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Shared-memory and data-parallel programming models are
two important paradigms for scientific applications. Both
models provide high-level program abstractions, and simple
and uniform views of network structures. The common fea-
tures of the two models significantly simplify program cod-
ing and debugging for scientific applications. However, the
underlining execution and overhead patterns are significantly
different between the two models due to their programming
constraints, and due to different and complex structures of
interconnection networks and systems which support the two
models. We performed this experimental study to present
implications and comparisons of execution patterns on two
commercial architectures. We implemented a standard elec-
tromagnetic simulation program (EM) and a linear system
solver using the shared-memory model on the KSR-1 and the
data-parallel model on the CM-5. Our objectives are to ex-
amine the execution pattern changes required for an imple-
mentation transformation between the two models; to study
memory access patterns; to address scalability issues; and to
investigate relative costs and advantages/disadvantages of us-
ing the two models for scientific computations. Our results
indicate that the EM program tends to become computation-
intensive in the KSR-1 shared-memory system, and memory-
demanding in the CM-5 data-parallel system when the sys-
tems and the problems are scaled. The EM program, a highly
data-parallel program performed extremely well, and the lin-
ear system solver, a highly control-structured program suf-
fered significantly in the data-parallel model on the CM-5.
Our study provides further evidence that matching execution
patterns of algorithms to parallel architectures would achieve
better performance.

1. Introduction

There are three major programming models for par-
allel computations: message-passing, shared-memory
and data-parallel. In the message-passing model, each
processor has its own local memory. Processors com-
municate through an interconnection network consist-
ing of direct communication links connecting certain
pairs of processors. The shared-memory model uses a
global shared memory that can be accessed by all the
processors through an interconnection network. This
global memory can either be a physical memory bank,
or a single address memory space connected by a set of
distributed memory modules. Communications among
the processors are accomplished through reading from
and writing to the global shared memory. Process
scheduling is performed by multiple threads of control.
The data-parallel model supports simultaneous opera-
tions across large sets of data. This model provides a
view of race-free, single thread of control and deter-
ministic execution. It is well known that the message-
passing model provides programming support at in-
terconnection network levels, which is typically faster
but difficult for an applications user to write programs.
Both the shared-memory and data-parallel models pro-
vide high-level program abstractions, and simple and
uniform views of network structures. The common fea-
tures of the two models significantly simplify program
coding and debugging for scientific applications. How-
ever, the easy programming view for each model is ob-
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tained at the cost of building a shared-memory/data-
parallel system layer between a user and the inter-
connection networks. Performance comparisons be-
tween the data-parallel and the message-passing mod-
els have been conducted [6]. Comparisons between
the shared-memory and the message-passing models
have also been reported in a number of studies (see [7,
8], and [12]). An architectural comparison of data-
parallelism, as implemented in the CM-2 and of vec-
tor processing, as implemented in the Cray Y-MP/8 is
presented in [13].

All of the above cited programming model compar-
ison studies, except [12] and [13], are supported by
intensive simulations. It is necessary to use simula-
tions to isolate implicit and random system effects for
fair comparisons among the programming models. In-
stead of using simulations, our comparison studies are
performed on real architectures. There are three main
reasons for this. First, we do not intend to compare
the shared-memory and the data-parallel programming
models, but to compare their execution patterns. There-
fore, using simulations along with some system as-
sumptions would prevent us from observing implicit
and random system execution effects, which are im-
portant performance issues and can be only captured
on real architectures. Second, a multiprocessor archi-
tecture design generally targets support for a particular
programming model, e.g., the KSR-1 for the shared-
memory model, and the CM-5 for the data-parallel
model. Performance evaluation of the computations
using each model and its supported architecture would
provide more comprehensive comparisons and impli-
cations of the study. Finally, for practical purposes,
some complex architecture/model dependent phenom-
ena could be understood only on the basis empirical
observations of program executions.

Although both models share some common features
for easy programming, the underlining execution and
overhead patterns are significantly different between
the two models due to their programming constraints,
and due to different and complex structures of inter-
connection networks and system layers to support the
two models. We implemented a standard electromag-
netic simulation program (EM) and a linear system
solver using the shared-memory model on the KSR-1
and the data-parallel model on the CM-5. Our objec-
tives are to examine the execution pattern changes re-
quired for an implementation transformation between
the two models; to study memory access patterns; to
address scalability issues; and to investigate relative
costs and advantages/disadvantages of using the two

models for scientific computations. Finally our goals
are to provide application designers with a better un-
derstanding of the two programming models and the
architectural supports upon which their algorithms will
have to run, and to provide architecture designers with
a better understanding of the kinds of applications their
machines will have to compute efficiently. Our re-
sults indicate that the EM program tends to become
computation-intensive in the KSR-1 shared-memory
system, and memory-demanding in the CM-5 data-
parallel system when the systems and the problems are
scaled. The EM program, a highly data-parallel pro-
gram performed extremely well, and the linear system
solver, a highly control-structured program suffered
significantly in the data-parallel model on the CM-5.
Our study provides further evidence that matching ex-
ecution patterns of algorithms to parallel architectures
would achieve better performance.

The organization of this paper is as follows. Sec-
tion 2 discusses important issues that can result in
performance differences between the two models. In
Section 3, we introduce the electromagnetic simula-
tion program and the linear system solver, and outline
the architectures of the KSR-1 for the shared-memory
model and CM-5 for the data-parallel model. The
electromagnetic simulation program is data-parallel
structured while the linear system solver is control-
structured. Section 4 reports execution tracing and
measurement results of the simulation program on both
machines with detailed performance comparisons and
evaluations. Section 5 studies execution patterns of the
linear system solver on the two machines. We also ad-
dress the scalability issues of the two models by us-
ing an experimental metric. Finally, Section 6 presents
summaries and conclusions of this study.

2. Performance issues for shared-memory and
data-parallel models

From a user point of view, both shared-memory
and data-parallel models provide high-level program
abstractions, and simple and uniform views of net-
work structures. However, the two models exhibit the
following different features in terms of programming
views and constructions. These are important issues
that can result in performance differences between the
two models.

– Multiple-thread control versus single-thread con-
trol. The shared-memory model performs typical
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MIMD operations, where control sequences are
formed by dynamic and multiple threads. Syn-
chronization of the threads in the shared-memory
model must be explicitly expressed in programs.
In the data-parallel model, a user is presented
with the logical view that all processors execute a
data-parallel program synchronously using a sin-
gle program counter. A synchronization opera-
tion is performed automatically by the system at
the end of each program instruction or each pro-
gram block for single thread control. High Per-
formance Fortran [4] builds on the single-thread
data-parallel structures in Fortran 90 to support
computationally intensive applications across a
wide variety of high performance architectures.

– Implicit communication versus explicit commu-
nication. Communication in the shared-memory
model is implicitly expressed by read/write oper-
ations in a non-uniform memory access (NUMA)
form, while a user has control over data alloca-
tions by explicitly expressing the communication
operations in a data-parallel program.

