49 research outputs found

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Scalability study for robotic hand platform

    Get PDF
    The goal of this thesis project was to determine the lower limit of scale for the RIT robotic grasping hand. This was accomplished using a combination of computer simulation and experimental studies. A force analysis was conducted to determine the size of air muscles required to achieve appropriate contact forces at a smaller scale. Input variables, such as the actuation force and tendon return force, were determined experimentally. A dynamic computer model of the hand system was then created using Recurdyn. This was used to predict the contact (grasping) force of the fingers at full-scale, half-scale, and quarter-scale. Correlation between the computer model and physical testing was achieved for both a life-size and half-scale finger assembly. To further demonstrate the scalability of the hand design, both half and quarter-scale robotic hand rapid prototype assemblies were built using 3D printing techniques. This thesis work identified the point where further miniaturization would require a change in the manufacturing process to micro-fabrication. Several techniques were compared as potential methods for making a production intent quarter-scale robotic hand. Investment casting, Swiss machining, and Selective Laser Sintering were the manufacturing techniques considered. A quarter-scale robotic hand tested the limits of each technology. Below this scale, micro-machining would be required. The break point for the current actuation method, air muscles, was also explored. Below the quarter-scale, an alternative actuation method would also be required. Electroactive Polymers were discussed as an option for the micro-scale. In summary, a dynamic model of the RIT robotic grasping hand was created and validated as scalable at full and half-scales. The model was then used to predict finger contact forces at the quarter-scale. The quarter-scale was identified as the break point in terms of the current RIT robotic grasping hand based on both manufacturing and actuation. A novel, prototype quarter-scale robotic hand assembly was successfully built by an additive manufacturing process, a high resolution 3D printer. However, further miniaturization would require alternate manufacturing techniques and actuation mechanisms

    A Platform for Robot-Assisted Intracardiac Catheter Navigation

    Get PDF
    Steerable catheters are routinely deployed in the treatment of cardiac arrhythmias. During invasive electrophysiology studies, the catheter handle is manipulated by an interventionalist to guide the catheter's distal section toward endocardium for pacing and ablation. Catheter manipulation requires dexterity and experience, and exposes the interventionalist to ionizing radiation. Through the course of this research, a platform was developed to assist and enhance the navigation of the catheter inside the cardiac chambers. This robotic platform replaces the interventionalist's hand in catheter manipulation and provides the option to force the catheter tip in arbitrary directions using a 3D input device or to automatically navigate the catheter to desired positions within a cardiac chamber by commanding the software to do so. To accomplish catheter navigation, the catheter was modeled as a continuum manipulator, and utilizing robot kinematics, catheter tip position control was designed and implemented. An electromagnetic tracking system was utilized to measure the position and orientation of two key points in catheter model, for position feedback to the control system. A software platform was developed to implement the navigation and control strategies and to interface with the robot, the 3D input device and the tracking system. The catheter modeling was validated through in-vitro experiments with a static phantom, and in-vivo experiments on three live swines. The feasibility of automatic navigation was also veri ed by navigating to three landmarks in the beating heart of swine subjects, and comparing their performance with that of an experienced interventionalist using quasi biplane fluoroscopy. The platform realizes automatic, assisted, and motorized navigation under the interventionalist's control, thus reducing the dependence of successful navigation on the dexterity and manipulation skills of the interventionalist, and providing a means to reduce the exposure to X-ray radiation. Upon further development, the platform could be adopted for human deployment

    Image-Based Force Estimation and Haptic Rendering For Robot-Assisted Cardiovascular Intervention

    Get PDF
    Clinical studies have indicated that the loss of haptic perception is the prime limitation of robot-assisted cardiovascular intervention technology, hindering its global adoption. It causes compromised situational awareness for the surgeon during the intervention and may lead to health risks for the patients. This doctoral research was aimed at developing technology for addressing the limitation of the robot-assisted intervention technology in the provision of haptic feedback. The literature review showed that sensor-free force estimation (haptic cue) on endovascular devices, intuitive surgeon interface design, and haptic rendering within the surgeon interface were the major knowledge gaps. For sensor-free force estimation, first, an image-based force estimation methods based on inverse finite-element methods (iFEM) was developed and validated. Next, to address the limitation of the iFEM method in real-time performance, an inverse Cosserat rod model (iCORD) with a computationally efficient solution for endovascular devices was developed and validated. Afterward, the iCORD was adopted for analytical tip force estimation on steerable catheters. The experimental studies confirmed the accuracy and real-time performance of the iCORD for sensor-free force estimation. Afterward, a wearable drift-free rotation measurement device (MiCarp) was developed to facilitate the design of an intuitive surgeon interface by decoupling the rotation measurement from the insertion measurement. The validation studies showed that MiCarp had a superior performance for spatial rotation measurement compared to other modalities. In the end, a novel haptic feedback system based on smart magnetoelastic elastomers was developed, analytically modeled, and experimentally validated. The proposed haptics-enabled surgeon module had an unbounded workspace for interventional tasks and provided an intuitive interface. Experimental validation, at component and system levels, confirmed the usability of the proposed methods for robot-assisted intervention systems

