4,420 research outputs found

    The First Hour of Extra-galactic Data of the Sloan Digital Sky Survey Spectroscopic Commissioning: The Coma Cluster

    Full text link
    On 26 May 1999, one of the Sloan Digital Sky Survey (SDSS) fiber-fed spectrographs saw astronomical first light. This was followed by the first spectroscopic commissioning run during the dark period of June 1999. We present here the first hour of extra-galactic spectroscopy taken during these early commissioning stages: an observation of the Coma cluster of galaxies. Our data samples the Southern part of this cluster, out to a radius of 1.5degrees and thus fully covers the NGC 4839 group. We outline in this paper the main characteristics of the SDSS spectroscopic systems and provide redshifts and spectral classifications for 196 Coma galaxies, of which 45 redshifts are new. For the 151 galaxies in common with the literature, we find excellent agreement between our redshift determinations and the published values. As part of our analysis, we have investigated four different spectral classification algorithms: spectral line strengths, a principal component decomposition, a wavelet analysis and the fitting of spectral synthesis models to the data. We find that a significant fraction (25%) of our observed Coma galaxies show signs of recent star-formation activity and that the velocity dispersion of these active galaxies (emission-line and post-starburst galaxies) is 30% larger than the absorption-line galaxies. We also find no active galaxies within the central (projected) 200 h-1 Kpc of the cluster. The spatial distribution of our Coma active galaxies is consistent with that found at higher redshift for the CNOC1 cluster survey. Beyond the core region, the fraction of bright active galaxies appears to rise slowly out to the virial radius and are randomly distributed within the cluster with no apparent correlation with the potential merger of the NGC 4839 group. [ABRIDGED]Comment: Accepted in AJ, 65 pages, 20 figures, 5 table

    Model-Based Development of Distributed Embedded Systems by the Example of the Scicos/SynDEx Framework

    Full text link
    The embedded systems engineering industry faces increasing demands for more functionality, rapidly evolving components, and shrinking schedules. Abilities to quickly adapt to changes, develop products with safe design, minimize project costs, and deliver timely are needed. Model-based development (MBD) follows a separation of concerns by abstracting systems with an appropriate intensity. MBD promises higher comprehension by modeling on several abstraction-levels, formal verification, and automated code generation. This thesis demonstrates MBD with the Scicos/SynDEx framework on a distributed embedded system. Scicos is a modeling and simulation environment for hybrid systems. SynDEx is a rapid prototyping integrated development environment for distributed systems. Performed examples implement well-known control algorithms on a target system containing several networked microcontrollers, sensors, and actuators. The addressed research question tackles the feasibility of MBD for medium-sized embedded systems. In the case of single-processor applications experiments show that the comforts of tool-provided simulation, verification, and code-generation have to be weighed against an additional memory consumption in dynamic and static memory compared to a hand-written approach. Establishing a near-seamless modeling-framework with Scicos/SynDEx is expensive. An increased development effort indicates a high price for developing single applications, but might pay off for product families. A further drawback was that the distributed code generated with SynDEx could not be adapted to microcontrollers without a significant alteration of the scheduling tables. The Scicos/SynDEx framework forms a valuable tool set that, however, still needs many improvements. Therefore, its usage is only recommended for experimental purposes.Comment: 146 pages, Master's Thesi

    Hubble Space Telescope: Optical telescope assembly handbook. Version 1.0

    Get PDF
    The Hubble Space Telescope is described along with how its design affects the images produced at the Science Instruments. An overview is presented of the hardware. Details are presented of the focal plane, throughput of the telescope, and the point spread function (image of an unresolved point source). Some detailed simulations are available of this, which might be useful to observers in planning their observations and in reducing their data

    Exploring the value of supporting multiple DSM protocols in Hardware DSM Controllers

    Get PDF
    Journal ArticleThe performance of a hardware distributed shared memory (DSM) system is largely dependent on its architect's ability to reduce the number of remote memory misses that occur. Previous attempts to solve this problem have included measures such as supporting both the CC-NUMA and S-COMA architectures is the same machine and providing a programmable DSM controller that can emulate any DSM mechanism. In this paper we first present the design of a DSM controller that supports multiple DSM protocols in custom hardware, and allows the programmer or compiler to specify on a per-variable basis what protocol to use to keep that variable coherent. This simulated performance of this DSM controller compares favorably with that of conventional single-protocol custom hardware designs, often outperforming the conventional systems by a factor of two. To achieve these promising results, that multi-protocol DSM controller needed to support only two DSM architectures (CC-NUMA and S-COMA) and three coherency protocols (both release and sequentially consistent write invalidate and release consistent write update). This work demonstrates the value of supporting a degree of flexibility in one's DSM controller design and suggests what operations such a flexible DSM controller should support

    Comparative Evaluation and Case Studies of Shared-Memory and Data-Parallel Execution Patterns

    Get PDF

    Updating the BTFM of the PSB

    Get PDF

    Spin-scanning Cameras for Planetary Exploration: Imager Analysis and Simulation

    Get PDF
    In this thesis, a novel approach to spaceborne imaging is investigated, building upon the scan imaging technique in which camera motion is used to construct an image. This thesis investigates its use with wide-angle (≥90° field of view) optics mounted on spin stabilised probes for large-coverage imaging of planetary environments, and focusses on two instruments. Firstly, a descent camera concept for a planetary penetrator. The imaging geometry of the instrument is analysed. Image resolution is highest at the penetrator’s nadir and lowest at the horizon, whilst any point on the surface is imaged with highest possible resolution when the camera’s altitude is equal to that point’s radius from nadir. Image simulation is used to demonstrate the camera’s images and investigate analysis techniques. A study of stereophotogrammetric measurement of surface topography using pairs of descent images is conducted. Measurement accuracies and optimum stereo geometries are presented. Secondly, the thesis investigates the EnVisS (Entire Visible Sky) instrument, under development for the Comet Interceptor mission. The camera’s imaging geometry, coverage and exposure times are calculated, and used to model the expected signal and noise in EnVisS observations. It is found that the camera’s images will suffer from low signal, and four methods for mitigating this – binning, coaddition, time-delay integration and repeat sampling – are investigated and described. Use of these methods will be essential if images of sufficient signal are to be acquired, particularly for conducting polarimetry, the performance of which is modelled using Monte Carlo simulation. Methods of simulating planetary cameras’ images are developed to facilitate the study of both cameras. These methods enable the accurate simulation of planetary surfaces and cometary atmospheres, are based on Python libraries commonly used in planetary science, and are intended to be readily modified and expanded for facilitating the study of a variety of planetary cameras

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page
    corecore