– Complex data migration versus simple memory
access patterns. In the shared-memory model, the
choice of interconnection networks to link pro-
cessor nodes to cache/memory modules can make
NUMA times vary drastically, depending upon
the particular access patterns involved. With re-
spect to the kinds of memory organizations uti-
lized, shared-memory systems can be classified
into the following three types in terms of data
migration and coherence: non-cache-coherence
NUMA (Non-CC-NUMA), cache-coherence
NUMA (CC-NUMA) and cache only (COMA)
architectures [16]. Cache/memory coherence pro-
tocols make data migration behavior dynamic and
complex. In contrast, the data-parallel model pro-
vides simple memory access patterns, where a
single sequence of instructions causes operations
to be performed concurrently either on the full
data sets or on selected sections. When a compu-
tation involves data items on different processors,
interprocessor communication occurs. If the data
layout generated by system software does not well
match a program’s communication pattern then
performance will suffer.

– Dynamic scheduling versus static scheduling. In
the shared-memory model, processors must be
scheduled to individually fetch the program from
a central memory, while in the data-parallel model,
a control processor broadcasts the program to the

processing nodes over a control network, and then
the processors execute the program locally.

– Comparative applications. The shared-memory
model favors parallelism from multiple thread
control and scheduling which can asynchronously
perform independent tasks among processors,
while the data-parallel model favors parallelism
from processing a large set of data using the same
set of operations. In addition, the shared-memory
model can also effectively support SPMD pro-
grams.

In summary, network overhead latency, that is, the de-
lay caused by communication between processors and
memory modules over the network in both the shared-
memory model and the data-parallel model, is a major
source of degraded parallel computing performance.
However, execution behavior and system effects be-
tween the two models are significantly different be-
cause latency patterns are constructed differently in
each model.

3. The application programs and two architectures

3.1. The electromagnetic simulation program

The electromagnetic (EM) scattering problem is an
important application in microwave equipment, radar,
antenna, aviation and electromagnetic compatibility
design. This program simulates EM scattering from
a conducting plane body. In the simulation model, a
plane wave from a free space defined as region “A” in
the application, is incident to the conducting plane. The
conducting plane contains two slots which are con-
nected to a microwave network behind the plane. Con-
nected by the microwave network, the electromagnetic
fields in the two slots interact with each other, creating
two equivalent magnetic current sources in the slots so
that a new scattered EM field is formed above the slots.
In general the two slot will interact independent of the
relationship outside region “A”.

The well-known moment method [3] is used for
the numerical model and for the simulation. First, the
loaded slots are imitated. Second, an equivalent admit-
tance matrix of region “A” is calculated using a pulse
basis mode function expansion. Then intermediate re-
sults of excitation vector and coefficient vectors are
obtained based on the first two computations. At this
stage the resulting EM scattering field is thus simu-
lated by computing a large linear system formed by a
so called EM strength matrix. There are four parame-
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ters representing characteristics of the equivalent mag-
netic current. These parameters are used as the num-
bers of mode function expansions (M andN ), and the
number of pulse functions (I andJ) in the moment
method. Another parameter used for final visualization
purposes is the number of grid points for discretizing
the EM scattering field. The parameters have direct ef-
fects on the computational requirements and simula-
tion resolution used by the moment method.

This program carries out millions of iterations in cal-
culating the admittance matrix of region “A”,[ [

Y a11

]
I×I

[
Y a12

]
I×J[

Y a21

]
J×I

[
Y a22

]
J×J

]
. (1)

Calculation of each element of theY a’s in the above
matrix involves solving Hankel Functions, Green’s
Functions and complex integrations. Since the com-
putation is a full 3-D calculation, it is highly time
consuming. For detailed information about the numer-
ical method, the interested reader may refer to [3].
This application program has run on the CM-2 and the
iPSC/860 [11].

3.2. Linear system solver

The first stage of the solver is to generate a linear
system of equations

Ax = b (2)

whereA is a nonsingularn×n dense matrix. The sec-
ond stage is Gauss elimination, which subtracts multi-
ples of rows ofA from other rows in order to reduce
(2) to an upper triangular system. The last stage is to
solve the linear system by backward substitution. In
Section 5, we will study implementations of this linear
system solver using the shared-memory model on the
KSR-1 and the data-parallel model on the CM-5.

3.3. The KSR-1 system

The KSR-1 system [5], introduced by Kendall
Square Research, is a cache coherent shared-memory
multiprocessor system with up to 1,088 64-bit custom
superscalar RISC processors (20 MHz). A basic ring
unit in the KSR-1 has 32 processors. The system uses
a two-level hierarchy to interconnect 34 of these rings
(1088 processors). Each processor has a 32 MByte
cache and a 0.5 MB subcache. Each processor node
yields 40 MFLOPS peak floating-point rate.

The basic structure of the KSR-1 is the slotted ring,
where the ring bandwidth is divided into a number of
slots circulating continuously through the ring. A stan-
dard KSR-1 ring has 34 message slots, where 32 are
designed for the 32 processors and the remaining two
slots are used by the directory cells connecting to the
next ring level. Each slot can be loaded with a packet,
made up of a 16 byte header and a 128 byte subpage
(the basic data transfer unit in the KSR-1). A proces-
sor in the ring ready to transmit a message waits until
an empty slot is available. A single bit in the header of
the slot identifies it as empty or full as the slots rotate
through a ring interface of the processor.

3.4. The CM-5 machine

The last member of Thinking Machine’s Connection
Machine family is the CM-5 [15], a distributed mem-
ory MIMD multicomputer with up to 16K process-
ing nodes. In its current implementation, a CM-5 node
consists of a SPARC processor operating at either 32
MHz or 40 MHz, 32-Mbytes of memory, and an inter-
face to the control and data interconnection networks.
The SPARC processor is augmented with four vector
units, each with direct parallel access to the node’s
main memory. This yields an aggregate memory band-
width of 256 MB/sec per processing node with an ob-
served 200 MB/sec bandwidth, and a 128 MFLOPS
peak floating-point rate per processing node. In com-
parison with the KSR-1, the floating point operations
on the CM-5 could be more than 3 times faster.

The parallel vector units on the CM-5 essentially
make it a hybrid between vector and parallel architec-
tures. Parallel variables are distributed between physi-
cal vector units and vector positions on a single vector
unit. The memory layout of parallel variables onto the
memory banks associated with the vector units is nor-
mally handled by system software, but may be over-
ridden by the user. The CM-5 also provides a logi-
cally shared address space supported by physically dis-
tributed memory.

All communication between physical CM-5 nodes
is via packet-switched message passing on either the
data or control interconnection networks. The data
network uses a fat-tree topology designed for high-
bandwidth data traffic. The control network is a binary-
tree topology designed for low-latency communication
of shorter messages. Rapid global broadcast, synchro-
nization and data reduction operations are performed
by hardware in the control network.
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3.5. Can we obtain fair and comparable performance
results?

