × EL (5.1)

In the first step, MER is the largest available area in the shape of a rect-

angle. Choosing MER is an effective technique originating from the FPGA

mapping problem [7] to significantly reduce the exhaustive search space. To

choose a proper rectangle, we firstly consider a parameter NAD (node average

distance; NAD = X+Y
3

× (1 −
1

X×Y
)), which represents how close on average

the processors are in a specific rectangle. X and Y are the number of nodes on

the two dimensions of the rectangle. The smaller NAD is, the more likely the

communication energy after mapping is low. The parameter NAD does not

take into account the situations where no single rectangular area has enough

nodes for the application, thus a modified parameter WNAD (weighted node

average distance; WNAD = max( Ntasks

Nnodes
, 1)×NAD) is considered. The weight

Ntasks

Nnodes
represents how completely an application can be mapped on a rectan-

gle. A contiguous area is always favored compared to several split-up areas,

considering the additional energy needed for communication in-between areas.

Therefore, the application-mapping step searches for the available rectangular
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area(s) with the highest WNAD, which is a fast (but not necessarily optimal)

mapping solution.

In the second step, tree-model-based task mapping starts with the trans-

formation of a mesh network into an extended tree (Fig. 5.2). In a nutshell,

the transformation starts with choosing the center point of the network as the

root node of the tree, which has the shortest average distance to other points

in the network. The neighbors of the center point are put as the children

nodes of the root node (from left to right). The procedure continues until all

points in the network are put onto the tree. Then tasks in the application are

mapped onto the extended tree. We first place the process with the highest

communication volume onto the root node, in order to reduce the average com-

munication distance. Then we place the process that has the highest amount

of communication with the already-mapped processes, onto the highest avail-

able node on the tree (from left to right). The procedure iterates until all

processes are mapped. The details of the application mapping and task map-

ping algorithms can be found in our previous work [127]. Tree-model based

mapping, due to its simplicity, is significantly faster than exhaustive search or

other existing algorithms, and achieves satisfying results in reducing energy

consumption [128].

5.3 Intra-Cluster Energy Management

While the platform agent allocates the application tasks onto the processors,

run-time energy management of each application is performed by the cluster

agent, based on the actual traffic and workload. In Chapter 3, the decision-

maker in each cluster performs cluster-wide DVFS, which adapts to the aver-

age traffic load in the cluster. Cluster-wide reconfiguration can not adapt to

the traffic variations in different locations of a cluster. In addition, a voltage-

regulator-based voltage switching incurs significant delay (Chapter 3). To

address these issues, CDDR (clustered decision-making, distributed reconfigu-

ration) provides fine-grained power-driven reconfiguration (on the same scale

as distributed reconfiguration), while directly monitoring the cluster perfor-

mance.
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5.3.1 Cluster Architecture Overview

Fig. 5.3 illustrates the intra-cluster energy management technique, CDDR,

with two levels of agents- cluster and cell agents. Each cell agent is tracing the

traffic load and the occurrences of monitored events (milestones), and report

them to the cluster agent. The cluster agent traces the timestamps of the

application milestones, and accordingly evaluates the application performance

in the cluster. Based on the local traffic load, congested network areas can

be identified. Then the cluster agent attempts to reconfigure the cluster, in

particular the congested areas, so that the energy consumption is minimized

while the application performance is within the requirements. Briefly, CDDR

relies on hybrid monitoring of local parameters (e.g., load) and cumulative

parameters (e.g., latency), and performs distributed reconfiguration with a

clustered decision-maker.
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5.3.2 Load and Latency Monitoring

The cluster and cell agents provide load and latency monitoring in the cluster.

Local network load (e.g., the buffer occupancy) is traced by the cell agent, and

reported to the cluster agent. The occurrences of milestone instructions (such

as the first or last instruction of an application or an application stream) are

also traced by the cell agent, and sent to the cluster agent.

Such hybrid monitoring is designed to compensate for weaknesses in con-

ventional load monitoring. The performance of network communication is of-

ten indirectly measured by load-related parameters, including the occupancy

of buffers [90, 71] or the utilization ratio of links [107]. Generally, the higher

load the network has (after the initial warm-up period), the longer average

latency the packets have due to more conflicts in the transmission. However,

the relation between these parameters and the actual performance varies with

different network topologies, run-time traffic patterns, dynamic flow control

schemes and unpredictable fault conditions. Fig. 5.4 illustrates an experiment

of three traffic traces: uniform, b-model and hotspot (Section 3.3.2), where

the relation between the latency and buffer load is shown. It can be observed

that the same buffer load can result in drastically different latencies. Several

causes can contribute to this variation. Firstly, the traffic pattern influences

the relation between the buffer load and the latency, as shown in the simula-

tion of the three traffic traces. In addition, when a high buffer load persists

when the network is congested, the latencies start to steadily increase, as can

be observed in the case of b-model traffic. From the analysis, it can be con-

cluded that the load monitoring is not a reliable technique if the system is

dynamically reconfigured.

The load monitoring is realized with counters in each router, performed

by the corresponding cell agent (Fig. 5.5). For each buffer queue (input

from the processing element and the north, south, west and east neighbors) in

the router, the difference between the head and tail pointers is the number of

buffers occupied. The total number of occupied buffers in each router indicates

the traffic load of the cell. The average of such traffic load in one period of

time (the monitoring window) is sent to the cluster agent via the monitoring

network.

The latency monitoring is enabled by tracing application milestones, which

are instructions denoting the progress of the application, e.g., the first and the

last instructions of an application indicating its starting and ending times. As
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illustrated by Fig. 5.6, the cell agents will be informed by the upper level

agents (the cluster or platform agent) of the instructions to be traced. The

milestone instructions are stored in a rewritable MIR (Milestone Instruction

Register). When such an instruction is executed, the cell agent sends a message

to the cluster agent along with the instruction address. When the message

is received, its timestamp is noted down by the cluster agent via checking

the local clock (of the cluster agent). By subtracting the starting time of

an application from its ending time, its latency can be obtained. As the

monitoring network is designed with low traffic volume (no congestion), the

transmission times of the starting and ending messages are similar thus are

canceled out in the subtraction.

5.3.3 Clustered Decision-Making, Distributed Reconfiguration

With both latency and load monitoring, the cluster agent performs CDDR

within each cluster. In contrast to the clustered architecture in Section 3.2.3,

CDDR is able to individually reconfigure each node. In contrast to the dis-
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tributed architecture, CDDR has a cluster agent that decides on the reconfig-

uration of all nodes within the cluster.

With the example of energy management, the flow graph of CDDR is

illustrated in Fig. 5.7. The system is initially configured with the highest

voltage and frequency available, to ensure all performance requirements are

met. When a new application stream starts running, the cell agent traces the

milestone instructions and the local load. With the timestamps of milestone

instructions, the cluster agent firstly evaluates if the performance actually

deviates from the requirements (Lr > Lu or Lr < Ll; Lr,Lu and Ll are

the run-time actual latency, upper boundary of latency and lower boundary

respectively). If performance change is needed, the cluster agent decides on the

cells to be reconfigured. For instance, if the latency is higher than the upper

boundary, the cluster agent may increase the voltage and frequency of the

most loaded routers, in order to reduce the latency. After the corresponding

cell agents have reconfigured the routers based on the cluster agent’s decision,

the next application stream starts running.

5.4 System Integration and Quantitative Evaluation

To quantitatively evaluate the energy management with hierarchical agents, a

set of self-adaptation operations to realize platform-level application mapping

and cluster-level CDDR, are experimented with the NoC simulator (Appendix

A), as summarized in Table 5.2. To analyze the influence of platform-level

reconfiguration on the energy consumption, energy-aware mapping (Section

5.2) is compared with random mapping. To analyze the influence of cluster-

level reconfiguration, CDDR is simulated and compared with fully distributed

DVFS (Section 3.2.4).

5.4.1 Experimental Setting

A 6 × 6 NoC is simulated, divided into four clusters (each being a 3 × 3

mesh). The network is configured with the same setting as in Section 3.3.1.

Briefly, the network has physically separate data channels (32-bit) and mon-

itoring channels (8-bit). Each router can be dynamically reconfigured with

voltages and frequencies, thus FIFO-based synchronizers are inserted on ev-

ery channel. Two pairs of voltage and frequency values, (VH=2V,FH=1GHz)

and(VL=1.05V,FH=1

3
GHz) [14], are provided. The voltage switching delay
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Table 5.2: Agents’ Operations for Coarse- and Fine-Grained Energy Manage-
ment

Agent Operation Target

Platform Application mapping; Dynamic energy reduction
agent Task mapping for multiple applications

Cluster Monitoring the latency Cluster performance awareness;
agent of each application;

Monitoring the traffic Local status awareness ;
of each router;

Decision-making for Intra-cluster
distributed DVFS energy-performance trade-off

Cell Trace and report Local status awareness;
agent the router load;

Trace and report Facilitate cluster
milestone instructions; performance awareness;
Actuate voltage and Enable reconfiguration

frequency reconfiguration

for each router is 10ns (10 cycles at the higher frequency; details in Section

3.3.1).

Communication graphs of two applications from E3S benchmarks [28] are

used for simulation. The first application (AUTO) is an auto industry bench-

mark, requiring 9 processors. The second application (CON) is a consumer

electronic system benchmark, requiring 7 processors. Each of the four clus-

ters in the NoC respectively runs the AUTO application with energy-aware

mapping, AUTO with random mapping, CON application with energy-aware

mapping and CON with random mapping (Fig. 5.8). For the CON applica-

tion, two nodes will be left from mapping, which can be used as spares for

fault-tolerance (to be studied in Chapter 6).

5.4.2 Results

For each of the clusters, CDDR is simulated and compared with distributed

DVFS (DDVFS) and constant high voltage/frequency setting (CH). DDVFS

follows the same architecture as in Section 3.2.4. Briefly, each cell agent is

monitoring the local router’s load, and changing the voltage/frequency based

on the upper and lower thresholds. If the load (average in a monitoring win-

dow) is higher than the upper threshold, the router is assigned with the high
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pair of voltage and frequency. If the load is lower than the lower threshold,

the low pair of voltage and frequency will be applied. Two sets of upper

and lower thresholds are experimented in the simulation: (0.1,0.2) as used in

Section 3.3.3 and (0.15,0.25) to analyze the influence of load thresholds on

DDVFS. CDDR follows the algorithm in Fig. 5.7. The upper boundary is

the actual latency boundary expected for one application stream. The lower

latency boundary is set as 90% of the upper boundary, so that the system can

be reconfigured before the actual latency constraint is reached. In addition,

leaving a margin between two boundaries reduces the chances of oscillation

(i.e., the latency varies between a set of figures without stabilizing). For CH,

the high voltage and frequency pair is always used.

