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Abstract

This thesis presents the theoretical derivations and the implementation of a contact dynamics mod-

elling system based on compliant contact models. The system was designed to be used as a

general-purpose modelling tool to support the task planning process space-based robot manipu-

lator systems. This operational context imposes additional requirements on the contact dynamics

modelling system beyond the usual ones of fidelity and accuracy. The system must not only be able

to generate accurate and reliable simulation results, but it must do it in a reasonably short period of

time, such that an operations engineer can investigate multiple scenarios within a few hours. The

system is easy to interface with existing simulation facilities. All physical parameters of the con-

tact model can be identified experimentally or can be obtained by other means through analysis or

theoretical derivations based on the material properties. Similarly, the numerical parameters can be

selected automatically or by using heuristic rules that give an indication of the range of values that

would ensure that the simulations results are qualitatively correct. The contact dynamics modelling

system is comprised of two contact models.

On one hand, a point contact model is proposed to tackle simulations involving bodies with

non-conformal surfaces. Since it is based on Hertz theory, the contacting surfaces must be smooth

and without discontinuity, i.e., no corners or sharp edges. The point contact model includes normal

damping and tangential friction and assumes the contact surface is very small, such that the contact

force is assumed to be acting through a point. An expression to set the normal damping as a

function of the effective coefficient of restitution is given. A new seven-parameter friction model is

introduced. The friction model is based on a bristle friction model, and is adapted to the context of

3-dimensional frictional impact modelling with introduction of load-dependent bristle stiffness and

damping terms, and with the expression of the bristle deformation in vectorial form. The model

features a dwell-time stiction force dependency and is shown to be able to reproduce the dynamic

nature of the friction phenomenon.

A second contact model based on the Winkler elastic foundation model is then proposed to

deal with a more general class of geometries. This so-called volumetric contact model is suitable

for a broad range of contact geometries, as long as the contact surface can be approximated as

being flat. A method to deal with objects where this latter approximation is not reasonable is also

presented. The effect of the contact pressure distribution across the contact surface is accounted

for in the form of the rolling resistance torque and spinning friction torque. It is shown that the

contact forces and moments can be expressed in terms of the volumetric properties of the volume of

interference between the two bodies, defined as the volume spanned by the intersection of the two

undeformed geometries of the colliding bodies. The properties of interest are: the volume of the

volume of interference, the position of its centroid, and its inertia tensor taken about the centroid.

The analysis also introduces a new way of defining the contact normal; it is shown that the contact

normal must correspond to one of the eigenvectors of the inertia tensor.

The investigation also examines how the Coulomb friction is affected by the relative motion

v



of the objects. The concept of average surface velocity is introduced. It accounts for both the

relative translational and angular motions of the contacting surfaces. The average surface velocity

is then used to find dimensionless factors that relate friction force and spinning torque caused by

the Coulomb friction. These latter factors are labelled the Contensou factors. Also, the radius

of gyration of the moment of inertia of the volume of interference about the contact normal was

shown to correlate the spinning Coulomb friction torque to the translational Coulomb friction force.

A volumetric version of the seven-parameter bristle friction model is then presented. The friction

model includes both the tangential friction force and spinning friction torque. The Contensou

factors are used to control the behaviour of the Coulomb friction.

For both contact models, the equations are derived from first principles, and the behaviour

of each contact model characteristic was studied and simulated. When available, the simulation

results were compared with benchmark results from the literature. Experiments were performed

to validate the point contact model using a six degrees-of-freedom manipulator holding a half-

spherical payload, and coming into contact with a flat plate. Good correspondence between the

simulated and experimental results was obtained.
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My final words go to my two sons Julien and Sacha. I want to thank them for helping me to

put everything about my life in perspective. The important things always come first, and the rest

follows after. My family always comes first. Les enfants, je vous aime. J’espère qu’un jour vous

lirez ces lignes, et comprendrez que ce qui a motivé tout ce travail c’est la curiosité. Je vous vois
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Nomenclature

Scalars

α · empirically determined constant that relate the normal velocity at impact to the co-

efficient of restitution. It is valid for a limited range of impact velocities.

θε · angular threshold used in the convergence test of the implementation of the inverse

iteration method.

θn · angular displacement about n applied at sc to get the local bristle deformation at s.