As we briefly discussed in the previous sections, the
KSR-1 and the CM-5 are two different architectures.
The number of processors available on the CM-5 is
much higher than that on the KSR-1. Besides using
different interconnection networks, each node on the
CM-5 uses the higher clock rate Sparc processor. Ob-
viously, the CM-5 is significantly more powerful than
the KSR-1 in terms of total available computation cy-
cles and memory bandwidth. Here the question is: can
we still obtain fair and comparable performance results
from the two machines for this study? We address the
question from three aspects.

First, both systems are designed to be scalable up
to more than one thousand processors through hier-
archical interconnection networks. Performance com-
parisons based on scalability should be fair, because
the scalability measurement is concerned with the rela-
tive overhead increment from both the program and the
architecture and not from absolute cycle time, which
is suitable for comparisons among different architec-
tures.

Second, the KSR-1 and the CM-5 are two commer-
cial shared-memory and data-parallel architectures.
We do not simply compare the two architectures using
the execution times but focus on comparing the two
programming models and their execution patterns on
the two machines. This study is relatively independent
of the size of the system.

Finally, in comparing the performance of the two
programming models on their supported architectures
using the same program, it is important that the level
of optimization be comparable on both machine be-
ing considered [1]. We optimized the program code in
each programming model version by exploiting archi-
tecture features. The optimized program structure and
its major source code will be studied in detail in the
paper. Of course, we mainly relied on the compiler in
the implementations, and did not make an additional
effort to apply some “special tricks” to possibly make
the code run more intelligently. The cache line size
of the KSR-1 is 128 bytes. The large cache line has
prefetching advantages as well as false-sharing disad-
vantage. It also means that although the KSR-1 has rel-
atively high memory access latency, the communica-
tion bandwidth in cycles per bytes is large on the KSR-
1. False sharing happens when more than one vari-
able is located in one cache line, causing the cache line
to be exchanged between processors even though the

processors are accessing different variables. The false-
sharing is not a concern for the two programs we eval-
uated on the KSR-1. Because the numbers of accesses
to shared variables are limited in both programs.

4. Performance comparisons of the EM simulation
program

We present performance comparisons of the EM
simulation, with a data-parallel structured program us-
ing the shared-memory model on the KSR-1 and using
the data-parallel model on the CM-5. The sequential
version of the EM program spends about 90% of the
total execution time on loops to calculate each element
of the admittance matrix. This sequential program exe-
cuted about 14 hours on a Sun SPARC 10 workstation.

4.1. Programming structures for each model

On the KSR-1 the calculation of each element of
the admittance matrix in (1) of the simulation is par-
allelized. The computation is partitioned into a set of
tasks which are distributed in the form of multiple
threads among the processors in the system. Major nu-
merical functions, such as Hankel and Green’s func-
tions, are evaluated concurrently in each processor.
The results are then integrated to calculate the value
of each element in the matrix. The concurrent calcu-
lations among different processors are coordinated by
a synchronization barrier. The integration and update
of globally shared variables are implemented using
the KSR-1 atomic mutual exclusion primitives. Fig. 1
(left) presents the shared-memory programming model
on the KSR-1. The data sets are stored in a single ad-
dress space, each of which is associated with a proces-
sor node and physically distributed in the KSR-1 ring
network. The globally shared data are moved among
processor nodes upon access requests. Mutual exclu-
sion operations are performed in a critical section. Syn-
chronization of loop iterations is guaranteed by a bar-
rier. For a given EM problem of 10× 10× 512× 512,
more than 100 million iterations are used in the compu-
tation. These iterations are distributed among the pro-
cessors in the form of inner iterations in each node
and outer iterations for the whole system. The entire
execution control of data migration, cache coherence
and synchronization is managed by a system sched-
uler. It is well known that variations of the program im-
plementation on the KSR-1 could produce significant
variations in performance results. Therefore, we opti-
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Fig. 1. The shared-memory model on the KSR-1 (left) and the data-parallel model on the CM-5 (right).

mized the program to eliminate all unnecessary data-
dependencies, and aligned the global array to make
global accesses to those elements with a minimum mu-
tual exclusion requirement.

On the CM-5, the data sets are allocated to a large
logic data bank in the system, and these data sets are
physically distributed to each processor node. From
a user point of view, each partitioned data set (ar-
ray) is processed by a virtual processor. Each vir-
tual processor performs a set of operations simultane-
ously on its assigned section of the data set. Thus, re-
peated operations in different iterations in the sequen-
tial program are now executed concurrently on the pro-
gram’s assigned elements by virtual processors on the
CM-5. Communications among the virtual processors
during execution are conducted either locally within
a physical processor or between processors through
the data network. Reduction operations for integra-
tions of the simulation are performed through the con-
trol network. The data-parallel process control is han-
dled by an operation manager which is called the “par-
tition manager” in the CM-5. Fig. 1 (right) presents
the data-parallel model for the simulation program on
the CM-5.

4.2. Overall performance on the KSR-1 and the CM-5

The KSR-1 version of the simulation program is im-
plemented with more than 1,000 lines of Fortran code,
and the CM-5 version with less than 1,000 lines of
CM Fortran. Here we report the overall performance of

the program running on the KSR-1 and on the CM-5
with and without vector processing. Comparisons be-
tween the two models and computations based on their
overhead patterns and scalabilities will be discussed in
the following two sub-sections. Table 1 presents exe-
cution times from three versions of the program. The
results indicate that the data-parallel implementation
on the CM-5 is much more effective than the shared-
memory implementation on the KSR-1 for comput-
ing this simulation. For example, using 64 processors,
the execution took about 18 minutes on the KSR-1,
but one minute on the CM-5 without using the vec-
tor unit, and only about 17 seconds with the vector
unit. Using 64 processors, the CM-5 still showed a
big potential to scale to a large number of processors
for this fixed-size problem, but the KSR-1 seemed to
have reached the minimum execution time. Regarding
speedups, execution on the CM-5 without using the
vector unit achieved the highest speedup, while execu-
tion on the KSR-1 had the lowest speedup among the
three. The vector unit in each CM-5 node makes com-
putation faster, and generates additional overheads as
well. Here we briefly address the structure, power and
overhead sources of using the vector unit on the CM-5.

CM Fortran programs can be classified into dif-
ferent execution models according to the way a pro-
gram makes use of the hardware. This simulation
program uses the global model, where a single pro-
gram operates on arrays of data spread across all
the processor nodes. The global model can be fur-
ther divided into the Global SPARC Nodes Model and
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Table 1

Execution time measurements of the simulation on the KSR-1 and
the CM-5

Number of KSR-1 CM-5 (second)

processors (second) sparc vu

32 1352.21 132.41 27.368

40 1237.53 N/A N/A

50 1162.11 N/A N/A

64 1063.92 61.26 16.8

128 N/A 33.91 10.37

256 N/A 18.40 5.789

the Global Vector-Units (VU) Model. In the Global
SPARC Nodes Model, the partition manager serves as
the control processor, and the SPARC nodes, are used
for processing the multiple data sets. If the system has
vector units, they just serve as memory controllers and
do not participate in the processing. In the Global VU
Model, the partition manager serves as the control pro-
cessor, and the vector units provide the real power for
processing. The SPARC processor nodes are invisible
to the program, although they assist the vector units
with OS services and communications.