Fig. 5.9 compares the energy consumption of the AUTO application un-

der both energy-aware mapping (cluster 4) and random mapping (cluster 3).

CDDR, DDVFS (with two sets of load boundaries) and CH are analyzed for

both clusters. The same latency boundary is set both clusters (labeled in the

figure). The energy consumption is normalized with the maximal per-stream

energy (random mapping with CH). The per-stream latency is normalized

with the latency boundary. The normalized figures are chosen for two pur-

poses. For one thing, they emphasize the relative comparison between different

approaches, with the maximum energy consumption and upper latency bound-

ary as the units. For another, the system-level energy modeling as in Section

3.3.1 does not necessarily manifest the accurate energy consumption. In Sec-

tion 7.4, RTL analysis will provide absolute energy values for implemented

self-adaptive NoCs.

From Fig. 5.9, firstly the energy efficiency of CDDR, DDVFS and CH can

be compared. The constant setting, CH, has the highest energy consumption

as the voltage and frequency are always chosen the higher pair, while the la-

tency is much below the boundary. DDVFS, on the other hand, reduces the

energy consumption significantly (56.9% to 78.0% of the corresponding CH

setting). However, as the reconfiguration is exclusively based on the local in-

formation, the global performance is not ensured. As illustrated in Fig. 5.9,

with (0.15,0.25) as the load boundary, the latency boundary would be met in

the random mapping case. But the same load boundary will lead to latency

boundary violation, which does not satisfy the design constraint. CDDR, as

considering both the cluster-level performance and local optimization, pro-

vides a proper tradeoff between energy and performance. As can be seen from
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Figure 5.9: Energy Consumption and Stream Latency of AUTO Application
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Fig. 5.9 (b), the latency is initially very low with the high voltage/frequency

setting for all routers. With monitoring the run-time per-stream latency, least-

used routers are configured with the low voltage/frequency setting. Hence the

latency is gradually increasing but flattens before reaching the threshold. In

this way, the energy consumption is reduced (Fig. 5.9 (a)) with the stabilized

per-stream energy being 88.4% of the CH setting in the energy-aware mapping

case. The energy saving is dependent on the latency boundary. For instance,

in the random mapping case, the latency boundary is reached after few itera-

tions, thus the energy saving is minimal (4.6%). But importantly, the latency

boundary is met in both cases while the energy is reduced.

In addition to the benefits of cluster-level CDDR, the contribution of

platform-level energy-aware mapping can also be observed from Fig. 5.9.

The energy consumption in energy-aware mapping is lower than that in ran-

dom mapping, under all cluster-level energy management settings (CDDR,

DDVFS and CH). In particular, with CDDR, the stabilized per-stream energy

in energy-aware mapping is 68.4% of that in random mapping. It should be

noted that energy-aware mapping does not necessarily lead to lower commu-

nication latency. Mapping tasks on closer processors may lead to lower energy

consumption, but incur more congested network traffic. This explains why

the latency in DDVFS under (0.15, 0.25) load boundary with energy-aware

mapping is larger than that with random mapping.

A similar trend can be observed from the simulation of CON application,

as illustrated in Fig. 5.10. The constant setting CH still incurs the highest

energy consumption. DDVFS with load boundary (0.15,0.25), for this ap-

plication, exceeds the latency boundary for both energy-aware and random

mapping cases. In contrast, for the AUTO application, it meets the latency

boundary in random mapping case. This observation further demonstrates

the disadvantage of applying purely distributed energy management without

global performance awareness. In terms of CDDR, it still achieves reduced en-

ergy consumption while meeting the latency boundary. The stabilized energy

consumption with CDDR is 78.5% (in energy-aware mapping) and 81.1% (in

random mapping) of the energy under CH. Even though DDVFS has lower

energy consumption than CDDR, DDVFS can not guarantee the performance

requirement unless the exact load thresholds for the latency requirement is

known before execution. Such requirement is most likely infeasible in prac-

tice, since the application may change at the run-time, or the performance
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constraints can change dynamically, or the hardware platform may go through

reconfiguration (e.g., in face of faults). Fig. 5.10 also shows the contribution

of energy-aware mapping in the CON application. The relative energy saving

varies upon the effectiveness of the random mapping. For CON application,

the energy-aware mapping achieves, compared to the random mapping, 14.4%

saving under CH setting, and 17.2% under CDDR.

The quantitative analysis demonstrates the effectiveness and efficiency of

hierarchical agent-based energy management. The platform-level application

mapping achieves large energy saving (10.0% to 37.0%), regardless of low-

level techniques. Under energy-aware mapping, CDDR further reduces the

energy consumption (by 11.6% to 21.6%) with distributed reconfiguration,

while satisfying the performance requirment with cluster-level performance

awareness. Cell agents trace the necessary local information, report to the

cluster agent for cluster-level decision-making, and actuate the reconfiguration

issued by the cluster agent.

5.4.3 Implementation Discussion

The hierarchical energy management in this chapter is experimented with

high-level simulation, so the complexity of agents can not be quantitatively

analyzed. However, a discussion on suitable implementation alternatives for

each level of agent, based on Section 4.3, can be performed.

The platform agent performs energy-aware mapping, which requires large

amount of data storage (the communication volumes between tasks in all appli-

cations). In addition, depending on the exact algorithms, the data processing

may be complicated. The simulated tree-model-based mapping algorithm has

low timing complexity [128]. However, other potential algorithms may incur

large timing complexity [78], for instance, ES(exhaustive search) or GI (greedy

incremental), which cannot be eliminated from consideration on the platform

agent. Thus a SW-based implementation for the mapping service on the plat-

form agent is a proper design choice. The cluster agent, which performs CDDR

(Section 5.3.3), can be either SW-based, HW-based or SW/HW co-design. As

the cluster agent is tracing the load information of cells in the local cluster

and the timestamps of application milestones, the amount of needed storage

is quite limited. A hardware-based cluster agent can fulfill the function of

CDDR, but lacks the flexibility to configure different decision-making and re-

configuration algorithms. A software-based cluster agent, on the other hand,
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Figure 5.10: Energy Consumption and Stream Latency of CON Application
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incurs major area overhead (if every cluster agent is a dedicated processor)

and timing overhead (if the software waits on every load information). Thus a

SW/HW co-design is a proper implementation. Each cell agent, as illustrated

in Fig. 5.6, integrates fine-grained counters for tracing loads and application

milestones. A hardware-based implementation is most suitable to realize such

modularized design.

In Chapter 7, quantitative overhead analysis of the agent structures will

be elaborated based on an implemented H2A architecture.

5.5 Chapter Summary

This chapter presented hierarchical agent-based energy management following

the H2A design paradigm. Based on the generic agent functional partition-

ing, a multi-layer energy management architecture is established, where the

platform agent performs coarse-grained energy-aware resource allocation and

the cluster and cell agents perform fine-grained energy-driven reconfiguration.

As an example of energy-aware resource allocation, the architecture integrates

tree-model-based application mapping, which maps multiple applications onto

different clusters in a many-core system. For fine-grained cluster-level energy

management, CDDR (clustered decision-making, distributed reconfiguration)

was proposed. The reconfiguration decision made by the cluster agent is based

on hybrid monitoring of the local traffic load and application milestones. By

monitoring important application instructions (milestones), the cluster agent

is aware of the application performance, e.g., the latency. Thus instead of

oblivious reconfiguration, the cluster agent can achieve energy saving while

directly tracing the performance. The distributed reconfiguration supports

fine-grained energy saving exploiting the spatial locality of network traffics.

In addition, the design of cell agents to trace local loads and application mile-

stones was presented to support the cluster-level energy management.

Quantitative analysis with two practical applications was performed. The

results confirmed that both energy-aware saving and CDDR contributed to

the energy saving. In particular, CDDR is able to gradually reduce the energy

consumption until the performance threshold is approached. Comparatively,

purely distributed DVFS, while significantly saving the energy consumption,

can not provide performance guarantee with only local awareness.

The hierarchical energy management in this chapter assumes static cluster
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partition during execution. Thus a cell agent always reports to the same

cluster agent. What if the relation between cluster and cell agents needs

to be dynamically reconfigured, for instance, in different applications or in

face of permanent failures? The cluster agent needs to be aware of the run-

time organization of the cluster, in order to collect the information from the

right cells. In the next chapter, a dynamic clusterization architecture will be

proposed to address this issue.

79



Chapter 6

Dynamic Clusterization for

Dependable Computing

The previous chapter presents hierarchical energy management, where the as-

signment of cells into clusters is performed before execution. However, the

constant scaling of technology introduces profound variations, unpredictable

errors and failures, thus the situations when certain cells fail at the run-time

must be properly dealt with. This chapter proposes dynamic clusterization

to support dependable computing on hierarchical agent-based systems. In

particular, any cells can be dynamically organized into any cluster in case

of processor failures or performance degradation. Hierarchical agent manage-

ment can properly continue based on the dynamically reconfigured clusters.

The chapter will present the architectural design of the supporting structures,

including a Resource Look-up Table (RLT) for the platform agent, a Clus-

ter Look-up Table (CLT) for each cluster agent, a Cluster-Identifier Register

(CIR) and a Rerouting Table (RT) for each cell agent. In addition, a mesh-

based monitoring network enables the communication of any cell agent to any

cluster agent with minimal-distance routing.

6.1 System Architecture Overview

Dependability is a major design challenge on many-core systems. While an

increasing number of resources can be integrated onto a single die, the fault

occurrence is also rising [105]. For one thing, due to the small feature size,

process variation and aging, the probability of permanent and transient faults
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increases in VLSI systems [22]. For another, the deviation in the supply voltage

and threshold voltage may lead to longer critical paths and consequent worse

performance [117]. When certain resources in a many-core system fail, the

system should still properly perform with the remaining resources, in order to

provide dependable computing and improve the yield [105].