θ̇n · first time-derivative of θn.

θ̇sl · slip-mode angular velocity for the spinning bristle friction torque model.

θ̇st · stick-mode angular velocity for the spinning bristle friction torque model.

λ · hysteresis damping factor.

λHC · hysteresis damping factor obtained with the Hunt and Crossley model.

λLN · hysteresis damping factor obtained with the Lankarani and Nikravesh model.

λn · eigenvalue of Js or Jv corresponding to the eigenvector n.

µC · Coulomb friction coefficient (kinetic friction).

µmax · maximum stiction coefficient value (dwell-time dependent).

µS · stiction friction coefficient (static friction).

ρn · magnitude of ρn.

ρv,n,avg · average value of ρv,n over the volume of interference V .

σo · bristle stiffness relative to the normal load.

σ1 · bristle damping relative to the normal load.

σ2 · viscous damping coefficient relative to the normal load.

τbr · bristle dynamics time constant. It is equal to σ1/σo.

τdw · dwell-time dynamics time constant.

τs · magnitude of the spinning friction torque.

τsc · magnitude of the spinning Coulomb friction torque.

τmax · maximum spinning friction torque (dwell-time dependent).

τr · numerical constraint relaxation time constant.

ωn · magnitude of ωn.

ωn,i · magnitude of ωn,i.

ωn,j · magnitude of ωn,j .

a · damping factor in the normal contact force model.

Ac · contact surface area.

xix



ai · damping factor of the body Bi normal contact force model.

aj · damping factor of the body Bj normal contact force model.

Cω · Contensou factor in translation.

Cω,s · stick-state dependent Contensou factor in translation.

Cv · Contensou factor in rotation.

Cv,s · stick-state dependent Contensou factor in rotation.

d · dimensionless damping factor in the normal contact force model.

dHC · dimensionless damping factor in the normal contact force model obtained with the

Hunt and Crossley model.

dLN · dimensionless damping factor in the normal contact force model obtained with the

Lankarani and Nikravesh model.

eeff · effective coefficient of restitution.

eemp · empirically obtained coefficient of restitution.

fk · part of the magnitude of f n due to the stiffness of the body material deformation(s).

fn · magnitude of f n.

fn,i · magnitude of f n,i.

fn,j · magnitude of f n,j .

fmax · maximum tangential friction force (dwell-time dependent).

hf · depth of the Winkler elastic foundation mattress.

hp · the height of contact plate with respect to Kw in the direction of n.

hv · average height of the volume of interference over the contact surface.

hv,i · average height of the volume of deformation of body Bi over the contact surface.

hv,j · average height of the volume of deformation of body Bj over the contact surface.

kf · elastic modulus of the Winkler elastic foundation.

kl · linear spring stiffness.

kv · volumetric stiffness.

kv,i · volumetric stiffness of body Bi.

kv,j · volumetric stiffness of body Bj .

ni · maximum number of iterations of the inverse iteration method implementation.

rgyr · radius of gyration of the volume-inertia tensor about n.

ri · ratio relating the size of the volume of deformation Vi of body Bi to the volume of

interference V .

rj · ratio relating the size of the volume of deformation Vj of body Bj to the volume of

interference V .

rn · ratio used to set the eigenvector estimate for the implementation of the inverse iter-

ation method.

sdw · dwell-stick state.

ṡdw · first time-derivative of the dwell-stick state.
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vε · numerical tolerance for a small velocity.

vavg · average surface velocity.

vcn · magnitude of the component of vc in the direction of n.

vi
cn · magnitude of the component of vc in the direction of n at the first instant of impact.

V · volume of the volume of interference.

Vi · volume of deformation of body Bi.

Vj · volume of deformation of body Bj .

vn · magnitude of the component of vr in the direction of n.

vi
n · magnitude of the component of vr in the direction of n at the first instant of impact.

vo
n · magnitude of the component of vr in the direction of n at the last instant of the

contact phase.

vn,i · magnitude of the component of vr,i in the direction of ni.

vi
n,i · magnitude of the component of vr,i in the direction of ni at the first instant of impact.

vn,j · magnitude of the component of vr,j in the direction of nj .

vi
n,j · magnitude of the component of vr,j in the direction of nj at the first instant of

impact.

vS · Stribeck velocity.

x · minimum distance and penetration depth measure. The value is positive when the

bodies are not colliding and negative when there is inter-penetration. Contact oc-

curs/is lost when x = 0.

xr · relaxed penetration depth.

xr,o · reference position of the relaxed penetration depth.