On the CM-5, each vector unit is a memory con-
troller and a computational engine controlled by a sys-
tem interface. Vector units cannot fetch their own in-
structions; they merely react to instructions issued to
them by the SPARC processor node. Each vector unit
includes an adder, a multiplier, memory load/store, in-
direct register addressing, indirect memory addressing,
and others. Every vector-unit instruction can specify
at least one arithmetic operation and an independent
memory operation. A vector unit can operate on two
64-bit data items together. Therefore, each CM-5 node
can operate on eight 64-bit vectors simultaneously. In
this EM simulation program, more than 78% of the
total execution time is spent evaluating the specified
function which involves complex arithmetic computa-
tion on a large set of data. This explains the superior
execution performance of the vector unit Node Model
version of the program.

When using the vector unit, all VU instruction fetch-
ing and control decisions are made by the SPARC pro-
cessor node. The SPARC processor issues a vector in-
struction using the following procedure: it fetches the
instruction itself from its data memory, calculates the
special vector-unit destination address for issuing the
instruction, and executes the store. An additional vec-
tor start-up overhead is required when a new vector op-
eration is performed. The processing latency is a ma-
jor overhead source of using the vector unit. However,

there are two other advantages of using the vector unit
besides the high speed. First, the latency of issuing vec-
tor instructions is independent of the number of pro-
cessors. Second, the operations of issuing vector in-
structions by the SPARC node and vector processing
operations in the vector unit can be overlapped after an
operation pipeline is formed.

4.3. Comparative execution and overhead patterns

This comparative execution and overhead pattern
study is based on the measurements, evaluations and
analyses of the memory access characteristics, data
communication, data movement, data locality, effects
of cache coherence and other related effects from the
KSR-1 and the CM-5 on this simulation application.

4.3.1. Computation-intensive versus memory-de-
manding executions

The simulation program using the shared-memory
model is computation-intensive, which can be shown
by the memory allocation arrangement. The input pa-
rameters of the program areM × N × I × J , where
I andJ are the numbers of the expanding mode func-
tions, andM andN are the numbers of the pulse func-
tions used in the moment method. After partitioning
the problem on the KSR-1, the memory requirement in
each processor becomes (M × N × I × J)/p, where
p is the number of processors used. The major compu-
tation in each processor is to repeatedly evaluate dif-
ferent complex functions. A large requirement of CPU
cycles dominate the numerical computation, while the
memory space requirement is much less demanding.
For example, for the simulation with problem size of
10× 10× 512× 512, the memory allocation require-
ment for each processor node is less than half of one
MB if 64 processors are used for the computation.

In contrast, the same computation on the the CM-5
becomes memory-demanding. The program is paral-
lelized by transforming the data independent loops in
the sequential program to a single sequence of oper-
ations. This transformation is done by duplicating the
same variable in a loopq times, whereq is the to-
tal number of iterations. The duplicated variables may
be formed into an array, and are allocated among the
nodes to be processed by a same set of operations
concurrently. For the simulation with problem size of
10× 10× 512× 512, the duplications of the vari-
ables expands the memory requirement to 3,600 MB.
This requires more than 200 CM-5 memory modules
to store all the variables, taking into account the ad-
ditional memory space for the program and operating
system in each node.
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4.3.2. Comparative network delays and their sources
The major overhead of running a program on the

KSR-1 comes from network latency, which is caused
by synchronization, cache coherence, remote data ac-
cesses and other events involving network activities.
All the performance data are collected by a hardware
monitor called Pmon, which is built into the KSR-1.
Each KSR-1 processor contains an event monitor unit
(EMU) designed to log various types of local cache
events and intervals. The job of the EMU is to count
events and elapsed time related to cache system activ-
ities. The hardware-monitored events provide a set of
precise and important data to be used for evaluating the
execution performance on the KSR-1. It also quanti-
tatively describes the changes of network delay for an
application program as the number of processors in-
creases.

Fig. 2 (left) shows execution time distributions for
the simulation program on the KSR-1, starting with 32
processors and ending with 64 processors. The total
execution time consists of effective computation time,
synchronization overhead, and cache miss latency. The
cache miss latency measures accumulated network de-
lay and CPU idle time caused by remote accesses and
cache invalidations. For a fixed-size problem running
on the KSR-1, the effective computing time decreases,
while the overhead portions increase, both proportion-
ally to the increment of the number of processors. For
example, the effective computing time was about 40%
of the total execution time on 32 processors, and it de-
creased to 23% with 64 processors. The measured exe-
cution and overhead patterns indicate that as the num-
ber of processors increases, the execution time eventu-
ally hits a minimum, after which adding processors can
only cause the program to take a longer time to com-
plete. This performance behavior is normal because the
communication overhead of the architecture increases
as the number of processors increases if the problem
size is fixed.

The major overhead of running a program on the
CM-5 also comes from network latency which can
be quantitatively measured by accumulating I/O over-
head, and latencies in the data network and the con-
trol network and between the partition manager and the
processing nodes. The measured network latency data
are collected by a software monitor called Prism on the
CM-5. Prism is a Motif-based graphical programming
environment within which users can develop and ana-
lyze programs written for the CM-5. Programs may be
edited and compiled under Prism, then executed nor-
mally or step-by-step. To aid in program development,

Prism provides a dbx-like debugger. To analyze pro-
gram performance, Prism can collect data on execu-
tion time broken down by procedures or by lines of
source code. For data-parallel programs, this data in-
cludes control processor time, vector unit processing
time, communication time between the control proces-
sor and nodes, and data network communication time.
Another useful Prism tool is the data visualizer, which
displays the contents of large arrays or parallel vari-
ables in a variety of textual and graphical formats.
Since Prism is still under construction, we also used the
CM timer to measure and verify experimental results.

In order to obtain precise results, all experiments
on both of the KSR-1 and the CM-5 were run under
benchmark mode, so that the systems were solely used
for these measurements.

In contrast to the executions on the KSR-1, Fig. 2
(right) presents completely different overhead patterns
of the simulation using the data-parallel model on
the CM-5 with/without VU support in each processor
node. The simulation program was run up to 256 pro-
cessors on the CM-5, and achieved good performance.
The major execution difference between the KSR-1
and the CM-5 can be explained by the two different
overhead patterns. The overhead portions on the CM-5
(the ratio between the overhead time and the total exe-
cution time) increase much more slowly than the ones
on the KSR-1, which makes this program highly scal-
able on the CM-5. There are two main reasons for this.
First, this memory-demanding program on the CM-5
requires a large memory allocation in each processor.
Thus, to increase the number of processors in the com-
putation will reduce the memory requirement burden
in each node and reduce I/O latencies for page swap-
ping between memory modules and secondary storage.
Second, besides the data network for point to point data
communication, the control network provides fast ser-
vices for the synchronization and reduction operations
of the computation. The latencies of both the data net-
work and the control network caused in the computa-
tion are independent of the number of processors. If
memory contention is reduced as the number of pro-
cessors increases, the latencies of both may further de-
crease. Thus, the network bandwidth scales in propor-
tion to the number of processor nodes. Table 2 presents
latency measurements of I/O, the data network and the
control network for executions of the program from 32
to 256 processors on the CM-5, which quantitatively
support the above two reasons. For example, while in-
creasing the number of processors from 32 to 256 on
the CM-5 with the VU support, the I/O latencies de-
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Fig. 2. Execution patterns on the KSR-1 (left) and on the CM-5 (right).