To support dependable computing in a hierarchical agent-based system,

dynamic clusterization is proposed, which allows any cell to host the cluster

agent, and any cells to be assigned to a particular cluster. A motivational

example is illustrated in Fig. 6.1. While an application is running on a

many-core platform, processor failures can occur unpredictably. Besides, the

performance of the system can degrade in case the critical path is longer than

the nominal design due to variations in the threshold voltage. To account

for the unpredictable defects, providing spare cores is a widely acknowledged

technique [130]. In addition, for multi-threaded applications where the threads

can be dynamically loaded to more number of processors, adding spare cores

may increase the performance [12]. As illustrated in Fig. 6.1, the processor

running task SINK fails, thus processor SP5 is used for its replacement. Task

IFFT running on P3 and P4 has a lower speed than expectation, thus pro-

cessors SP3 and SP4 are added to run the task. In a hierarchical agent-based

system where clusters are formed to run individual applications, spare cores

need to be assigned as cells and allocated to a cluster. In this example, SP3,

SP4 and SP5 will be assigned to the cluster agent. In case a cell hosting one

cluster agent fails, another cell should be configured to host the cluster agent.

Dynamic clusterization is designed for such purposes.

Dynamic clusterization, as in any other self-adaptation processes, includes

monitoring (M), decision-making (D) and reconfiguration (R) stages (Fig.

6.2). The monitoring stage identifies processor failures or variation-induced

timing errors (leading to performance degradation). The detection of proces-

sor failures can be performed in a variety of manners, for instance, by running

test programs on a processor to compare the outputs [91]. In addition, the

timing errors induced by the process variations can also be detected by com-

paring the register output with a delayed latch output [27]. Such run-time

testing can be issued by the platform, cluster or cell agents, for instance, by

temporarily taking a processor from normal operation and running the test

program. As the testing techniques for processor failures are beyond the scope

of this thesis, it is assumed that cell agents can detect processor failures and
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notify their occurrences to the platform agent. The fault status of all cells

is stored in the platform agent, which determines the proper spares to be as-

signed to each involved cluster. If necessary, a complete remapping of tasks

onto the new cluster can be performed by the platform agent, for instance,

to minimize the communication energy considering the utilized spares. The

spare replacement and remapping decisions, as made by the platform agent,

will be actuated in the reconfiguration stage. In particular, spares for replace-

ment will be notified of the cluster agent’s location. Similarly, the cluster that

receives new cells will be updated with the cells’ locations. The reconfigu-

ration not only applies to spares, but also to cells that are reconfigured to

a different cluster. In case a system is short of resources accommodating all

applications, the platform agent may decide to reallocate a processor from a

lower-prioritized cluster (based on its application) to a cluster running a more

critical task.

6.2 Three-Level Supporting Structures

On each level of agents, there is a specific structure supporting dynamic clus-

terization. Resource Look-up Table (RLT) is a reconfigurable storage of all

cells’ monitored parameters, which are accessible to the platform agent. As

illustrated by Fig. 6.3, RLT has the number of entries as large as the to-

tal number of cells in the system. In each entry, fields related to the cell’s

utilization status (used or spare) and fault status (proper or broken). The

utilization and fault status are needed for the platform agent to determine

the mapping, for instance, choosing the closest replacement for a broken core.

The entries in RLT are updated by the platform agent, either upon receiving

new cell status from the cell agents, or after the platform agent decides on a

new clusterization.

For each cluster agent, there is a Cluster Look-up Table (CLT), which

records the status of cells currently allocated to the cluster, and the infor-

mation of application(s) currently running in the cluster. As illustrated by

Fig. 6.4, the number of entries in CLT is the number of cells and applications

allocated to the cluster. Any broken cell will be cleared by removing its entry

in CLT. Each entry for cells include the cell ID (the address of the cell in

the network), and the run-time parameters (usually design specific such as

buffer load, cache hit rate). The run-time parameters are used for adaptive
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optimization. For instance, the buffer load can indicate network congestion in

energy-performance trade-off (Chapter 5). Each entry for applications include

the application ID and timestamps of monitored milestones (e.g., the start-

ing/end time). Compared to the content in RLT, CLT does not include the

fields of cell utilization and fault status, as all cells stored in CLT are actually

being utilized. When new cells are allocated to a cluster, or broken cells are

removed from the cluster, the platform agent will update the CLT accordingly.

On the other hand, the run-time optimization (such as the energy manage-

ment) is done at the cluster level, thus the cell and application parameters, as

reported by each cell agent, are stored only in the CLT.

On each cell agent, there is a cluster identifier register (CIR), which stores

the location of the cluster agent. As a cell (utilized or spare) can be allocated to

any cluster at the run-time, CIR, being reconfigurable by the platform agent,

is written with the current cluster agent’s address. In addition, to support the

data communication after fault-triggered remapping, a re-routing table (RT)

is attached to each router, which is also written by the platform agent. When

a broken processor is replaced by a new processor, all packets destined for the

broken processor will be modified with a new destination (in the header flit).

6.3 Inter-Agent Monitoring Network

The platform agent, cluster agents and cell agents communicate to send status

information and configuration commands, during the adaptive services. The

monitoring communication is important to the system awareness. In case the
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monitoring communication is delayed or lost, neither the resources’ nor the

agents’ status is visible. In particular, the dynamic clusterization allows for

any network node to host a cluster agent, and cells can be assigned to any

cluster. Thus, a monitoring network needs to be built to support such com-

munication. The design of the network should fulfill the following objectives:

1. Guaranteed Services. In terms of network communication, there are gen-

erally two types of Quality-of-Service (QoS): best-effort and guaranteed

communication. Best-effort service, which provides no special treatment

to individual traffic classes, has the lowest design complexity, but is not

able to offer predictable and guaranteed performance. Guaranteed ser-

vices, on the other hand, ensure certain metrics of performance (e.g.,

guaranteed bandwidth or bounded latency) for a specific traffic class.

To ensure the system’s visibility, the monitoring communication needs

to be properly transmitted regardless of the status of the data com-

munication. In particular, the network should support predictable and

guaranteed latency to the monitoring communication.

2. At least one path between every two nodes. As required in the dynamic

clusterization, any cell can be allocated to a specific cluster. Since a clus-

ter agent can be hosted on any network node, connectivity between every
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two nodes is required to allow the maximal clusterization flexibility. As-

suming a 2-D mesh-based NoC for data communication, a mesh-based

monitoring network in parallel to the data channel supports such con-

nectivity with the most simple dimension-order routing algorithms. The

elimination of any channel in the mesh network would require a more

complicated routing algorithm to provide minimum-distance routing (no

U-turns) and deadlock freedom(Fig. 6.5).

3. Energy Efficiency. Despite the relatively low volume of monitoring traf-

fic compared to the data traffic, the energy efficiency is still a highly

prioritized requirement. With more fine-grained monitoring and recon-

figuration operations in massively parallel on-chip systems, the traffic

volume will increase. In addition, for ultra-low-power applications (e.g.,

wireless sensor networks), the monitoring flow will be the major source

of power consumption when the data traffic becomes very low, since the

monitoring services cannot be completely turned off.

4. Affordable Area Overhead. This conventional design constraint is alle-

viated in current and emerging on-chip systems, since quite abundant

wirings can be provided by the state-of-the-art multi-layer fabrication

process [124]. Nonetheless, the area overhead should still be made small

and scalable.

Several interconnection alternatives can be utilized for the monitoring com-

munication, including the following architectures:
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• Baseline best-effort architecture. With the agent communication over-

lapped with data communication without special treatment (Fig. 6.6

(a)), this alternative is considered as a best-effort interconnection archi-

tecture, used as the baseline for comparison with guaranteed services.

The best-effort architecture suffers from performance disadvantages. For

one thing, the monitoring communication is coupled with data traffic,

which leads to unpredictable latency. When the network faces heavy

traffic load, the latency increases significantly and the agent communi-

cation will suffer from similar delays. In addition, the monitoring com-

munication has to share the same speed as the data communication. For

urgent information, the monitoring communication can not be flexibly

reconfigured with high speed. The benefit of this baseline architecture

is low router complexity and reduced area overhead for wiring.

• Virtual channel based multi-accessing. With virtual channels, guaran-

teed services can be provided to specific traffic. TDMA (Time Division

Multiple Access) is a widely used multi-accessing technique [73], where

timeslots can be reserved for the monitoring communication (Fig. 6.6

(b)). Buffers are allocated to data and monitoring communication sepa-

rately, in order to decouple the two traffic classes with virtual channels.

TDMA-based connection provides guaranteed bandwidth with moderate

reconfigurability. The silicon area is increased compared to the baseline

alternative as routers need to integrate two virtual channels. More im-

portantly, virtual channeling increases the energy consumption signifi-

cantly for every traversal in the switching fabric.

• Physically separate network. Physically decoupling the agent monitoring

communication from data traffic results in a physically separate monitor-

ing network (Fig. 6.6 (c)). As the dynamic clusterization allows any cell

to be allocated to a cluster agent, the monitoring network requires a sep-

arate router on every NoC node (Fig. 6.6 (c). This alternative provides

guaranteed bandwidth to the monitoring communication. Thus the la-

tency of monitoring communication is predictable and bounded, as its

volume is predictable and low. Compared to the virtual channel based

networks, this architecture significantly reduces the switching and arbi-

tration complexity in the switching fabric, which provides high energy

efficiency while costing more wiring overhead. In addition, it supports
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the flexible configuration of the monitoring network (e.g., its switching

frequency) independently of the data communication.

The three alternatives are not exhaustive, as other interconnection archi-

tectures are also potentially useful. For instance, priority-based switching for

monitoring packets can be applied when the monitoring and data communica-

tion are overlapped on the same physical channels. However, such technique

can lead to blocking of monitoring packets when the data communication oc-

cupies the channel buffers. Exception can be made for deflection routing [26],

where the packets can be routed to any outputs when the desired output is

occupied. An example will be given in Section 7.1.

To achieve quantitative analysis of the energy-performance trade-off, sim-

ulations are performed with the same platform and traffic setting as in Section

3.3. In brief, four traffic traces (B,H), (B,U), (U,U), (U,H) (B: b-model, H:

hotspot, U: uniform) are experimented with the same setting as Fig. 3.10,

except for the last traffic (U,H). The injection rate for (U,H) is increased from

2.24Gbps/node to 3.2Gbps/node, in order to demonstrate the influence of in-

tensive data communication on the monitoring latency. Without implying

any restrictions, each cell agent sends 1 packet (8 flits) to the cluster agent

every 100 cycles. Each data channel is 32-bit wide and 1mm long. For phys-

ically separate monitoring channels, they are 8-bit wide and also 1mm long.