ẋr,o · first time-derivative of xr,o.

Functions

dirε(u, uε) · returns a unit vector along the direction of u and uses the relaxed sign convention

near a small tolerance uε.

fs(s) · total elastic foundation deformation depth of the bodies Bi and Bj at a point s of the

contact surface.

fs,i(s) · elastic foundation deformation depth of the body Bi at a point s of the contact sur-

face.

fs,j(s) · elastic foundation deformation depth of the body Bj at a point s of the contact

surface.

fs,p(s) · flexible plate deformation at the point s of the contact surface.

hi(ρi,ni) · height function of the surface of body Bi with respect to Ki measured in the direction

of ni.
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hj(ρj,nj) · height function of the surface of body Bj with respect to Kj measured in the direction

of nj .

sat(u, umax) · returns a vector along the direction of u and saturates its magnitude to umax when

|u| > umax.

Matrices

Ri · rotation matrix giving the orientation of frame Ki relative to Kw.

Rj · rotation matrix giving the orientation of frame Kj relative to Kw.

Vectors

θn · angular displacement vector for a small rotation about n at sc to get the local bristle

deformation at s.

θ̇n · first time-derivative of θn.

ρi · position of a point s on the contact surface relative to Ki.

ρj · position of a point s on the contact surface relative to Kj .

ρn · position of the centroid sc of the surface of of contact relative to the centroid pc of

the volume of interference. Component of ρs in the direction of n

ρn,i · position of the centroid sc,i of the surface of contact relative to the centroid pc,i of

the deformation volume Vi of body Bi. Component of ρs,i in the direction of ni.

ρn,j · position of the centroid sc,j of the surface of contact relative to the centroid pc,j of

the deformation volume Vj of body Bj . Component of ρs,j in the direction of nj .

ρs · position of a point s on the contact surface relative to the centroid pc of the volume

of interference.

ρs,i · position of a point s on the contact surface relative to the centroid pc,i of the defor-

mation volume Vi of body Bi.

ρs,j · position of a point s on the contact surface relative to the centroid pc,j of the defor-

mation volume Vj of body Bj .

ρ t · position of a point s on the contact surface relative to the centroid sc of the contact

surface. Component of ρs perpendicular to the direction of n.

ρ t,i · position of a point s on the contact surface relative to the centroid sc,i of the contact

surface. Component of ρs,i perpendicular to the direction of ni.

ρ t,j · position of a point s on the contact surface relative to the centroid sc,j of the contact

surface. Component of ρs,j perpendicular to the direction of nj .

ρv · position of a point p in the volume of interference relative to the centroid pc of the

volume of interference.

ρv,n · component of ρv in the direction of n.

ρv,t · component of ρv perpendicular to the direction of n.

τbr · bristle friction torque.
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τ i · torque applied by the contact model to body Bi.

τ j · torque applied by the contact model to body Bj .

τ r · rolling resistance torque.

τ r,i · rolling resistance torque from body Bi.

τ r,j · rolling resistance torque from body Bj .

τ s · spinning friction torque.

τ s,i · spinning friction torque from body Bi.

τ s,j · spinning friction torque from body Bj .

τ sc · spinning Coulomb friction torque.

ωi · angular velocity of body Bi relative to frame Kw.

ωj · angular velocity of body Bj relative to frame Kw.

ωn · component of ωr in the direction of n.

ωn,i · component of ωr,i in the direction of ni.

ωn,j · component of ωr,j in the direction of nj .

ωp · angular velocity of the contact plate relative to Kw.

ωr · relative angular velocity of body Bi with respect to body Bj .

ωr,i · relative angular velocity of body Bi with respect to the contact plate.

ωr,j · relative angular velocity of body Bj with respect to the contact plate.

ωt · component of ωr perpendicular to the direction of n.

ωt,i · component of ωr,i perpendicular to the direction of ni.