Table 2

Measurements of different types of network latencies on the CM-5

Number of I/O latency (sec.) Data Net. latency (sec.) Control Net. (sec.)

processors SPARC VU SPARC VU SPARC VU

32 2.54 1.32 2.54 2.14 4.93 0.70

64 1.93 1.00 1.10 0.93 2.46 0.35

128 1.49 0.98 0.46 0.50 1.25 0.19

256 1.25 0.57 0.24 0.29 0.64 0.11

creased from 1.32 to 0.57 seconds; the data network
latencies decreased from 2.14 to 0.29 seconds; and
the control network latencies decreased from 0.70 to
0.11 seconds.

4.4. Comparative program-architecture scalabilities

Scalability measures the ability of a parallel ma-
chine to improve performance as there are increases
in the size of the application problem and in the num-
ber of processors involved. Overhead comprehensively
measures all the lost cycles and bandwidths during a
parallel execution, such as processor idle times, and the
delay caused by communication between processors
and memory modules over the network in a parallel
system. As a major source of degraded parallel com-
puting performance, the overhead forms a major ob-
stacle to improve parallel computing performance and
scalability. The metric proposed in [17] uses the over-
head as a major factor to evaluate parallel computing
scalability. We use the this metric to compare the scal-
abilities of programs on the KSR-1 and on the CM-5.

4.4.1. Latency sources and their measurements
There are three major latency sources forming over-

head patterns inherent in algorithms and interconnec-
tion networks, namely, the memory reference latency,
denoted asML, the processor idle time, denoted asIT,
and the parallel primitive execution overhead time, de-
noted asPT. The average latency in the latency metric
is then defined as

L(W ,N ) =
ML + IT + PT

N
, (3)

whereML, IT andPT are the sums of memory refer-
ence latency, processor idle time and the parallel prim-
itive execution overtime delays in each processor re-
spectively,W is the problem size, andN is the number
of processors used for solving the problem.

– Memory reference latencymeasures the delays
caused by communication between processors
and memory modules over the network. In a
shared-memory system, this mainly comes from
remote read and write accesses and corresponding
cache coherence operations; while in a distributed
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memory system, this comes from message pass-
ing for remote read and write operations.

– Processor idle timeis caused mainly by com-
puting load structures of programs. In a shared-
memory system, it comes from process schedul-
ing and memory access contention. In a dis-
tributed memory system, it comes from message
waiting and processor waiting for task scheduling.

– Parallel primitive execution timecovers the soft-
ware overhead and related network bandwidth
and processor waiting cycles. These execution cy-
cles are used to support unique instructions pro-
viding necessary services for parallel program-
ming and computing, such as synchronization
locks and barriers, and thread scheduling prim-
itives in a shared-memory system; and send/re-
ceive, and task loading primitives in a distributed
memory system.

Measurement of parallel primitive execution time
(PT) is relatively straightforward. This may be done by
inserting system timers before and after the primitive
calls. Many vendors also provide the number of cycles
that each primitive uses for the operation which can be
used as software overhead references. These primitive
operations are only used in parallel programs. How-
ever, the other types of latency sources are related to
the same operations in sequential programs.

Processor idle time occurs in a sequential program
due to memory access delays, overhead of page swap-
ping and other I/O activities. Similar activities in par-
allel program execution will make the processor idle
from time to time. The sequential delays should be
eliminated. The processor idle time in a parallel pro-
gram is measured as follows:

IT = NTpara−
N∑
i=1

Ti (4)

whereTpara is the measured parallel execution time
running onN processors,Ti is the measured execution
time of theith processor.

Memory reference latency caused by read/write op-
erations in a parallel program is also related to the cor-
responding operations in its sequential program, and is
expressed as:

ML = ML(N )−ML(1) (5)

whereML(N ) is the measured memory reference la-
tency of a parallel program onN processors, and
ML(1) is the measured latency by the same operations
when the program is running on a single processor.

4.4.2. The latency metric
For a given algorithm implementation on a given

machine, letLe(W ,N ) be the average overhead of the
algorithm for solving a problem of sizeW onN pro-
cessors, and letLe(W ′,N ′) be the average overhead of
the algorithm for solving the problem of size ofW ′ on
N ′ > N processors. If the system size changes from
N to N ′, and the efficiency is kept to a constantE ∈
[0,1], the scalability is defined as

scale(E, (N ,N ′)) =
Le(W ,N )
Le(W ′,N ′)

. (6)

We also call the metric in (6) anE-conserved scalabil-
ity because the efficiency is kept constant.

In practice, the value of (6) is less than or equal to 1.
A large scalability value of (6) means there are small
increments in overheads inherent in the program and
the architecture for efficient utilization of an increasing
number of processors, and hence the parallel system is
considered highly scalable. On the other hand, a small
scalability value means large increments in overheads
and therefore a poorly scalable system.

The scalability metric of (6) will generate an upper
triangular table, where each value represents the scala-
bility value between any meaningful pair of processors.
We compared the scalability between selected pairs of
processors on the KSR-1 and the CM-5. This metric is
concerned with the relative latency increment and not
absolute cycle time, and thus can be used for scalability
comparisons among different architectures.

Before measuring and evaluating the overhead, we
need to experimentally determine the sizes of the prob-
lem (W andW ′), for given system sizes (N andN ′)
and for a given efficiency constantE. After that, the
E-conserved overheadsL(W ,N ) andL(W ′,N ′) can
either be calculated or measured to determine the scal-
ability. Fig. 3 gives the basic testing process to deter-
mine the problem size for a given efficiency running
on a given number of processors.

4.4.3. Scalability evaluation
Keeping the efficiency at 80% for all the experi-

ments by adjusting the problem sizes as the number of
processors increases, we obtained average scalability
measurements from 32 to 64 processors on the KSR-
1 and the CM-5, and the measurements from 32 to
256 processors on the CM-5. Table 3 lists all the scal-
ability values for the program running on both ma-
chines. The scalability results indicate that programs
using the data-parallel model running on the CM-5 are
more than 4 times more scalable than the program us-
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Table 3

Scalability measurements of the EM simulation programs on the KSR-1 and the CM-5

32–64 nodes 32–256 nodes

KSR-1 CM-5 SPARC CM-5-VU CM-5 SPARC CM-5 VU

scale 0.23 0.89 0.83 0.78 0.70

Fig. 3. The testing process to determine the problem size for a given
efficiency constant running a given number of processors.

ing the shared-memory model on the KSR-1. This re-
sult is based on measuring all three programs from 32
to 64 processors on both machines. The scalability re-
sults obtained from 32–256 nodes show the high ability
of the program to scale to a large number of processors
on the CM-5.