All routers work at the same voltage and frequency (VH=2V,FH=1GHz), to

eliminate the influence of dynamic power management. For the TDMA-based

architecture, one out of three timeslots gives priority to the monitoring com-

munication. Only when there is no monitoring traffic will the timeslot be used

for data communication. Fig. 6.7 illustrates the average latency and energy

consumption of the monitoring communication with the three architectural

alternatives.

From Fig. 6.7, it can be observed that the monitoring communication

decoupled from the data traffic provides guaranteed latencies and saves the

energy consumption. The physically separate monitoring network returns

the same latency and energy consumption independently of the data traf-

fic. TDMA also provides guaranteed bandwidth, but its latency and energy

consumption are much higher than the physically separate network (197.22%

and 60.19% respectively). The higher latency is due to the lower switching fre-

quency (only 1 in 3 slots is used for monitoring communication). The energy

consumption is increased due to the wider data width (32-bit vs. 8-bit) and
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Table 6.1: Area Estimation (um2) for Each Interconnection Architecture

Architecture Data Monitor + Data Monitor +
Router Router Wire Wire

Baseline 111969 0 0 130000 0 0
TDMA 114960 0 2.7% 130000 0 0

Separate 111969 8135 7.3% 130000 34000 26.2%
Monitoring Network

virtual channels in the routers. The baseline architecture, in addition, cannot

guarantee the latency. With a high injection rate in (U,H), the monitoring

communication also faces long latency (75% longer than the physically sepa-

rate network). The baseline architecture also has higher energy consumption

than the physically separate network (56.74% - 64.23% higher), due to the

wider data width in the routers.

The area overheads of the three alternatives can be estimated by Orion

2.0, divided into router and wiring areas, as illustrated in Table 6.1. It can

be identified that the physically separate network adds 7.3% router area over-

head (mostly as transistor area) and 26.2% wire area overhead, compared to

the baseline architecture. The transistor area overhead is quite small. Even

though the metal wire consumption is higher than that in the baseline ar-

chitecture, such overhead is feasible given the constant technology progress

in multi-layer chip fabrication (see Section 3.1.4 for more reasoning). Based

on the trade-off between energy consumption, latency and area overhead, the

physically separate monitoring network best fits the design criteria with guar-

anteed performance, low energy consumption and affordable silicon area.

6.4 System Integration

To support the dynamic clusterization, RLT, CLT and CIR need to be inte-

grated on three levels of agents, with a physically separate monitoring network.

The dynamic clusterization process handling processor failures is illustrated

in Fig. 6.8. Stream applications are assumed. At the run-time, before loading

a new stream, all cell agents perform a self-test. Any processor failure will be

notified to the platform agent. Upon receiving the fault status, the platform
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agent calculates fault-triggered remapping, which attempts to locate the most

suitable spare cell for the broken cell. As the platform agent is aware of the

processor status in all clusters, it can assign the spare cells without locating

the same spare in two clusters. Based on the remapping decisions, the plat-

form agent continues with dynamic clusterization. It writes the CIR of the

chosen spare cell with the address of the cluster agent. The RT of each router

is also updated by the platform agent, so that the spare cell’s address will

replace that of the broken cell. For the cluster agent, the platform agent up-

dates its CLT by removing the broken cell and adding the new cell. Lastly, the

platform agent updates its own RLT, based on the new cluster information.

Then a new stream arrives on the properly configured platform.

The look-up table structures can be implemented either by software or

hardware. In particular, RLT is a relatively large piece of storage, whose

number of entries is equal to the number of cells in the whole network (Fig.

6.3). Such a look-up table can be realized in the local memory of the platform

agent, with the overhead incurred only once in the system. CLT is a smaller

piece of storage, whose number of entries is equal to the maximum number of

cells in a cluster plus the application milestones (Fig. 6.4). Even though the

theoretical boundary of the cluster size is the platform size, a typical cluster

size should be configured much smaller to just accommodate an application.

Otherwise, the benefits of fine-granularity control no longer exist. Conse-

quently, a CLT can be implemented as dedicated hardware. Not only does it

allow flexible pre-processing on the CLT, but also any cell can host a cluster
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agent by adding a small CLT. At the design time, the CLT can be properly

sized as the maximal application size and application milestone number are

known before execution. CIR is a very small register within each cell agent.

RT can be integrated into any routing table present in the NoC platform (as

will be implemented in Section 7).

6.5 Further Discussion

The dynamic clusterization presented in this chapter assumes processor fail-

ures as the fault model. Addressing the link errors will expand the fault

tolerance of the NoC platform, as partially discussed in a related work [3]. If

there are spare wires, the connectivity can still be maintained with the same

dynamic clusterization process. In case a link is permanently disconnected,

adaptive rerouting may be needed for data and monitoring communication.

In addition, the remapping algorithm should consider the inaccessibility of

disconnected cells. This chapter focuses on the architectural support of the

hierarchical organization, so that a broken cell does not interrupt the function

of the involved cluster and the whole platform. The problems of recovering

from other types of errors or failures are beyond the scope of the thesis.

The configuration of the NoC platform during the dynamic clusterization

process has implementation-dependent details. For one thing, the remapping

algorithms can aim at different cost functions such as minimum task migration

or energy consumption. The H2A design paradigm does not impose any con-

straints on the remapping algorithms, which are determined by the application

requirements and system constraints (e.g., upon the algorithm complexity).

Chapter 7 will utilize a tree-model-based energy-aware remapping algorithm

as an example. In addition, depending on the memory architecture, remap-

ping may require reloading of instructions onto processors, or reconfiguration

of instruction addresses in case of shared instruction memory. Implementation

examples will be given in Chapter 7.

6.6 Chapter Summary

Hierarchical agent-based systems face unpredictable errors and failures. To im-

prove the system dependability, dynamic clusterization was proposed, which

allows any cell to be allocated to any cluster at the run-time. In particular, a
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Resource Look-up Table (RLT), a Cluster Look-up Table (CLT) and a Clus-

ter Identifier Register (CIR) were designed to update the cluster configuration

when failures occur. A dynamic clusterization process was presented to main-

tain the hierarchical organization in case of processor failures. In addition, a

physically separate monitoring network was designed and demonstrated to be

an appropriate trade-off between configuration complexity, energy overhead

and area overhead, while supporting the dynamic clusterization.

Importantly, the presented supporting structures (RLT, CLT, CIR and

the monitoring network) can be integrated for other adaptive services, for

instance, the hierarchical energy management (Chapter 6). The entries in the

look-up tables include the run-time parameters of the clusters and cells, which

are utilized in the energy management and other potential services. Such

a generic architecture is what the thesis aims for in the proposition of the

H2A paradigm. The next chapter will implement a Self-Aware and Adaptive

NoC (SAA-NoC), where the dynamic clusterization and hierarchical energy

management will be realized on the register transfer level, so that quantitative

verification and analysis can be achieved.
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Implementation of Self-Aware

and Adaptive NoCs

While the previous chapters have presented the concept and design of H2A

paradigm, in particular for energy management and dependability services, a

concrete implementation- Self-Aware and Adaptive Network-on-Chip (SAA-

NoC), is elaborated in this chapter as a proof-of-concept of self-aware and

adaptive systems. It will present the microarchitectural-level implementation

of the platform, cluster and cell agents, in addition to the supporting structures

for self-adaptation on each level. The implementation is programmed on a RTL

NoC experimental platform with Leon 3 processor, Nostrum communication

architecture and distributed shared memory. The platform agent is imple-

mented as high-level software functions. The cluster agent is implemented as

SW/HW co-synthesis including a hardware-based CLT (cluster look-up table)

and software functions running on one processor. The cell agent is wrapped

within each NoC node as hardware circuits. Both hierarchical energy man-

agement and dynamic clusterization services will be experimented, with two

practical applications (one of image processing and another for MPEG encod-

ing). The results demonstrate the feasibility, effectiveness and efficiency of

H2A mapped on a NoC, the mainstream high-performance parallel comput-

ing platform. In addition, the quantitative overhead analysis shows that both

software and hardware overheads of agents and the supporting structures are

minimal and scalable with the number of processors in the NoC.
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7.1 NoC Platform

The SAA-NoC is implemented upon a NoC platform with Nostrum commu-

nication architecture [52], Leon 3 processors and distributed shared on-chip

memory [17], as illustrated in Fig. 7.1.

Nostrum NoC [52] is a general-purpose communication architecture for

many-core systems. It is a mesh-based direct network, where each node con-

tains a router, a processing element and memory. Nostrum adopts a highly-

regular physical layout. The distance between every two routers is the same,

so that the electric properties (e.g., the timing) of inter-router communication

are uniform. Each router utilizes bufferless wormhole switching. The router

utilizes X-Y deterministic routing in case of no congestion, otherwise uses hot-

potato deflection routing [87]. With hot-potato routing, the data transmission

supports no dropping in bufferless flow control. Flits that cannot be trans-

mitted to the desired output (e.g., due to contention) are simply deflected.

The arbitration always picks the flit with the highest hop count in case of

output conflicts [43], thus the routing is livelock free. The major features of

Nostrum NoC are the regularity of the physical layout, which provides uni-

form and predictable electrical properties, and the simple router architecture,

which reduces the area and energy consumption [92].

Leon 3 [32] is a general-purpose 32-bit processor, written in synthesizable

VHDL. It implements SPARC V8 instruction set. Leon 3 processor support a

total of 15 asynchronous interrupts.

In addition to a Nostrum router and a Leon 3 processor, each NoC node

has a distributed memory with shared memory space [17] on all processors.

In particular, each processor has 1MB private memory and 64KB shared

memory [18]. A distributed memory controller is attached to each node for the

management of remote and local memory accesses. The memory management

(e.g., the virtual to physical address translation) is reconfigurable by loading

different instructions in the instruction memory (16KB) of the controller. The

memory controller is small (51K gates) and fast (455MHz in 130nm).

To allow for each router or processor running on a different frequency

and voltage, the NoC platform supports GRLS (globally ratiochronous locally

synchronous) timing [13, 14]. Ratiochronous timing requires that any local

clock should be rationally related to a reference clock (fl = 1

N
fr, N is an

integer). It simplifies the synchronization overhead of GALS (globally asyn-
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chronous locally synchronous timing), where the timings between local clocks

are not related. It has a low overhead of 4 flipflops per dataline [14]. Com-

pared to mesochronous timing (same frequency but different phases [119]), it

offers greater flexibility in adjusting the frequency of individual node, while

maintaining similar overheads [13].