ωt,j · component of ωr,j perpendicular to the direction of nj .

f br · bristle friction force.

fC · point contact model Coulomb friction force.

f c · contact force.

f c,i · contact force on body Bi.

f c,j · contact force on body Bj .

f i · force applied by the contact model to body Bi at Ki.

f j · force applied by the contact model to body Bj at Kj .

f n · component of f c in the direction of n.

f n,i · component of f c,i in the direction of ni.

f n,j · component of f c,j in the direction of nj .

f t · component of f c perpendicular to the direction of n.

f t,i · component of f c,i perpendicular to the direction of ni.

f t,j · component of f c,j perpendicular to the direction of nj .

f tc · volumetric contact model Coulomb friction force.

n · normal of the contact surface pointing from body Bj toward body Bi.

ni · normal of the contact surface pointing from body Bi toward body Bj .

nj · normal of the contact surface pointing from body Bj toward body Bi.
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p · position of a point in the volume of interference relative to Kw.

pc · position of the centroid the volume of interference relative to Kw.

pc,i · position of the centroid the deformation volume Vi of body Bi relative to Kw.

pc,j · position of the centroid the deformation volume Vj of body Bj relative to Kw.

pa · position of the point of action relative to Kw.

ri · position of frame Ki relative to Kw.

rj · position of frame Kj relative to Kw.

s · position of a point on the contact surface relative to Kw.

sc · position of the centroid of the contact surface relative to Kw.

sc,i · position of the centroid of the contact surface of body Bi relative to Kw.

sc,j · position of the centroid of the contact surface of body Bj relative to Kw.

u · an arbitrary vector.

un · component of u in the direction of n.

ut · component of u perpendicular to the direction of n.

vi · translational velocity of frame Ki with respect to Kw.

vj · translational velocity of frame Kj with respect to Kw.

vc · the relative translational velocity of body Bi with respect to body Bj at the centroid

pc.

vc,i · the relative translational velocity of body Bi with respect to the contact plate at the

centroid pc,i.

vc,j · the relative translational velocity of body Bj with respect to the contact plate at the

centroid pc,j .

vcn · the component of vc in the direction of n.

vcn,i · the component of vc,i in the direction of ni.

vcn,j · the component of vc,j in the direction of nj .

vct · the component of vc perpendicular to the direction of n.

vct,i · the component of vc,i perpendicular to the direction of ni.

vct,j · the component of vc,j perpendicular to the direction of nj .

vn · the component of vr in the direction of n.

vn,i · the component of vr,i in the direction of ni.

vn,j · the component of vr,j in the direction of nj .

vr · the relative translational velocity of body Bi with respect to body Bj at pa (point

contact model) or at a point s of the contact surface (volumetric contact model).

vr,i · the relative translational velocity of body Bi with respect to the contact plate at a

point s of the contact surface.

vr,j · the relative translational velocity of body Bj with respect to the contact plate at a

point s of the contact surface.
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vsct · the relative velocity of body Bi with respect to body Bj at sc in the direction perpen-

dicular to n.

vsct,i · the relative velocity of body Bi with respect to the contact plate at sc,i in the direction

perpendicular to ni.

vsct,j · the relative velocity of body Bj with respect to the contact plate at sc,j in the direction

perpendicular to nj .

vt · the component of vr perpendicular to the direction of n.

vt,i · the component of vr,i perpendicular to the direction of ni.

vt,j · the component of vr,j perpendicular to the direction of nj .

z · bristle deformation.

ż · first time-derivative of z.

z sc · bristle deformation at sc.

ż sc · first time-derivative of z sc.

ż sl · slip-mode translational velocity for the tangential friction bristle force model.

ż st · stick-mode translational velocity for the tangential friction bristle force model.

Tensors/Dyadic Operators

I · unit dyad

Jρs,avg · average surface-inertia tensor.

Js · surface inertia-tensor.

Js,i · surface inertia-tensor for the body Bi deformation.

Js,j · surface inertia-tensor for the body Bj deformation.

Jt · surface-inertia tensor expressed relative to the surface centroid sc.

Jv · moment of inertia of the volume of interference V , also called the volume-inertia

tensor in the thesis.

N · projection operator projecting any vector onto n.

T · projection operator projecting any vector perpendicularly n.
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Frames

Kw · inertial ‘world’ frame.