    Towards a Realistic and Self-Contained Biomechanical Model of the Hand

    Get PDF

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Grasp modelling with a biomechanical model of the hand

    Get PDF
    The use of a biomechanical model for human grasp modelling is presented. A previously validated biomechanical model of the hand has been used. The equilibrium of the grasped object was added to the model through the consideration of a soft contact model. A grasping posture generation algorithm was also incorporated into the model. All the geometry was represented using a spherical extension of polytopes (s-topes) for efficient collision detection. The model was used to simulate an experiment in which a subject was asked to grasp two cylinders of different diameters and weights. Different objective functions were checked to solve the indeterminate problem. The normal finger forces estimated by the model were compared to those experimentally measured. The popular objective function sum of the squared muscle stresses was shown not suitable for the grasping simulation, requiring at least being complemented by task-dependent grasp quality measures

    Contact Dynamics Modelling for Robotic Task Simulation

    Get PDF
    This thesis presents the theoretical derivations and the implementation of a contact dynamics modelling system based on compliant contact models. The system was designed to be used as a general-purpose modelling tool to support the task planning process space-based robot manipulator systems. This operational context imposes additional requirements on the contact dynamics modelling system beyond the usual ones of fidelity and accuracy. The system must not only be able to generate accurate and reliable simulation results, but it must do it in a reasonably short period of time, such that an operations engineer can investigate multiple scenarios within a few hours. The system is easy to interface with existing simulation facilities. All physical parameters of the contact model can be identified experimentally or can be obtained by other means through analysis or theoretical derivations based on the material properties. Similarly, the numerical parameters can be selected automatically or by using heuristic rules that give an indication of the range of values that would ensure that the simulations results are qualitatively correct. The contact dynamics modelling system is comprised of two contact models. On one hand, a point contact model is proposed to tackle simulations involving bodies with non-conformal surfaces. Since it is based on Hertz theory, the contacting surfaces must be smooth and without discontinuity, i.e., no corners or sharp edges. The point contact model includes normal damping and tangential friction and assumes the contact surface is very small, such that the contact force is assumed to be acting through a point. An expression to set the normal damping as a function of the effective coefficient of restitution is given. A new seven-parameter friction model is introduced. The friction model is based on a bristle friction model, and is adapted to the context of 3-dimensional frictional impact modelling with introduction of load-dependent bristle stiffness and damping terms, and with the expression of the bristle deformation in vectorial form. The model features a dwell-time stiction force dependency and is shown to be able to reproduce the dynamic nature of the friction phenomenon. A second contact model based on the Winkler elastic foundation model is then proposed to deal with a more general class of geometries. This so-called volumetric contact model is suitable for a broad range of contact geometries, as long as the contact surface can be approximated as being flat. A method to deal with objects where this latter approximation is not reasonable is also presented. The effect of the contact pressure distribution across the contact surface is accounted for in the form of the rolling resistance torque and spinning friction torque. It is shown that the contact forces and moments can be expressed in terms of the volumetric properties of the volume of interference between the two bodies, defined as the volume spanned by the intersection of the two undeformed geometries of the colliding bodies. The properties of interest are: the volume of the volume of interference, the position of its centroid, and its inertia tensor taken about the centroid. The analysis also introduces a new way of defining the contact normal; it is shown that the contact normal must correspond to one of the eigenvectors of the inertia tensor. The investigation also examines how the Coulomb friction is affected by the relative motion of the objects. The concept of average surface velocity is introduced. It accounts for both the relative translational and angular motions of the contacting surfaces. The average surface velocity is then used to find dimensionless factors that relate friction force and spinning torque caused by the Coulomb friction. These latter factors are labelled the Contensou factors. Also, the radius of gyration of the moment of inertia of the volume of interference about the contact normal was shown to correlate the spinning Coulomb friction torque to the translational Coulomb friction force. A volumetric version of the seven-parameter bristle friction model is then presented. The friction model includes both the tangential friction force and spinning friction torque. The Contensou factors are used to control the behaviour of the Coulomb friction. For both contact models, the equations are derived from first principles, and the behaviour of each contact model characteristic was studied and simulated. When available, the simulation results were compared with benchmark results from the literature. Experiments were performed to validate the point contact model using a six degrees-of-freedom manipulator holding a half-spherical payload, and coming into contact with a flat plate. Good correspondence between the simulated and experimental results was obtained
    corecore