In summary, the underlying NoC platform is a mesh-based regular-layout

network, with full integration of processors, routers and distributed shared

memory. In each node, the processor and the memory are connected to the

corresponding router via an AHB bus (Advanced High-performance Bus, a

protocol introduced by ARM company). The memory controller handles the

memory reading and writing between the network and the local memory. Each

router or the processor is a synchronous unit, thus synchronization interfaces

are inserted for GRLS timing. Each synchronization unit has a clock genera-

tion module and a voltage switching module. Four global clocks are distributed

throughout the NoC, and the local generation module selects one among the

global clocks and divides its frequency by an integer value to produce the local

clock [15]. The frequency division is implemented with LFSR (linear feedback

shifter register). The voltage switching module emulates the behaviors of

power switches connecting to multiple on-chip power delivery networks [115];

Section 3.2.1). The voltage switching assumes a delay of 27ns based on SPICE

simulation [15]. During voltage and frequency switching, the local synchro-

nization unit is paused by clock gating. The GRLS timing implementation is

presented by the McNoC architecture [15].

7.2 Three-Level Agents and Supporting Structures

The SAA-NoC integrates all the three-level agents and the supporting struc-

tures as proposed in Chapters 4, 5 and 6. The agents can be implemented in

different SW/HW configurations. This section presents, upon the aforemen-

tioned NoC platform, the platform agent running on a dedicated software,

the cluster agent running as a thread on a processor, and the cell agents as

hardware attached to each NoC node. The implementation is an example

for SW/HW co-design of agents with the trade-off between functionality and

overheads.
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7.2.1 Platform Agents

For adaptive energy management, the platform agent performs energy-aware

mapping (Section 5.2). To tolerate processor failures, it utilizes fault-triggered

remapping and dynamic clusterization (Chapter 6). To enable the mapping

process, communication volumes between tasks are stored as metadata of the

application. In case of permanent failures of processors, the platform agent

chooses a spare to replace the broken processor considering the energy con-

sumption (to be elaborated in Section 7.4.3). Then clusters will be dynam-

ically updated accordingly. The platform agent is implemented in software

on a general-purpose Leon 3 processor (Fig. 7.2). The software implementa-

tion is based on two considerations: 1) the platform agent will have diverse

functions dependent on the application and system requirements, for instance,

different mapping or resource allocation algorithms; 2) the operations on the

platform agent are very infrequently performed and do not require fast re-

sponse (compared to local reconfiguration), such as the mapping and dynamic

clusterization.

As illustrated in Fig. 7.2, the Resource Look-up Table (RLT), where uti-

lization status of all cells is stored (Section 6.2), is implemented in the dis-

tributed memory of the platform agent. Each entry of the RLT contains the

location of the cell, its status and its cluster agent location(if assigned to

one). The platform agent can access the RLT as normal memory location.

Cell agents’ report of status will be stored in the corresponding entry in the

RLT. The implementation of RLT in the existing memory space instead of a

dedicated hardware unit is based on two-fold considerations:

• The size of RLT can easily fit into a distributed memory space. The

entry width of RLT is log2 N + 2 + log2 N in bits, as the status field

requires 2 bits (3 states: faulty, used, spare) and cell/cluster location

each requires log2 N bits (N is the maximal number of nodes in NoC).

Given 1000 nodes in NoC, each entry becomes 22-bit wide covering 3

bytes. In this case, RLT can fit in 3KB memory space, which is a small

portion of the 64KB distributed memory allocated to each processor

(Section 7.1).

• Implementing RLT in the distributed memory provides high flexibility

for the platform agent to access the table, as memory operations. In

addition, any processor can be configured as the platform agent (during
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compilation). If RLT is implemented as a dedicated hardware unit, only

the cells attached with RLTs can be configured as the platform agent

(unless a RLT is attached to every node).

7.2.2 Cluster Agents and CLT

Different from the platform agent, the cluster agent follows SW/HW co-design,

as illustrated by Fig. 7.3. A software thread is running on a Leon processor,

with input from the hardware-based Cluster Look-up Table (CLT).

The cluster agent performs cluster-based decision-making and distributed

reconfiguration (CDDR). Consistent with the algorithm in Section 5.3.3, the

software thread running on a Leon 3 processor provides a feedback-loop-based

energy-performance trade-off. It first waits on the 1st milestone of the appli-

cation, e.g., the starting instruction of a stream. When the milestone arrives,

the cluster agent first notes down its timestamp and then issues load checking

commands to all affiliated cell agents, requesting them to start tracing the

local load. Then the cluster agent waits on the 2nd timestamp of the applica-

tion (e.g., the ending instruction of the stream). When the milestone arrives,

the cluster agent collects the loads (in this implementation, the peak load of

a monitoring window) from all cell agents. Based on the load information and

the application execution time, the cluster agent decides on the voltage and
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frequency reconfiguration.

All these operations of a cluster agent run in one thread, which can be in-

terleaved with application threads, if the processor supports multi-threading.

When an instruction is suspended, for instance, when waiting on the appli-

cation timestamps, the processor simply makes a context switch to the ap-

plication threads. This work does not realize a full implementation of multi-

threaded Leon 3 processor. Instead, we emulate such behavior with one cluster

agent thread, which can be waken up by an interrupt (Fig. 7.3). Compared to

a dedicated processor, running the cluster agent as a thread improves the re-

source utilization, while preserving the functional flexibility of software-based

agents.

Each cluster agent is supported by a CLT functioning as a pre-processing

unit to the processor. When the cluster agent thread waits on specific infor-

mation (e.g., the local loads), the thread suspends. The information (loads or

application timestamps) sent from each cell agent will be stored in the CLT.

When a certain criteria is met, e.g., the loads of all routers are returned, an

output signal is generated from CLT to wake up the suspended cluster agent

thread. As illustrated by Fig. 7.4, each entry of CLT contains the monitored

parameters of one cell or the timestamps of a running application. At the

run-time, these parameters will be updated in an unpredictable order. The

local load of each router, as an example, may be reported by the correspond-

ing cell agent in a random order. The interrupt triggering criteria can be

dynamically configured with RSM (row selection mask) and PSM (parameter

selection mask). The RSM can be written by the cluster agent to choose the

interested cells or applications. To choose the interested parameters, the PSM

can be configured by the cluster agent. In case of dynamic clusterization,

complete entries in CLT will be updated. For instance, the row for a broken

cell will be replaced by one for the spare cell.

Implementing CLT in hardware is an alternative to the software-based

implementation of a look-up table (e.g., the RLT). The design choice is based

on two-fold considerations:

• The pre-processing unit only wakes up the processor when all needed in-

formation is ready, instead of triggering a context-switch every time one

piece of information is received. Such technique reduces the overheads

caused by excessive context switching.
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• If the platform needs to support the scenario where every node can host

a cluster agent (Chapter 6), one CLT should be attached to each node.

Based on synthesis, a 32-entry 16-bit wide CLT only covers 9751 um2,

which is only 2.2% of a 64-bit router(more discussion in Section 7.5).

Thus the hardware-based CLT implementation is highly feasible.

7.2.3 Cell Agents and CIR

Each cell agent is a hardware-based unit wrapped within a NoC node. Based

on the discussion in Section 4.3 and 5.3.2, a set of local monitoring and recon-

figuration operations can be modularized in every NoC node. They usually

require fast response (e.g., frequency switching). Thus a modular hardware-

based design is desirable where each cell agent controls local monitors and

actuators (Fig. 7.5). In addition, MIR (milestone instruction register; Section

5.3.2), used for storing application milestones, is configurable by the platform

agent. The CIR (cluster identifier register; Section 6.2) is also reconfigurable

by the platform agent. In the dynamic clusterization process, CIR will be

updated with the cluster agent address. In case of processor failures, to sup-

port remapping without recompilation, a RT (re-routing table; Section 6.2) is

implemented in the memory controller, where a broken processor address is

replaced with its spare processor address.

7.3 System Integration

With the three-level agents and supporting structures, the SAA-NoC imple-

ments both energy management and fault-triggered dynamic clusterization.

A hierarchical view of each agent’s role in these services is illustrated by Fig.

7.6, categorized by the type of services:

• For energy management: the cell agent collects the local load and traces

the occurrences of application milestones, and reports them to the clus-

ter agent. Based on the received load and calculated latency informa-

tion, the cluster agent monitors the application’s execution time and

decides on required DVFS techniques (e.g., increasing the voltage and

frequency of the most heavily-loaded routers, Fig. 5.7). The reconfig-

uration command will be sent to the corresponding cell agents. The

platform agent reduces the energy consumption through energy-aware
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Figure 7.5: Cell Agent and the Supporting Structures wrapped in a NoC Node

mapping or remapping. The initial mapping is applied before the appli-

cations execute, when the platform decides on the most suitable task-

processor assignment to minimize the communication energy (Section

5.2). In case a processor fails, the most suitable spare will be chosen

based on the distances between the spare and the functional processors

(to be elaborated in Section 7.4.3).

• For fault tolerance with dynamic clusterization, the cell agent reports

the processor failure to the platform agent directly. Based on the fault

status of cells and availability of spare cells, the platform agent decides

on the proper spare for each broken cell based on the energy consump-

tion. Afterward, dynamic clusterization will be issued by the platform

agent (Chapter 6), which configures each spare to a chosen cluster. The

dynamic clusterization involves the updates of RLT, CLT, CIR and RT

to maintain the proper organization after spare replacement.

Upon the underlying NoC platform (Section 7.1), Fig. 7.7 illustrates the

interaction between agents and supporting structures for the implemented

services. Different from the physically separate monitoring network in Sec-

tion 6.3, the implementation provides guaranteed monitoring communication

on the data channel. The guaranteed services are achieved through two tech-
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niques: 1) the network utilizes hot-potato deflective routing (Section 7.1), thus

no backward blocking will occur; 2) the arbitration process always prioritizes

the monitoring communication, thus its performance is not influenced by the

data communication. The guaranteed service provided by the implementation

is enabled by the deflective routing, while the physically separate monitoring

network in Section 6.3 is generically applicable in any routing algorithms. All

monitoring communication messages are memory-mapped. Each message con-

tains four fields (Fig. 7.8): destination, source agent, message identifier, and

message data.