Ki · frame attached to body Bi.

Kj · frame attached to body Bj .

Names

Bi · name of the body corresponding to index i.

Bj · name of the body corresponding to index j.

S · name of the contact surface.
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Chapter 1

Introduction

1.1 Contact Dynamics in Space

This thesis presents a generic framework to include contact dynamics models into multibody sim-

ulation systems. Contact dynamics simulation is of primary interest to Canadian Space Agency

(CSA) robotics community. The findings presented in this thesis are derived from the research

work done by the author over the last 8 years in support of the internal research and development

projects led by the Robotics Section at the CSA.

1.1.1 The Operation of Space-Based Robotic Systems

Canada’s contribution to the International Space Station (ISS) endeavour is the Mobile Servic-

ing System (MSS) (Stieber et al., 2000). A major component of the MSS is the Special Purpose

Dextrous Manipulator (SPDM or Dextre) shown in Figure 1.1. While the Space Station Remote

Manipulator System (SSRMS or Canadarm2) will assemble the ISS, Dextre will be required for

performing maintenance tasks. Essentially, Dextre will manipulate the Orbital Replacement Units,

the components of the ISS systems replaceable on orbit. Dextre will operate directly connected

to the ISS or to the tip of Canadarm2, as shown in Figure 1.2. Both Canadarm2 and Dextre are

tele-operated from inside the ISS. To assist the operators conducting contact operations and en-

sure safety, force and moment accommodation (FMA) control will be used (Nguyen et al., 1991;

Aghili et al., 2001), whereby the force and moment applied by Dextre are adjusted automatically

while the operator controls the velocity of the end-effector via a set of hand-controllers.

The cost and risks associated with the execution of robotic tasks around the ISS require that

all procedures are verified on earth prior to their execution in space. Canada is responsible for the

verification of all the tasks involving Dextre. The CSA has developed the SPDM Task Verification

Facility (STVF), a series of simulation and analysis tools used for verifying the kinematics (clear-

ance, interface reach, degrees of freedom) and dynamics (insertion forces, flexibility) of the Dextre

operations. One of the main technical challenges with the STVF is the verification of the feasibility

1



2 Contact Dynamics Modelling for Robotic Task Simulation

OTCM

OTCM

Tool Holder
LEE

ORU Temporary 
Platform

Body Joint

Camera 
& PTU

PDGF

Figure 1.1: The Special Purpose Dexterous Manipulator – Dextre.

Figure 1.2: Dextre at the tip of Canadarm2.
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of the insertion or extraction tasks. The forces involved are the result of complex frictional contact

between the payloads and their respective worksite. A critical goal for the STVF is to be able to

accurately replicate these forces by using a hardware emulator of Dextre (Piedbœuf et al., 2001).

The emulation of a space robot on ground is a challenging task because space manipulators

cannot support their own weight on Earth. Different possibilities exist for the ground emulation of

a space robot. The first one is to use a flat floor as done for Shuttle Remote Manipulator System.

However, the motion is limited to a plane which is not representative of real contact task. A second

possibility is to use a scaled-down version of the space manipulator. While attractive in theory,

this is very difficult to realize in practise especially for a robot having flexibility. The third option

is to use counterweights to build a system that will be dynamically equivalent to the space robot.

This is an interesting option but matching the frequency response of the space robot is difficult.

In addition, Dextre will often be mounted on Canadarm2 which itself is very flexible. A self-

balancing system is not able to represent the flexible motion of the base. Another option is to use

hardware-in-the-loop simulation (HLS) as done by the CSA (Piedbœuf et al., 1999; Aghili et al.,

1999) but also by DLR1 (Krenn and Schäfer, 1999) and NASA2 (Ananthakrishnan et al., 1996). In

HLS, a ground robot is driven by the output of the space robot simulator as shown in Figure 1.3.

At CSA, the HLS consists of the SMT3 robot and the MOTS4, a real-time simulation and visu-

alization engine. The Dextre operator sends joystick commands to the real-time Dextre simulator

that predicts a corresponding motion response. The resulting Dextre endpoint motion then becomes

a set point for the SMT robot controller. The SMT performs contact operations with real hardware.