5. Performance comparisons of the linear system
solver

Our intensive measurements for execution patterns
and scalability evaluation in the previous section have
shown that the EM simulation program is an ex-
cellent candidate for data-parallel computing on the
CM-5. The performance of the same program using
the shared-memory model on the KSR-1 is also ac-
ceptable, considering the available resources. The last
issue we want to address is: under what conditions
will performance of a program using the data-parallel
model be significantly degraded? For this reason, we
implemented a parallel linear system solver using the
shared-memory model on the KSR-1 and using the
data-parallel model on the CM-5. This program in-
cludes three parts of the computation in sequence:
forming a solvable linear system, transforming the co-
efficient matrixA into an upper triangular matrix us-
ing Gauss elimination, and solving the upper triangu-
lar system using backward substitution. The first part
(forming the system) performs straightforward paral-
lel operations for both the shared-memory and data-
parallel models. Both Gauss elimination and backward

substitution are fine-grained and control-structured al-
gorithms with multiple synchronization points. The in-
terested reader may refer to [14] for detailed infor-
mation on parallel Gauss Elimination, and may refer
to [10] for parallel backward substitution algorithms.

Fig. 5 presents the shared-memory implementation
of Gauss elimination and backward substitution on the
KSR-1. MatrixA of n × n order and vectorb are ini-
tially divided into blocks of rows (m rows per pro-
cessor) and physically distributed in each processor’s
memory which are globally shared. In Gauss elimi-
nation, processor 0 is dedicated to pivoting through
remote accesses (lines 3 and 4). During this period
of time, the remaining processors wait at the barrier
(line 6). As soon as the pivoting operation is done for
a column, multiple threads are used to perform sub-
tractions of row elements simultaneously where re-
mote accesses occur again (lines 8 and 10). For a CC-
NUMA shared-memory system, the Gauss Elimination
program would not involve any invalidations because
no multiple data copies are generated. However, the
KSR-1 is a COMA system. Duplicated copies are gen-
erated when remote reads are performed. In this pro-
gram, when two rows are switched for pivoting, the
two rows are duplicated in both processors. When the
elimination starts, the write updates will cause invali-
dations on duplicated copies. False sharing also likely
occurs during the invalidations. However, our tracing
results (see Fig. 7 (left)) indicate that the number of in-
validations for this program was not significant. There-
fore, this program is still reasonable for this evaluation
study.

Backward substitution is even more control-struc-
tured than Gauss elimination. While a processor calcu-
lates the solution for a diagonal variable in back order
locally (lines 18 and 19), the remaining processors wait
at the barrier (line 21). As soon as a solution is avail-
able, all the processors can perform their updating op-
erations by using the variable’s value simultaneously,
where remote accesses are involved (line 23). Thus, the
major factors to degrade performance in Gauss elimi-
nation and backward substitution are synchronization
barriers and remote accesses. There are no shared vari-
ables in the program to cause cache invalidations after
a write operation is performed. In both algorithms, par-
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Fig. 4. Comparative memory layouts for the linear system solver using the shared-memory model on the KSR-1 (left) and using the data-parallel
model on the CM-5 (right).

Fig. 5. Gauss elimination and backward substitution using the shared-memory model on the KSR-1.

allel operations decrease proportionally as the number
of processed columns increase.

We implemented the linear solver using the data-
parallel model on the CM-5. We compiled it using the
CM Fortran compiler version 2.1.1-2 with code opti-
mization option. We did not use any mathematical li-
brary functions in order to have a fair comparison. In
this program, the parallel data layout was done manu-

ally to minimize interprocessor communications. The
user’s view of a data allocation, such as a vector or a
two dimensional array, is called a “shape”. Since the
number of array elements is much larger than the num-
ber of node processors, array elements are grouped and
distributed in each node. Each processor is further di-
vided into the same number of virtual processors that
will operate on each element. If a set of arrays in a
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Fig. 6. Gauss elimination and backward substitution using the data-parallel model on the CM-5.

Fig. 7. Execution patterns of Gauss Elimination using the shared-memory model on the KSR-1 (left) and using the data-parallel model on the
CM-5 (right).

computation are in the same shape, the operations upon
each set of elements will be carried out simultaneously
by its corresponding virtual processor. However, com-
putation involving arrays in different shapes will cause
heavy irregular interprocessor communications. A so-
lution for this is to replicate the data so that the data
sets operated on have the same shape. Replication of
an array join calculation with a higher rank (different
shape) array can be used to avoid heavy latency caused
by irregular data movement. In our CM linear solver,

we used the CM Fortran intrinsic function SPREAD
which makes use both of the control and data network
to carry out the replicating operations in a regular com-
munication manner.

Fig. 6 presents the data-parallel implementation of
Gauss elimination and backward substitution on the
CM-5. The computing steps in bold fonts are opera-
tions involving interprocessor communications. First
the control network is used to find the pivot by us-
ing its reduction operation (line 2). Our experiment
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shows that the operations of finding pivots for all the
columns took more than 10% of the communication
time and took almost the entire latency time in the con-
trol network. The data network is used to exchange cor-
responding array elements across processors (line 3).
Both the data and the control networks are used to
replicate the portion of arrayA to multiple arrays in the
same shape ofA for more effective data-parallel op-
erations (lines 4 and 6). To do the elimination, virtual
processors in each physical processor operate on the
corresponding array elements and save the result back
toA without involving interprocessor communications
(lines 7).

In backward substitution, the last variable is solved
first (line 11). Then it is replicated to other proces-
sors so that the computation can be done concurrently
by virtual processors (lines 12 and 13). The overhead
comes from the broadcast communication of the solved
variable in each iteration. Since the data size of the
variable is small, the network latency is not signifi-
cant. The latency sources for this linear system solver
mainly come from reduction, broadcast operations to
distribute pivot element and row, and replications of
data. These operations cause significant amounts of ac-
tivities in the data network and the control network.

The comparative memory layouts for the linear sys-
tem solver using the shared-memory model on the
KSR-1 and using the data-parallel model on the CM-5
are presented in Fig. 4, where the matrix is dis-
tributed by rows in the shared-memory model, and is
distributed by block submatrices in the data-parallel
model. In contrast to the EM simulation program, this
linear system solver on the CM-5 has the following
comparative features: control-structured versus data-
parallel structured, low memory access and I/O de-
mand versus high memory access and I/O demand, and
dynamic processing versus static processing. The fine-
grained and control-structured features of this program
make the execution efficiency of this data-parallel im-
plementation much lower than that of the EM simu-
lation on the CM-5. In terms of execution, the linear
system solver on the CM-5 can not take advantage of
the powerful control network because only data com-
munications are involved. On the other hand, the linear
system solver does not require global variable inval-
idations in the shared-memory model on the KSR-1,
which reduces the network contention and communi-
cation traffic.