7.4 Experiments

With two representative applications (one for imaging process, one for video

encoding), energy management and dynamic clusterization services are exper-

imented on the SAA-NoC.
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7.4.1 Experimental Setting

The first application for image processing, BASIZ [96], requires 26 cores. It

is mapped on a 6 × 5 NoC area based on its small NAD (node average dis-

tance; Section 5.2), leaving 4 cores as spares. The second application, MPEG

encoding [59], requires 21 cores. It is mapped on 5 × 5 NoC area, also leaving

4 spare cores. As illustrated by Fig. 7.9, to analyze the respective energy

saving of high-level mapping and cluster-level CDDR, one scenario with tree-

based mapping (Section 5.2) and one with random mapping are experimented.

To demonstrate the fault-triggered dynamic clusterization, two scenarios with

process failures for each application are also included in the experiments.

To identify the voltages and their corresponding supported frequencies, the

switches were synthesized using Synopsys design compiler for 65 nm multi-Vdd

technology (Table 7.1). The technology supports voltages from 1.1V to 1.32V .

The synthesis results reveal that the routers are capable of supporting up to

300MHz frequency at 1.32V and up to 200MHz frequency at 1.1V . Based on

GRLS clocking in the NoC platform (Section 7.1), the allowable frequencies

are 300, 100, 50, 40, and 20MHz (all frequencies are divisors of the largest

frequency 300MHz).

To analyze the power and energy consumption, the switching activity files

are generated for each application based on the communication volume be-

tween every two tasks. Automated traffic generation is not feasible for this

implementation as the application instructions are not available. The NoC
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Table 7.1: Voltage frequency pairs (the bold font labels the allowed frequencies
based on GRLS clocking and the corresponding minimal voltages meeting the
timing constraints)

Voltage Frequency Timing constraints
(V) (MHz)
1.32 400 violated
1.32 300 met

1.32 200 met
1.1 400 violated
1.1 300 violated
1.1 200 met
1.1 100 met

1.1 50 met

1.1 20 met
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routers are synthesized using 65 nm multi-Vdd library. The power analysis is

performed by Synopsys design compiler on the synthesized NoC routers with

the generated switching activity files.

7.4.2 Energy Management Results

Initially all routers are configured with the highest voltage and frequency

(1.32V, 300MHz). After the applications start running, each cell agent reports

the local router load to the cluster agent. Two types of energy management

is experimented on the four clusters (Fig. 7.9): latency-oblivious and latency-

bounded (Fig. 7.10). The latency-oblivious management continuously applies

lower voltage and frequency to the least-used router for a fixed number of

streams, without checking the run-time latency. This type of experiment is

intended to demonstrate the energy reduction in cluster-level reconfiguration.

The latency-bounded management, on the other hand, monitors the actual

stream latency as in the CDDR algorithm (Section 5.3.3). In particular, a

latency boundary (Ll; design-specific) is set as the delay of the largest com-

munication flow CFM among all nodes. The cell agents will trace and report

the occurrences of the starting and ending timestamps of CFM . The cluster

agent compares the run-time latency Lr of CFM with the latency boundary

Ll. It will apply lower voltage and frequency to the least-used router until the

boundary is reached or exceeded for the first time.

The per-stream energy consumption for the MPEG application with latency-

oblivious simulation (for 45 streams) is depicted in Fig. 7.11. It can be ob-

served that the per-stream energy is gradually decreasing as lower voltage and

frequency are applied to individual routers. In particular, the 45th stream’s

energy consumption is 87.4% and 92.6% of the initial stream for energy-aware

and random mapping respectively. In addition, the energy consumption of the

energy-aware mapping is significantly lower than that of the random mapping

(36.9% in terms of the initial stream, 34.8% in terms of the 45th stream; Fig.

7.11).

Similar trend is observed from the experiment with the BASIZ application.

The per-stream energy consumption is illustrated in Fig. 7.12. The energy

consumption of the 45th stream is 87.2% and 93.5% of the initial stream for

the energy-aware and random mapping respectively. The energy consumption

of the energy-aware mapping is 90.1% (for the initial stream) and 93.3% (for

the 45th stream) of the corresponding stream in random mapping.
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Figure 7.12: Per-Stream Energy Consumption in Latency-Oblivious Cluster-
Level Energy Management (BASIZ)

In latency-bounded experiments, the performance awareness in hierarchi-

cal energy management can be analyzed and compared, as illustrated by Table

7.2. To highlight the comparison, the energy is normalized with the energy

consumption of the first stream under energy-aware mapping. The latency

is normalized with the latency boundary. The boundary is chosen as exper-

imental values, as only the communication patterns of the two applications

are available without the full processing details. From Table 7.2, it can be ob-

served that the cluster-level energy management reaches the latency boundary

with reduced energy consumption, for both applications under energy-aware

mapping. The self-adaptation process takes a number of iterations (the exact

number is application dependent). The stabilized energy consumption under

the energy-aware mapping is around 87% of the initial stream for the two

applications. With the random mapping, on the other hand, the latency is

already higher than the boundary in the first stream (highest voltage and

frequency setting), thus the self-adaptation process immediately stops.

The energy management experiments have confirmed the contribution of

both the platform-level and cluster-level self-adaptation in energy saving. The

total savings (stabilized energy in energy-aware mapping vs. initial energy

with random mapping) are 67.8% for MPEG and 21.4% for the BASIZ. It

should be noted that the relative saving of energy-aware mapping differs sig-

nificantly upon the quality of random mapping. The cluster-level energy man-

agement, specifically the CDDR, provides effective energy saving while directly
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Table 7.2: Per-Stream Energy and Latency in Latency-Bounded Cluster-Level
Energy Management

Appli Latency Mapping Adaptation Stabilized Stabilized
-cation Boundary Ending Energy Latency

Stream (Normalized) (Normalized)
MPEG 36000ns Energy 43rd 87.4% 96.3%

-aware
MPEG 36000ns Random 1st 271.1% 479.3%
BASIZ 550000ns Energy 45th 87.2% 93.6%

-aware
BASIZ 550000ns Random 1st 127.3% 118.7%

monitoring the performance (i.e., the latency boundary).

7.4.3 Fault-Tolerance Result

To analyze the dynamic clusterization, for each application, a number of fail-

ures are randomly injected into processors(Table 7.3). Random distribution

of processor failures is usually assumed (e.g., [22]). Upon receiving the fault

status report, the platform agent performs energy-aware remapping, a mod-

ified version of tree-based mapping algorithm (Section 6.4). In detail, each

cluster’s mesh area is transformed into an extended tree including the broken

cells and all the spares. As illustrated in Fig. 7.13, the same mapping process

as in tree-based mapping algorithm follows. The only modification is that,

when the mapping proceeds to a broken cell, the next cell in the tree will be

used instead. In this manner, spares will be mapped into each cluster with the

total energy consumption minimized. The platform agent performs dynamic

clusterization based on the remapping, with RLT, CLT, CIR and RT updated

(Section 7.2). Afterwards, each cluster agent performs the same cluster-level

energy management (both latency-oblivious and latency-bounded) as in Sec-

tion 7.4.2.

The per-stream energy consumption under latency-oblivious cluster-level

management is depicted in Fig. 7.14 for both applications. To highlight the

relative energy saving in each application, the energy figure is normalized with

the energy consumption of the initial stream in the corresponding application

(fault-free case). It can be observed from Fig. 7.14 that the agent-based
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Table 7.3: Injected Processor Failures and Utilized Spares (as intra-cluster
locations)

Application Failure Nodes All Spares Utilized Spares
MPEG 3,11, 12 0,1,2,4 0,1,2

5*5 cluster
BASIZ 6,14,15 0,12,18,24 12,18,24

6*5 cluster
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Table 7.4: Comparison of Stabilized Energy and Latency in Fault-Injected and
Fault-Free Clusters (Latency-Bounded Management)

Application Fault Adaptation Stabilized Stabilized
Existence Ending Energy Latency

Stream
MPEG Fault-free 43rd 87.4% 96.3%
MPEG 3 processors 13rd 103.68% 95.8%
BASIZ Fault-free 45rd 87.2% 93.6%
BASIZ 3 processors 28th 94.8% 98.9%

self-adaptation continues its proper functioning in face of processor failures,

thanks to the dynamic clusterization. For latency-bounded simulation (Table

7.4 ), it can be further observed that the occurences of faults do not incur

much energy overhead, due to the energy-aware remapping. With the same

latency boundaries as in Table 7.2, the stabilized per-stream energy values of

fault-injected clusters (normalized to the initial stream energy of the fault-free

cases) are moderately increased from those in fault-free clusters (8.7% for the

BASIZ application, 18.6% for the MPEG application).
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7.5 Overheads

As presented in Section 4.3, H2A system architecture provides physical scal-

ability via SW/HW co-design of agents. On the implemented SAA-NoC, the

overheads of agents and supporting structures can be quantitatively analyzed.

The platform agent is implemented as software, as a dedicated processor with

the RLT (resource look-up table) mapped in the local memory. The cluster

agent, as SW/HW co-design, includes both a thread running on a processor

and a hardware-based CLT (cluster look-up table). The cell agent is hardware

circuits wrapped in each NoC node. To examine whether the agent subsys-

tem is physically scalable on the implemented SAA-NoC, different analysis

for SW/HW structures needs to be followed. For software design, the major

overhead is in terms of the timing penalty, or the relative amount of time dur-

ing which a processor is occupied for agent services. For the platform agent,

the energy-aware mapping will be analyzed in terms of its timing overhead on

a 300MHz Leon 3 processor. For the fault-triggered dynamic clusterization,

the major overhead on the platform level is also the energy-aware remapping

as a large amount of data processing is required. In addition, as the platform

agent requires a memory-mapped RLT, the relative memory usage is studied.

For the cluster agent, as the CDDR algorithm is running as a thread on a

processor, the software overhead is estimated by the timing overhead of the

thread. The hardware overhead, i.e., the CLT, is estimated in terms of its

silicon area with 65nm technology. Similarly, the overhead of each cell agent

is measured by its area.

The results are summarized in in Table 7.5. Both the software and hard-

ware overheads are minimal. The timing overhead of the energy-aware map-

ping for a 30-node cluster is only 33% of a MPEG stream [67]. The tim-

ing overhead is similar for the initial mapping and the remapping (with the

same number of nodes), as the remapping follows the same tree-model-based

searching algorithm with only additional checking on nodes’ fault status (Fig.