Real contact forces are measured using force/moment sensors, and fed back into the simulator al-

lowing the dynamics simulation engine to react to these external contact forces. Once the HLS

has been performed, further analysis and parametric studies are done using the MDSF-NRT5, a

non-real time high-fidelity simulator for the MSS (Ma et al., 1997).

This concept is very flexible since it can accommodate vibrations of the space robot base or

other phenomena. The main difficulty in HLS is to have good performance, i.e., ensuring that the

impedance of the ground robot is the same as the one of the space robot, while keeping the system

stable in free space and in contact (Zhu et al., 2002; Aghili et al., 2004). This type of simulation

creates instability problems similar to those encountered with force control of master/slave systems.

Furthermore, the validation of a facility such as STVF is a challenging task because there exists

little experimental evidence to validate against (Martin et al., 2004). In effect, the simulation of

contact behaviour can be compared to experimental data only when the shape of the contacting

surfaces are geometrically simple, and the data is obtained in a very controlled experiment, i.e.,

using only one or two dimensional motion (Sharf et al., 2002; Agar et al., 2005).

1German Aerospace Centre (German: Deutsches Zentrum für Luft- und Raumfahrt)
2National Aeronautics and Space Administration
3STVF Manipulator Testbed
4MSS Operation and Training Simulator
5Manipulator Development and Simulation Facility
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Figure 1.3: The STVF concept with hardware-in-the-Loop simulation.6

6Permission to reproduce this figure was given by Érick Dupuis (mailto:Erick.Dupuis@space.gc.ca),

Robotics Section Manager, Canadian Space Agency.

mailto:Erick.Dupuis@space.gc.ca


Chapter 1: Introduction 5

1.1.2 Robotic Task Verification Using Pure Simulation

On the other hand, numerical simulation provides a flexible and cost-effective alternative to hard-

ware testing (Wang et al., 2006), but entails the challenge of obtaining accurate models and their

corresponding parameters for both the robotic systems comprising the MSS and the environment

with which they interact. While the characterization and simulation of robotic systems is a well-

understood topic, the modelling of contact dynamics is an active subject of on-going research.

Validated contact models for objects with simple geometries have been around for some time

(Wang and Mason, 1992). However, modelling contact between objects that have complex ge-

ometries is more difficult, particularly when friction is present.

A large spectrum of methods have been proposed to perform numerical simulations of bodies

with complex shapes in contact, each tackling the contact modelling and simulation problem from

a different perspective. The method that is best suited for a given problem depends on the purpose

for which the simulation is being performed. In general, when selecting a particular method, a

trade-off is made between accuracy and speed and/or numerical robustness.

At one end of the spectrum are the so-called “dynamics engine” targeted toward video games

or computer animation systems such as Havok7, Open Dynamics Engine8, Vortex9, PhysX10 and

Falling Bodies11. Here, the contact modelling system is tuned for numerical robustness and speed,

and is usually based on simplified rigid-body methods, one notable exception being Falling Bodies.

They allow interactive simulations based on Newtonian physics that look good, but where accuracy

or physical correctness is of a lesser concern.

At the other other end of the spectrum are the continuum models that allow the detailed mod-

elling of the deformations of bodies occurring during a contact event. These models are imple-

mented using Finite Element Methods (FEM), e.g., (Laursen and Simo, 1993; Eberhard, 1999;

Puso and Laursen, 2004), and their application is restricted to non real-time simulation because of

the large computational overhead associated with FEM.

1.1.3 Contact Dynamics Simulation in an Operational Context

The CSA has a team of engineers dedicated to the planning and verification of all MSS operations.

These operations engineers rely heavily on multibody dynamics simulation tools to investigate and

evaluate MSS mission plans. For tasks that require insertion or extraction of payloads, contact dy-

namics models are needed. However, the use of contact models in simulators within an operational

context is a challenging task and imposes specific requirements.

On one hand, the simulation facility must produce the data in a relatively short time-frame such

that the operations engineer can investigate multiple scenarios in a reasonable amount of time. If

7
http://www.havok.com

8
http://www.ode.org

9
http://www.cm-labs.com

10
http://www.ageia.com

11
http://www.animats.com

http://www.havok.com
http://www.ode.org
http://www.cm-labs.com
http://www.ageia.com
http://www.animats.com
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the investigation is done in support of a on-going space mission, then the engineer will have at

most a few hours to reach the conclusion. The time constraint therefore often excludes the FEM

approach as a practical alternative. On the other hand, it is imperative that the simulation results

are accurate enough such that the appropriate conclusions are drawn, and in particular, that the set

of selected robot control parameters will ensure mission success. In other words, the results from

the robotic system simulators, including the contact dynamics models, must be reliable.