Fig. 7 (left) presents comparative patterns of solv-
ing a linear system with 2,000 variables by using the
shared-memory model on the KSR-1, and using the

data-parallel model on the CM-5. As we expected, the
performance on the KSR-1 is quite normal. Compu-
tation efficiency and speedups are acceptable. The la-
tences caused by synchronization and cache misses in-
crease as the number of processors increases.

In contrast, Fig. 7 (right) shows that the performance
of the data-parallel program on the CM-5 is signifi-
cantly degraded. First of all, the total execution time
is unacceptably long. For example, using 32 proces-
sors, the CM-5 without using the vector units spent
over twice amount of time as the 32 processor KSR-1
did. However, the CPU and the network speed of the
CM-5 are much faster than the KSR-1. In the previous
example of the EM simulation, the 32 processor CM-5
spent less than 1/10 of the time the 32 processor KSR-
1 did. In addition, network latencies and overhead con-
tribute about half of the total execution time on the
CM-5 for the computation on different numbers of pro-
cessors. The effective computation time is divided into
two parts: arithmetic operations and communication
instruction execution overhead. In contrast, the com-
munication execution time is too trivial to be measured
in the previous EM simulation program. This portion
is quite significant in the linear system solver on the
CM-5. The experimental results present an example of
how a control structured algorithm implemented by the
data-parallel model degrades its performance. Here we
need to point out that the same linear system solver
can be implemented much more efficiently using the
message-passing library on the CM-5 [18].

In summary, the linear system solver would not fully
take advantage of the data-parallel model on the CM-5.
There are two reasons for this. First, the data replica-
tions to form array pairs for regular data operations sig-
nificantly degrade the performance. Our experiments
showed that about 2/3 of the execution time was spent
on operations related to data replication. Second, the
number of data operations proportionally decreases
in the programs of Gauss elimination and the back-
solve. This data reduction nature generates high code
block startup time and data movement overhead on
the CM-5.

Keeping the efficiency to be 50% for all the exper-
iments by adjusting the problem sizes as the number
of processors increases, we obtained average scalabil-
ity measurements of the linear system solver from 32
to 64 processors on the KSR-1 and the CM-5, and
the measurements from 32 to 256 processors on the
CM-5. Table 4 lists all the scalability values for the pro-
gram running on both machines. These scalability re-
sults indicate that the programs using the data-parallel
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Table 4

Scalability measurements of the linear system solver on the KSR-1 and the CM-5

32–64 nodes 32–256 nodes

KSR-1 CM-5 SPARC CM-5-VU CM-5 SPARC CM-5 VU

scale 0.37 0.76 0.73 0.72 0.70

Fig. 8. Effects of changing the ring size to miss latencies.

model running on the CM-5 are still more scalable than
the program using the shared-memory model on the
KSR-1. This is because the network latencies of the
CM-5 increase significantly less than that of the KSR-1
as the number of processors increases.

6. Implications and comparisons of the network
architectures

We have shown that network latency forms a major
obstacle to improve parallel computing performance
and scalability on both the KSR-1 and the CM-5. The
scalability results measured by the latency metric in-
dicate that, for the same application program, data-
parallel computing on the CM-5 has lower relative la-
tency increments than shared-memory computing on
the KSR-1. This is even true for the linear system
solver, which is better suited to the shared-memory
model. Implications of network latency changes in the
two systems are the last part of this study. The pur-
pose is to compare architecture and network support
for shared-memory and data-parallel execution. We
mainly investigate comparative network latency pat-
terns as the KSR-1 and the CM-5 are scaled.

6.1. Network latency patterns versus KSR-1 ring
system scaling

The KSR-1 is a typical MIMD multiprocessor where
network latency in computing increases as the number
of processors increases. There are two ways to scale
the system: by increasing the number of processors by
adding more slots in each ring, and by adding more
rings in the system. Since both scaling methods in-
crease the average access distance in computing, the
network latency increases proportionally. To see this,
we show two experimental results.

The first experiment was done on a simulated hierar-
chical ring to observe and compare the read- and write-
miss latences of COMA and NUMA memory systems.
The cache coherence protocol and the ring architecture
in the simulation are constructed based on the KSR-
1 model. Assume that the miss rate in each processor
is uniformly distributed, and the rotation period of the
ring is in unit time. Fig. 8 shows that, by increasing
the number of slots in a ring, read-miss latencies in
both COMA and NUMA systems have the same in-
creasing curves, but the write-miss latency in NUMA
increases slightly slower than that in the COMA due
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to more frequent data movement in the COMA sys-
tem.

The second experiment measured and compared the
costs of maintaining coherent caches on the KSR-1 be-
tween one ring and two rings.

For more information about the latency analysis of
ring-based multiprocessors, the interested reader may
refer to [16].

Our experiments show that the maintenance of cache
coherence bears no additional cost in the same ring,
over and above the latency of the ring rotation itself in
the KSR-1. This is because the ring rotation is clocked
so that any and all actions that could possibly take
place during a stop at each cell can be accomplished.
Each stop of the ring rotation allows for the longest
possible action to take place. Therefore, the rotation
period must increase as the number of processors in-
creases in the ring, and so does the network latency.

6.2. Network latency patterns versus CM-5 fat-tree
system scaling

The bandwidth of each communication network
channel changes differently as the number of proces-
sors changes in multicomputer networks. For example,
a hypercube of arbitrary dimension can be made using
a linear arrangement with connecting wires. The cube
of each dimension is obtained by replicating the one
of next lower dimension and then by connecting cor-
responding nodes. The higher dimensional hypercube
is constructed by further connecting the bisections of
the hypercube of the current dimension. A channel is
a physical link between two directly connected nodes.
It is made up of a bundle of wires consisting of wires
for data bits and any necessary control bits. The num-
ber of channels across the bisection needed to construct
a hypercube isN/2, whereN is number of nodes in
the hypercube. Therefore, the bandwidth of each chan-
nel proportionally decreases as the number of proces-
sors increases. This example shows that the bisection
bandwidth is an important limitation in a multicom-
puter system.

The CM-5 data network is a 4-ary fat-tree. The net-
work is composed of router chips, where each chip has
an 8-bit-wide bidirectional link to each of its four child
chips lower in the fat-tree, and four 8-bit-wide bidi-
rectional links to its parent chips higher in the fat-tree.
To route a message from one processor to another, the
message is sent up the tree to the least common ances-
tor of the two processors, and then down to the destina-
tion. This network design provides many comparable

paths for a message to take from a source processor to
a destination processor. As it goes up the tree, a mes-
sage may have several choices as to which parent con-
nection to take. Since the CM-5 network construction
has a constant bisection bandwidth, it has lower latency
and higher throughput than variant network bisection
structures such as high dimensional hypercubes.