7.13). Since the mapping is issued rarely (for the initial configuration or when

permanent faults occur), the overhead has very small influence on the perfor-

mance. The timing overhead of the CDDR algorith accounts even less in a

MPEG stream’s delay (0.17%). The hardware overheads, for either the CLT or

the cell agent, are very small compared to the existing NoC area (only 2.2%

and 0.7% of a 64-bit router). Importantly, all these overheads are scalable
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with more number of cells in the NoC, due to the cluster-based management.

Firstly, the energy-aware mapping mainly addresses the task mapping within

each application (Section 5.2; assigning rectangles to each application has

much lower complexity), whose overhead does not grow with the number of

nodes in the NoC. The overhead of CDDR also depends on the cluster size,

which is determined by the application size rather than the system size. For

instance, the area overhead of CLT is proportional to the number of cells in

each cluster, intead of cells in the whole system. The cell agent, which is a

modularized design integrating all required local monitors, remains the same

in system expansion.

7.6 Chapter Summary

As a proof-of-concept prototype, an implementation of SAA-NoC was elab-

orated in this chapter. Both adaptive energy management services and dy-

namic clusterization for fault tolerance were implemented upon a RTL NoC

simulator with Leon 3 processors and shared memory. The platform, cluster

and cell agents were synthesized with SW/HW co-design, demonstrating the

hierarchical implementation guidelines of the H2A system architecture. Sup-

porting structures for self-adaptation on each agent level, i.e., CLT, RLT and

CIR, were also implemented. Experiments with one image processing and one

video encoding application confirmed the energy saving of the hierarchical en-

ergy management. In particular, both platform-level energy-aware mapping

and cluster-level CDDR significantly contribute to the energy minimization.

In terms of fault-tolerance, the dynamic clusterization enables the reorgani-

zation of clusters using appropriate spares when certain processors fail. The

energy-aware remapping minimizes the energy consumption for the dynami-

cally reconfigured clusters. Last but not least, the overhead analysis of agents

and the supporting structures showed minimal software overhead (in terms of

timing) and hardware overhead (in terms of area), thus verified the physical

scalability of the H2A design paradigm.
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Table 7.5: Overheads of Agents and Supporting Structures
Type Description Value Analysis Scalability
SW Timing overhead of ≈11ms small the overhead determined by

Energy-aware Mapping (task mapping 33% of a MPEG stream [67] application size,
on the platform agent of 30 processors (only required for not system size,

/one cluster) initial configuration) thus scalable
SW Relative RLT Overhead 110 memory very small linear to the system size

/memory in the local memory lines (one for 0.7% of each
each cell) 64KB local memory

SW Timing overhead ≈ 56us very small the overhead determined by
of CDDR algorithm 0.17% of a MPEG stream the cluster size,
on the cluster agent not the system size,

thus scalable
HW Area overhead of CLT 9451 um2 minimal not grow with

32 entries, each 16 bits only 2.2% the system size,
of a 64b router thus scalable

HW Cell agent 2972 um2 only 0.7% remain constant
of a 64b router with system expansion
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Chapter 8

Conclusion

Hierarchical Agent-based Adaptation (H2A) design paradigm is a systematic

solution, which brings the self-adaptive features into parallel embedded sys-

tems. It major thrust is to improve the design productivity for scalable, energy

efficient and dependable system development, in contrast to ad-hoc methods

and techniques. The thesis successfully achieved the formulated objectives:

1. Identification and motivation of the design paradigm shift towards Self-

Aware and Adaptive (SAA) systems.

2. Proposing a scalable design approach and system architecture for SAA

systems.

3. Prototype and implementation of a SAA system.

8.1 Design Era of SAA systems

The thesis has established the SAA design as a dedicated design dimension,

fulfilling the first objective. The paradigm shift is inspired by the proliferation

of monitoring and reconfiguration techniques in parallel embedded systems,

addressing performance, energy efficiency and dependability. Exploiting the

system-level design principle of orthogonalization, a separate design layer for

monitoring and reconfiguration services has been proposed, to address the de-

sign productivity via reuse and portability. The SAA concept has been com-

pared with autonomic computing and reconfigurable computing. While auto-

nomic computing spreads over a broad spectrum of behaviors and objectives,

SAA computing focuses on the architectural integration of self-awareness and
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adaptation. Reconfigurable computing enables the adaptation process, but

does not directly address the distinct phases of self-monitoring and adaptive

reconfiguration.

The thesis has studied the three key processes in the closed-loop feedback

universal in a SAA system: monitoring, decision-making and reconfiguration.

With energy efficiency as the primary objective, the thesis presented the design

and comparison of centralized, clustered and distributed run-time management

architectures. Distributed self-adaptive management is more effective in lo-

cal optimization, while incurring physical design complexity. The clustered

management provides a tradeoff between local optimization, global awareness

and design complexity. The analysis has identified the need of a systematic

integration of self-adaptive techniques on different architectural levels.

8.2 Hierarchical Agent Architecture

A system architecture to design SAA systems, hierarchical agent-based adap-

tation (H2A), was presented in the thesis. From the design paradigm’s per-

spective, the self-adaptation architecture with platform, cluster and cell agents

can be applied on different types of systems, thus enabling a portable approach.

As a system architecture, the functional partitioning among high-level and

low-level agents minimizes the burden on the centralized decision-maker while

still supporting fine-grained local status monitoring. In terms of overheads,

the low-level agents are implemented as hardware and wrapped within each

modularized local component. Thus the relative overhead remains constant

when the system expands. High-level agents are implemented as software to

perform diverse operations without adding hardware overheads for each oper-

ation. With design reuse, functional partitioning and SW/HW co-design, H2A

achieves scalability for the agent subsystem in terms of performance, overhead

and design effort.

The thesis has presented hierarchical energy management and dynamic

clusterization as two major services with the H2A architecture. For energy

management, the platform agent is designed as a software controller, perform-

ing energy-aware application mapping. Each cluster agent, with SW/HW

co-design, enables intra-cluster energy management with CDDR (clustered

decision-making with distributed reconfiguration). CDDR exploits coarse-

grained performance awareness of the clustered decision-making, while being
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able to fine-tune the status of local resources (e.g., routers and channels) with

distributed reconfiguration. Each cell agent, as a modularized hardware con-

troller, provides hybrid monitoring (both local buffer loads and application

milestones). The joint effort of all levels of agents significantly reduces the en-

ergy consumption of the system, while meeting the performance constraints of

the applications. As modern parallel systems are highly susceptible to unpre-

dictable errors and failures, dynamic clusterization against processor failures

has been proposed for dependable computing. In particular, H2A enables any

cell to be allocated to any cluster at the run-time, eliminating the influence of

processor failures on the statically assigned clusters. To enable dynamic clus-

terization, three-level supporting structures have been designed, in addition

to a full-mesh-based physically separate monitoring network.

8.3 Self-Aware and Adaptive NoC Implementation

The thesis has presented a RTL implementation of a Self-Aware and Adap-

tive NoC (SAA-NoC). The implementation integrates both hierarchical energy

management and dynamic clusterization against processor failures. The plat-

form agent is implemented in software running on a dedicated processor. The

RLT is implemented in the local memory of the platform agent. Each cluster

agent is implemented as a thread running on a processor. The CLT is imple-

mented as a small and reconfigurable hardware unit affiliated to the cluster

agent. Each cell agent is a hardware unit wrapped within a NoC node, with

reconfigurable CIR, RT and MIR (milestone instruction register). With multi-

Vdd 65nm CMOS libraries, hierarchical energy management achieves 67.8%

and 21.4% energy saving for an image processing and a video encoding appli-

cation respectively. In case of random processor failures, the system correctly

updates the clusterization with suitable replacement. The energy consumption

is increased by only 8.7% and 18.6% for the two applications. In terms of SW

overhead, the energy-aware mapping function on the platform agent accounts

for 33% of a MPEG stream’s delay, which is rarely incurred as the mapping is

only needed for the initial configuration or when permanent processor failures

have occurred. In addition, the cluster-level energy management thread only

accounts for 0.17% of a MPEG stream’s delay. In terms of HW overhead, a

CLT is 2.2% of a 64-bit NoC router, while each cell agent only accounts for

0.7%.
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8.4 From Parallel to Distributed Computing: Fu-

ture Work

As the foundational work in the development of H2A-based SAA systems,

the thesis’s research has fostered a wide range of studies covering the self-

awareness and adaptivity concepts, system architectures and formal methods.

Though not having reached a mature stage of research outputs, some of our

related works reported the latest progress on formal specification [41, 40], fault

tolerance of link-level errors [3] and the application of H2A on distributed

systems [35]. The on-going research focuses on the following three directions:

1. Improving the system dependability by tolerating agent faults. The

paradigm overview in Chapter 4 has proposed that higher level agents

should monitor the error status of the affiliated lower level agents, but

such techniques are not elaborated. Thus one on-going research is to

design a fault-tolerant inter-agent communication protocol, which can

detect the run-time faults on each level of agents. A possible protocol

is to use regular testing messages from one higher-level agent to all its

affiliated lower-level agents. A healthy agent should be able to respond

with the correct reply within an expected time period.

2. Formal validation of agent and resource status. On a hierarchical agent-

based system, run-time reconfiguration is applied simultaneously to dis-

tributed cells, clusters and the platform, whose states in turn influence

the decision-making of agents on each level. A systematic method for

specifying and validating such a system is highly beneficial to the de-

velopment of the H2A paradigm. A high-level language to specify the

agent behaviors and state transition of resources has been presented in

[41, 40]. The future work aims to formulate a complete approach for

formally validating the state transition of agents and resources.

3. Applying H2A on Distributed Embedded Systems (DES). A DES has

higher diversity in communication channels and end devices than multi-

processor systems. On a heterogeneous DES, ad-hoc monitoring and re-

configuration techniques will lead to significant design complexity, thus

the H2A design paradigm should be utilized for its scalability and porta-

bility. [42] has presented an initial study on the smart house architec-

ture with hierarchical agents. The platform, cluster and cell agents are
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assigned on the application, service and sensor layers respectively. Ser-

vices to enhance the dependability of the monitoring and surveillance

in the smart house are exemplified. The research aims to design hier-

archical agent-based adaptation as a generic architecture for pervasively

connected DES, e.g., CPS (Cyber-Physical Systems).