A major difficulty in implementing reliable robotic simulation system is lack of well-defined

process to determine the parameters of the contact models. These parameters are typically divided

in two categories: those related to physical properties of the contacting bodies, and those that

are purely numerical by nature, e.g., numerical tolerances. A robust parameter-selection process

would ensure that the simulated results are consistent with observed physical behaviour, or at least,

it would provide a reasonably high level of confidence in the results. This process can only be

established if the nature of all physical parameters is well understood and how each numerical

setting affects the simulation results.

Furthermore, a contact model is always based on certain modelling assumptions, and the nu-

merical implementation usually imposes additional restrictions. It is therefore imperative to have

a good understanding of these assumptions and restrictions such that the contact model parameters

are selected judiciously and that the simulation scenarios do not violate the modelling assumptions.

For example, a simplified contact model may be able to compute the contact forces between the

edges of two objects only when the edges are not parallel. In this case, the simulation scenario

should avoid this problematic situation.

Hence, a contact modelling system designed for an operational context would need to be based

on formulations that allow the physical parameters to be correlated directly with a physical be-

haviour, e.g., higher stiffness means less penetration. Additionally, it is best to avoid contact mod-

els that have ‘special cases’ to deal with and especially those which have problematic cases, such

as the example given above. If the contact model must have degenerate cases, then these should be

well identified such that they can be detected and avoided. The implementation should allow all

numerical parameters to be selected automatically, or with some heuristic ‘rule-of-thumb’.

The operations engineer using a contact dynamics modelling system will expect the contact

model to produce realistic contact forces, such that the simulation yields reliable results. In this

context, ‘realistic’ implies that the contact forces should be physically correct, as perceived through

the actuators of the robotic system, such that the simulation of the robot dynamics is accurate.

Hence, the concern here is that the overall contact force felt at the joint level is correct, but that

the details of how that force is obtained are irrelevant. In essence, the contact force must be physi-

cally correct only on a macroscopic scale, but must include all aspects of the physical phenomena

occurring during a contact event.

Finally, the contact dynamics modelling system must be used with existing simulation facilities

at the CSA. These simulation systems utilize fixed-step explicit solvers such as Runge-Kutta or
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even Euler to maintain a predictable computation time. The contact models must therefore be

compatible with explicit Ordinary Differential Equation (ODE) solvers.

1.2 Contact Dynamics Modelling System Requirements

The objective of this thesis is to develop a contact dynamics modelling framework that addresses

the needs of engineers responsible for the MSS operations task planning. The goal is to develop

a general-purpose contact modelling tool that could be used as an alternative to the currently-used

contact dynamics simulation software or the STVF. The tool could also be used for other types of

multibody simulations. The requirements for the proposed contact dynamics modelling system are:

• Realistic force: the model should be able to reproduce physically observed behaviour. The

level of fidelity should allow accurate simulation of the dynamics of a robotic system in

contact with its environment.

• Identifiable model parameters: related to a physical property and can be obtained through

experiments or analysis, e.g., doing a finite element analysis to obtain the contact stiffness.

• Compatible with explicit fixed-step ODE solvers.

• Capable of handling objects with complex shapes.

• Have as few as possible numerical parameters, with clear guidelines to select these settings.

• Allow for visualization.

• Have a robust implementation where the user does not have to hand-tune parameters related

to the implementation, e.g., selecting a contact normal a priori.

• Have a flexible implementation framework that allows different level of complexity in the

contact model to be implemented easily, e.g., using more complex or simple friction models.

• Easy to implement contact geometries and easy setup of the contact model.