Besides the bisection bandwidth, another important
issue is the network usage efficiency, which directly af-
fects how the network latency changes as the system
is scaled. The message injection rate into the CM-5
network depends on the processor speed, which may
limit the bandwidth of the processor-network links, but
not the network hardware. The data network hardware
speed on the CM-5 is 20 MB/s in each direction. The
maximum message injection rate is calculated by

Rinj =
K

QsendS
, (7)

whereK is the message packet size in bytes,Qsend

is the communication protocol cost for sending a
message in cycles,S is the processor speed in sec-
onds/cycle. SubstitutingK = 20 (20 byte packet with
16 bytes of payload),Qsend= 37 (obtained from mea-
surements [2]), andS = 0.03 (the clock rate of each
Sparc processor node is 33 MHz) into (7), the max-
imum message injection rate, or the maximum band-
width in each processor-network link on the CM-5 is
14.3 MB/s. Similarly, the maximum receiving rate is
calculated by

Rrev =
K

QrevS
, (8)

whereQrev is the communication protocol cost for
receiving a message in cycles. The receiving cost is
higher, at 60 cycles per 16-byte packet, because the re-
ceiving operation needs both read and write. Substitut-
ing Qrev = 60 and others into (8), the maximum re-
ceiving rate is limited to 8.8 MB/s.

There are three different data transmission rates in-
volved in CM-5 data network communication: the in-
jection rate, the data network bandwidth, and the mes-
sage receiving rate. Since the injection rate is higher
than the receiving rate on the CM-5, the network ca-
pacity is limited. The network capacity defines the
number of message packets that can be injected with-
out the receiver removing any. The measured network
capacity for a variety of partition sizes of the CM-5 is
reported in [2]. The CM-5 network capacity increases
as the number of processors increases. This is because
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Fig. 9. Latency limits and latency changing patterns for the EM simulation and the linear system solver on the CM-5.

the chances of message collisions in the network are
reduced as the network is scaled. For example, the
CM-5 network capacity is 9.89 packets/node for a 16-
processor partition, and increases to 11.3 packets/node
for a 128-processor partition.

The effective network bandwidthdefines an aver-
age data transmission rate constrainted by the three ar-
chitecture transmission rates. The maximum effective
network bandwidth,Bmax eff, in theory, is the differ-
ence between the injection rate and the receiving rate
(Qsend−Qrev). In practice, it is not a constant, but is a
function of the number of processors, which represents
the maximum data transmission rate without any data
contention:

Bmax eff(p) =
C(p)
T

, (9)

whereC(p) is the network capacity in Megabytes,
which is a function ofp, the number of processors,
andT is time in seconds spent to transmit the data.
The transmission timeT is determined by the network
bandwidth,Bnet and the data size,K(p):

T = K(p)/Bnet, (10)

where the data size,K is also a function ofp, the num-
ber of processors. Substituting (10) into (9), the maxi-
mum effective bandwidth becomes

Bmax eff(p) =
C(p)Bnet

K(p)
. (11)

For a fixed-size problem, increasing the number of
processors would decrease the data size,K(p), for
each processor to transmit. Furthermore, increasing the
number of processors would cause the network capac-
ity, C(p), to increase. Of course, the message travel-
ing distance also increases as the number of processors
increases. However, the negative effects caused by the
distance increase on the CM-5 are trivial. This is be-
cause as the number of processors increases, the data-
parallel operations supported by pipeline bits across
the long wires are much less distance sensitive. The
experiments in [9] show that message transmission la-
tencies and bandwidths are independent of the parti-
tion size on the CM-5. The network latencies vary only
slightly with the number of network levels crossed.
Therefore, based on (11), as the number of proces-
sors increases, the effective network bandwidth of the
CM-5 would generally increase, and the network la-
tency would decrease. The minimum network latency
can be determined by

Lmin =
K(p)

Bmax eff(p)
, (12)

whereK(p) decreases andBmax eff(p) increases asp
increases.
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Recall that the network latencies in the EM simula-
tion on the KSR-1 significantly increased as the num-
ber of processors increased (see Fig. 2), and the net-
work latencies in the linear system solver on the KSR-
1 only moderately increased (see Fig. 7 (left)). As we
have discussed in previous sections, the overhead pat-
terns inherent in the two programs are different; thus
higher overhead in the EM simulation caused a higher
latency increment on the KSR-1 architecture.

In contrast, the CM-5 latency variations are funda-
mentally different. The minimum CM-5 network la-
tency defined in (12) is computation dependent. The
two minimum latency curves for the EM simulation
and the linear system solver along with the measured
latencies of the two computations on the CM-5 are
plotted in Fig. 9. The number of packets of communi-
cations in both computations as run on various system
partition sizes are collected by Prism, which was used
for the calculation of the minimum network latencies.
In the EM simulation, the measured latency curve is
very close to the minimum latency curve. This indi-
cates that the EM computation using the data-parallel
mode on the CM-5 is highly effective, and fully takes
advantage of the network architecture. There is a sig-
nificant gap between the measured latency curve of the
linear system solver and its minimum latency curve.
The gap shrinks as the number of processors increases.
This confirms two conclusion from our study. First, the
linear system program suffers a great deal from using
the data-parallel model on the CM-5. Second, since
the CM-5 architecture has the unique network scaling
feature for data-parallel computation, the network la-
tency of a computation approached its ideal value as
the number of processors increased. Fig. 9 also con-
firms that the network latencies of a computation re-
gardless of being in favor of data-parallel or not, de-
crease as the number of processors increases. This is a
fundamental reason why the CM-5 is highly scalable
compared with other existing multiprocessor systems,
such as the KSR-1.

7. Summary and conclusions

Here we summarize the performance implications
and comparisons from our experiments for the exe-
cution patterns of the shared-memory and the data-
parallel programs on the KSR-1 and on the CM-5.

– On the KSR-1, network latency caused by data
migrations, cache coherence and process schedul-

ing tends to increase as the number of proces-
sors increases. The computing efficiency may be
maintained to a certain level if the sizes both of
the problem and of the system are increased. The
shared-memory on the KSR-1 expresses and ex-
ecutes a fine-grained and control-structured algo-
rithm well.

– A computation-intensive program in the shared-
memory KSR-1 system may often become a
memory-demanding program in a data-parallel
implementation on the CM-5, due to large data
replications in each node for simultaneous data
operations. The large memory allocation require-
ment may cause I/O bottlenecks in the computa-
tion. The I/O latency can be reduced by increas-
ing the number of processors in the computation
on the CM-5. However, up to a certain point of
increasing the number of processors, the network
latency may start to increase because the compu-
tation load in each processor is not high enough to
keep all the processors busy all the time. Again,
computing efficiency may be maintained at a cer-
tain level if both the sizes of the problem and
of the system increase for both the KSR-1 and
the CM-5.

– This work provides comparative views of execu-
tion patterns of the shared-memory and the data-
parallel programs on the KSR-1 and on the CM-5.
The results and comparisons are more-or-less sys-
tem and architecture dependent. Therefore this
approach has its limit in addressing global is-
sues, such as comparisons among the program-
ming models.
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