184 research outputs found

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    On Recurrent Reachability for Continuous Linear Dynamical Systems

    Full text link
    The continuous evolution of a wide variety of systems, including continuous-time Markov chains and linear hybrid automata, can be described in terms of linear differential equations. In this paper we study the decision problem of whether the solution x(t)\boldsymbol{x}(t) of a system of linear differential equations dx/dt=Axd\boldsymbol{x}/dt=A\boldsymbol{x} reaches a target halfspace infinitely often. This recurrent reachability problem can equivalently be formulated as the following Infinite Zeros Problem: does a real-valued function f:R≥0→Rf:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R} satisfying a given linear differential equation have infinitely many zeros? Our main decidability result is that if the differential equation has order at most 77, then the Infinite Zeros Problem is decidable. On the other hand, we show that a decision procedure for the Infinite Zeros Problem at order 99 (and above) would entail a major breakthrough in Diophantine Approximation, specifically an algorithm for computing the Lagrange constants of arbitrary real algebraic numbers to arbitrary precision.Comment: Full version of paper at LICS'1

    The Polyhedron-Hitting Problem

    Full text link
    We consider polyhedral versions of Kannan and Lipton's Orbit Problem (STOC '80 and JACM '86)---determining whether a target polyhedron V may be reached from a starting point x under repeated applications of a linear transformation A in an ambient vector space Q^m. In the context of program verification, very similar reachability questions were also considered and left open by Lee and Yannakakis in (STOC '92). We present what amounts to a complete characterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a function of the dimension m of the ambient space, together with the dimension of the polyhedral target V: more precisely, for each pair of dimensions, we either establish decidability, or show hardness for longstanding number-theoretic open problems

    Recognizing When Heuristics Can Approximate Minimum Vertex Covers Is Complete for Parallel Access to NP

    Get PDF
    For both the edge deletion heuristic and the maximum-degree greedy heuristic, we study the problem of recognizing those graphs for which that heuristic can approximate the size of a minimum vertex cover within a constant factor of r, where r is a fixed rational number. Our main results are that these problems are complete for the class of problems solvable via parallel access to NP. To achieve these main results, we also show that the restriction of the vertex cover problem to those graphs for which either of these heuristics can find an optimal solution remains NP-hard.Comment: 16 pages, 2 figure

    On the hardness of the shortest vector problem

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 77-84).An n-dimensional lattice is the set of all integral linear combinations of n linearly independent vectors in Rm. One of the most studied algorithmic problems on lattices is the shortest vector problem (SVP): given a lattice, find the shortest non-zero vector in it. We prove that the shortest vector problem is NP-hard (for randomized reductions) to approximate within some constant factor greater than 1 in any 1, norm (p >\=1). In particular, we prove the NP-hardness of approximating SVP in the Euclidean norm 12 within any factor less than [square root of]2. The same NP-hardness results hold for deterministic non-uniform reductions. A deterministic uniform reduction is also given under a reasonable number theoretic conjecture concerning the distribution of smooth numbers. In proving the NP-hardness of SVP we develop a number of technical tools that might be of independent interest. In particular, a lattice packing is constructed with the property that the number of unit spheres contained in an n-dimensional ball of radius greater than 1 + [square root of] 2 grows exponentially in n, and a new constructive version of Sauer's lemma (a combinatorial result somehow related to the notion of VC-dimension) is presented, considerably simplifying all previously known constructions.by Daniele Micciancio.Ph.D

    On Robustness for the Skolem, Positivity and Ultimate Positivity Problems

    Full text link
    The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for ``uninitialized'' variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a ``uniform'' bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.Comment: Extended version of conference paper which appeared in the proceedings of STACS'2

    On Robustness for the Skolem and Positivity Problems

    Get PDF
    The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: The best known decidability results are for LRS with special properties (e.g., low order recurrences). On the other hand, these problems are much easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided by polynomial time algorithms (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighborhood is given as part of the input, then robust Skolem and robust positivity are Diophantine-hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. Interestingly, this is the first Diophantine-hardness result on a variant of the Skolem problem, to the best of our knowledge. On the other hand, if one asks whether such a neighborhood exists, then the problems turn out to be decidable in their full generality, with PSPACE complexity. Our analysis is based on the set of initial configurations such that positivity holds, which leads to new insights into these difficult problems, and interesting geometrical interpretations

    Semidefinite programming and linear equations vs. homomorphism problems

    Get PDF
    • …
    corecore