The thesis has innovated a scalable and portable system architecture, H2A,

for the design of self-awareness and self-adaptivity in embedded systems. It

has demonstrated the feasibility, effectiveness and efficiency of H2A by ex-

tensive architectural-level design and experiments. The analysis on hierar-

chical energy management and dynamic clusterization services has shown the

energy-efficiency and dependability of applying a systematic approach on the

state-of-the-art parallel embedded systems. The paradigm’s future promise

can be found in a broader scope of parallel and distributed systems.
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Appendix A

HLS-DoNoC: High-Level

Simulator for Dynamically

Organizational NoCs

Here we describe the system-level simulator (published in [38]) used for the

early-stage design exploration in Chapter 3, 5 and 6. Written mostly in C++,

it is able to simulate various dynamic cluster-based monitoring and reconfig-

uration techniques. Nodes in the network can be dynamically grouped into

different clusters. Monitoring of various parameters and reconfiguration of

voltage and frequency values can be applied to each cluster. Network status,

communication performance and power/energy consumption are provided to

facilitate the network design and analysis.

There exist many NoC simulators with different features and functions. In

terms of system scope, McPAT [70] and GEMS [79] are both full system simula-

tors. McPAT [70] provides detailed power, area and timing models for different

components in a many-core system. GEMS [79] integrates comprehensive pro-

cessor model and memory system simulator. These simulators usually require

lengthy simulation to obtain accurate details for each system component. Our

simulator (HLS-DoNoC) directly addresses dynamic organization and related

monitoring/reconfiguration techniques in NoCs, thus simplifies the reprogram-

ming and simulation process. The goal of HLS-DoNoC is to provide initial but

fast analysis for various cluster-based dynamic management schemes, in or-

der to narrow down the design space for follow-up circuit-level design and

implementation. Compared to NoC-dedicated simulators (e.g. NNSE [75]

140



R.
Cluster

Monitor

R.

Application: 

Communication computation graph

or

Synthetic traffic generator (Matlab)

Traffic Generation

FIFO

R. R.
FIFO

F
IF
O

F
IF
O

Dynamically 

activated 

freq1
freq2

freq3 freq4

Power Model

(Orion 2.0)

Cluster nodes list:

R2, R4, ...

fr

Monitoring communication

Reference clock
Network

Network status, transmission performance, communication energy

Figure A.1: Module Overview of Simulation Framework

and Noxim [1]), HLS-NoC extends their functions by supporting the adaptive

monitoring/reconfiguration functions. Orion 2.0 [55] is a widely used tool for

power and area modeling in NoCs. But it is not a network function simula-

tor (i.e. it does not model the transmission process). HLS-DoNoC integrates

Orion to estimate energy and power consumption (Section A.5).

A.1 Modular Overview

The simulator is composed of a network kernel, structures for dynamic clus-

terization and run-time reconfiguration, and traffic generators (Fig. A.1). The

network kernel is composed of wormhole-based NoC routers. Any router can

be attached with a monitor to supervisor a cluster, activating the affiliated

cluster look-up table. Routers can run on different frequencies ratiochronous

to a reference clock (Section A.4). The traffic generation supports both prac-

tical applications and synthetic traffic traces. Monitoring communication is

simulated separately from the data communication. The simulator can give re-

sults in terms of network status (e.g. workload, congestion), performance (e.g.

latency and throughput), as well as energy and power of any communication

flow.
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A.2 Network Kernel

In the network kernel, each router is modeled with wormhole-switching, and

is composed of input buffer, routing and arbitration logic, and crossbar. The

simulator can generate networks of any topologies. The size of input buffers

can be configured. The router includes four pipeline stages: input, routing,

crossbar traversal and FIFO writing (related to the synchronization between

clusters; details in Section A.3). By default, the simulator uses X-Y routing.

The communication channels support both direct communication (when

two ends are running on the same frequency and phase) and synchronizer-

inserted communication (when two ends are allowed different frequencies and

phases). The synchronizer is modeled as the FIFO structure in [81]. The

FIFO depth and delay are configurable, by default 5-flit deep and 3 reading

cycle latencies [81]. The delay on the level shifter is negligible compared to

the FIFO delay [33], thus omitted.

A.3 Simulating Dynamic Clusterization

The simulator enables run-time clusterization of any nodes in NoC (Fig. A.2).

Each router can be configured with a monitor, which is attached with a list

as the cluster look-up table (Section 6.2). If a node (router and processing

element) is to be assigned to a specific cluster, the corresponding monitor will

write its location into the look-up table. In this manner, virtual clusterization

is achieved, which can be easily reconfigured. In each router module, there is

a variable recording the monitor location.

To enable communication between the monitor and the affiliated network

nodes, a dedicated network is built for sending monitoring information and

reconfiguration commands (Fig. A.2). The network is much narrower than the

data network, considering the monitoring communication is typically lower in

volume than the data communication. There are other alternatives for building

the monitoring networks, for instance time-multiplexing. The simulator adopts

this architecture as it ensures the transmission performance of monitoring

communication and is energy efficient [36].
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A.4 Simulating Cluster-based Reconfiguration

With the clusters dynamically configured, run-time monitoring and reconfigu-

ration in each cluster supervised by the monitors can be simulated (Fig. A.3).

In terms of monitoring, the information of local network condition is col-

lected distributedly. In the simulator, counters are added to trace the infor-

mation such as workload and latency. The information is sent by each router

via the monitoring network to the monitor.

In terms of reconfiguration, each router can be dynamically configured

with one of the available supply voltages (emulating multiple on-chip power

delivery networks; Section 3.2.1) and with a frequency rationally-related to

a reference clock. For simulation, the voltage switching only influences the

power/energy consumption, which is recomputed if the router is configured

with a new voltage.

The frequency switching assumes ratiochronous timing [14], or in particular

GRLS (globally ratiochronous and locally synchronous timing). It is a form

of GALS (globally asynchronous and locally synchronous timing). The clocks

of local components are rationally-related (i.e. in the form of M
N

, M and N

being integers) to a reference clock. Ratiochronous timing is low in area and

energy overheads [14], for instance with simple distributed digital frequency

dividers [72].

143



R1

R3

R2

R4

R1.monitor_location=R2

R1.Clock=2

Setting R2 as the 

location of agent;

Setting the clock interval 

as twice the reference 

clock interval (half the 

frequency)
Different clusters

The location of the 

monitor

R1.east_switch=R2;

R2.west_switch=R1;

Interconnect can be 

configured as normal 

wires

FIFO

R3.east_switch=null;

R3.east_out=FIFO[3];

FIFO[3].front().lock= 

FIFO_latency

FIFO

Configure FIFO-based 

interconnect 

F
IF
O

F
IF
O

R3.monitor_location=R2

R3.Clock=2

R2.monitor_location=R2

R2.Clock=2

R4.monitor_location=R5

R4.Clock=1

Different clock 

speed

Figure A.3: Simulating Ratiochronous Timing in DoNoC

144



To simulate synchronous and ratiochronous timing, the iteration construct

in sequential programming is utilized. All parallel operations that can be

executed in one iteration (without dependencies) are performed before the

next iteration starts. Each cycle of the reference clock is an iteration. In one

iteration, all parallel operations in the network (the four pipeline stages) are

executed. As the same data cannot be operated on twice during one cycle,

a lock is added to every newly updated data. The locks are released in the

next iteration. With the iteration construct, ratiochronous timing can be

simulated. Instead of being updated every iteration, a router is being updated

based on its required frequency. For instance, if the router’s frequency fl is

half the reference clock frequency fr, then the router is activated every fr

fl
= 2

iterations. The iteration-based simulation can not be used for handshaking-

based asynchronous network.

A.5 Integrating Power Models for DoNoCs

The simulator considers the energy consumption of router, link, FIFO-based

synchronizer and level shifter. When a flit goes through each of these network

components, the traversal energy is added (Fig. A.4). The energy is specified

for different voltage and frequency levels in case of run-time power manage-

ment. The average power can be calculated with the energy divided by the

transmission time.

For router and link power, Orion 2.0 [55] is utilized. Given the voltage,

frequency, technology and switch architecture parameters, we can obtain the

energy consumption. The major energy consumption in FIFO-based synchro-

nizers lies in the shift registers. We estimate the access energy of FIFOs also

from Orion 2.0, as input buffers of a router are also modeled with shift reg-

isters. As the energy consumption of level shifters strongly depends on the

implementation and the output load, the simulator enables reconfiguring the

values based on existing literatures (by default using [33]).

A.6 Traffic Generation

The traffic is generated by modules written in Matlab considering its strength

in data processing. The message has the format of one flit header followed by a

number of payload flits, with the last one being the tail. The traffic generator
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Appendix A HLS-DoNoC: High-Level Simulator for Dynamically
Organizational NoCs

R
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Component    Voltage   Frequency  Energy
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Figure A.4: Integrating Power Models for Run-Time Voltage and Frequency
Switching

provides the required packetization, and adds the timing information as the

meta-data attached to each flit.

Two categories of traffics are utilized by the simulator, synthetic traces and

application traffic traces. The synthetic traces are generated by certain traffic

models, which capture the most important features of workloads and are easy

to design and modify [26]. Application traces can be extracted from inter-

processor communication graphs in practical applications based on existing

literature (e.g. [116]).

A.7 Simulator Feature Summary

With the integration of dynamic clusterization and run-time monitoring/reconfiguration

functions, the simulator is able to perform system-level design analysis of

DoNoC, especially for cluster-based power management, as summarized by

Table A.1.
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Appendix A HLS-DoNoC: High-Level Simulator for Dynamically
Organizational NoCs

Table A.1: Enhanced Features for Simulating DoNoCs
Category Features
Conventional Various topologies: mesh, torus,
NoC or any random topologies;
functions Switching and routing: wormhole switching or

virtual cut-through, X-Y deterministic routing;
Traffic: synthetic and practical application traces

Timing Synchronous, ratiochronous
Run-time Load of each router, average load of any clusters
monitoring (or the whole network);

Latency of a particular flit/packet, average latency
of all packets;
Number of packets received in any time window
on any router

Dynamic Per-core DVFS;
reconfiguration DVFS in statically partitioned clusters;

Dynamic clusterization;
Dynamic cluster based power management;
Extension for fault-tolerance

Measurement Performance of network communication;
Power/energy of network communication;
Latency/energy overhead for synchronization;
Energy overhead of monitoring communication
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