415 research outputs found

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network

    Get PDF
    The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 μW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment

    A Comparison of Energy-Efficient Seizure Detectors for Implantable Neurostimulation Devices

    Get PDF
    INTRODUCTION: About 30% of epilepsy patients are resistant to treatment with antiepileptic drugs, and only a minority of these are surgical candidates. A recent therapeutic approach is the application of electrical stimulation in the early phases of a seizure to interrupt its spread across the brain. To accomplish this, energy-efficient seizure detectors are required that are able to detect a seizure in its early stages. METHODS: Three patient-specific, energy-efficient seizure detectors are proposed in this study: (i) random forest (RF); (ii) long short-term memory (LSTM) recurrent neural network (RNN); and (iii) convolutional neural network (CNN). Performance evaluation was based on EEG data (n = 40 patients) derived from a selected set of surface EEG electrodes, which mimic the electrode layout of an implantable neurostimulation system. As for the RF input, 16 features in the time- and frequency-domains were selected. Raw EEG data were used for both CNN and RNN. Energy consumption was estimated by a platform-independent model based on the number of arithmetic operations (AOs) and memory accesses (MAs). To validate the estimated energy consumption, the RNN classifier was implemented on an ultra-low-power microcontroller. RESULTS: The RNN seizure detector achieved a slightly better level of performance, with a median area under the precision-recall curve score of 0.49, compared to 0.47 for CNN and 0.46 for RF. In terms of energy consumption, RF was the most efficient algorithm, with a total of 67k AOs and 67k MAs per classification. This was followed by CNN (488k AOs and 963k MAs) and RNN (772k AOs and 978k MAs), whereby MAs contributed more to total energy consumption. Measurements derived from the hardware implementation of the RNN algorithm demonstrated a significant correlation between estimations and actual measurements. DISCUSSION: All three proposed seizure detection algorithms were shown to be suitable for application in implantable devices. The applied methodology for a platform-independent energy estimation was proven to be accurate by way of hardware implementation of the RNN algorithm. These findings show that seizure detection can be achieved using just a few channels with limited spatial distribution. The methodology proposed in this study can therefore be applied when designing new models for responsive neurostimulation

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Embedded machine learning using microcontrollers in wearable and ambulatory systems for health and care applications: a review

    Get PDF
    The use of machine learning in medical and assistive applications is receiving significant attention thanks to the unique potential it offers to solve complex healthcare problems for which no other solutions had been found. Particularly promising in this field is the combination of machine learning with novel wearable devices. Machine learning models, however, suffer from being computationally demanding, which typically has resulted on the acquired data having to be transmitted to remote cloud servers for inference. This is not ideal from the system’s requirements point of view. Recently, efforts to replace the cloud servers with an alternative inference device closer to the sensing platform, has given rise to a new area of research Tiny Machine Learning (TinyML). In this work, we investigate the different challenges and specifications trade-offs associated to existing hardware options, as well as recently developed software tools, when trying to use microcontroller units (MCUs) as inference devices for health and care applications. The paper also reviews existing wearable systems incorporating MCUs for monitoring, and management, in the context of different health and care intended uses. Overall, this work addresses the gap in literature targeting the use of MCUs as edge inference devices for healthcare wearables. Thus, can be used as a kick-start for embedding machine learning models on MCUs, focusing on healthcare wearables

    SCANN: Synthesis of Compact and Accurate Neural Networks

    Full text link
    Deep neural networks (DNNs) have become the driving force behind recent artificial intelligence (AI) research. An important problem with implementing a neural network is the design of its architecture. Typically, such an architecture is obtained manually by exploring its hyperparameter space and kept fixed during training. This approach is time-consuming and inefficient. Another issue is that modern neural networks often contain millions of parameters, whereas many applications and devices require small inference models. However, efforts to migrate DNNs to such devices typically entail a significant loss of classification accuracy. To address these challenges, we propose a two-step neural network synthesis methodology, called DR+SCANN, that combines two complementary approaches to design compact and accurate DNNs. At the core of our framework is the SCANN methodology that uses three basic architecture-changing operations, namely connection growth, neuron growth, and connection pruning, to synthesize feed-forward architectures with arbitrary structure. SCANN encapsulates three synthesis methodologies that apply a repeated grow-and-prune paradigm to three architectural starting points. DR+SCANN combines the SCANN methodology with dataset dimensionality reduction to alleviate the curse of dimensionality. We demonstrate the efficacy of SCANN and DR+SCANN on various image and non-image datasets. We evaluate SCANN on MNIST and ImageNet benchmarks. In addition, we also evaluate the efficacy of using dimensionality reduction alongside SCANN (DR+SCANN) on nine small to medium-size datasets. We also show that our synthesis methodology yields neural networks that are much better at navigating the accuracy vs. energy efficiency space. This would enable neural network-based inference even on Internet-of-Things sensors.Comment: 13 pages, 8 figure
    • …
    corecore