The contact modelling system must be accurate and allow for experimental validation, such

that the numerically generated contact forces are a valid approximation of the actual forces felt

by the robotic subsystems of the MSS. It should include all relevant contact phenomena that will

affect the dynamic behaviour of the robotic system during tasks involving inserting or extracting an

object into or from its receptacle. With trustworthy models for the contact dynamics, the operations

engineer responsible for the planning of the robotic tasks will be able to select the appropriate con-

trol parameters, and in particular the FMA gains, such that a stable and predictable robot behaviour

will be obtained.
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1.3 Document Structure

The main focus of this thesis is the theoretical development of contact models, complete with

normal damping and friction. The core of the thesis derives and presents the equations needed to

implement two contact models. The contact model implementation is covered in Appendix A.

Chapter 2 reviews the state-of-the-art in modelling contacts and friction. The survey indicates

that compliant contact models are well suited to meet the contact modelling system requirements

given in this chapter. The focus then turns to how compliant contact models are implemented. In

particular, the discussion covers the methods used to treat contact between objects with complicated

geometries. A discussion of the friction phenomenon follows and a review of friction models in

the literature is given.

Chapter 3 introduces a new contact model for objects that have non-conformal geometries, i.e.,

where the shape of the two bodies have sufficiently dissimilar profiles, such that the contact regions

are small in comparison to the size of either body. Since, it is based on Hertz theory, the contacting

surfaces must be smooth and without discontinuity, i.e., no corners or sharp edges. A new bristle

friction model is presented that includes the modelling of the dynamics of friction.

For objects that have more complex geometries or have non-smooth features, the Hertz theory

models cannot be used. An alternative contact modelling approach based on the Winkler elastic

foundation model is presented in Chapter 4. The resulting so-called volumetric contact model uses

information about the shape of the colliding bodies to compute the contact forces and moments

acting on the contact surface. This volumetric contact model can handle contact between objects

with non-smooth features and when the contact surface is small or large. A new volumetric bristle

friction model, complete with tangential and spinning friction force and torque is also presented.

Chapter 5 presents numerical simulation results using the contact models presented in Chap-

ters 3 and 4. Some results are compared to benchmark results from the literature. The behaviour of

the total system energy is also examined to verify that the model effectively conserves or dissipates

energy in a physically correct manner.

Chapter 6 presents a discussion on the features and possible applications of the proposed con-

tact models. The conclusions are given and some topics are suggested to further the research.

Appendix A gives an overview of an object-oriented contact dynamics modelling infrastruc-

ture. The framework facilitates the creation of contact models by providing the necessary hooks

and functionalities to automatically integrate the contact models into a numerical simulation en-

vironment. The implementation of the structure for handling contact models for complex objects

—objects that include many sub-parts— is also presented.

1.4 Original Contributions

The contributions from this work fall in three categories: those related to the point and volumetric

contact models, and a novel software architecture used to integrate the contact models under a
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common framework.

1.4.1 Point Contact Model

Chapter 3 introduces a contact model suitable for modelling collisions between objects with non-

conformal geometries. The key contributions related to this contact model are:

• A reformulation of the hysteretic damping term from the Hunt-Crossley contact model such

that the normal energy dissipation is controlled via a single parameter called the damping

factor. The new formulation separates the hysteresis term into its damping and stiffness

parts, thereby directly relating the energy dissipation to the damping factor.

• A new expression for the damping factor as a function of the effective coefficient of resti-

tution. The new definition is derived from the exact solution of the equation of motion of

two spheres in direct central impact. It can be used to obtain the damping factor over a wide

range of values of the coefficient of restitution and is not restricted to values close to unity

like other previously proposed definitions.

• A new seven-parameter bristle friction model. The bristle friction model is adapted to the

context of 3-dimensional frictional impact modelling with introduction of load-dependent

bristle stiffness and damping terms, and with the expression of the bristle deformation in

vectorial form. The model feature a dwell-time stiction force dependency and is shown to

be able to reproduce the dynamic nature of the friction phenomenon. Section 3.3.2 proposes

methods to identify the friction model parameter or ways to simplify the friction model

depending on the required level of modelling fidelity.

• Experimental validation of the contact model was performed using the STVF. Good corre-

spondence between the simulated and experimental results was obtained. The experiments

allowed the identification of the normal contact stiffness and damping as well the stiction

and Coulomb friction coefficients.

1.4.2 Volumetric Contact Model

In Chapter 4, a contact model based on volumetric properties is presented. The key contributions

related to this contact model are:

• The analysis of the volumetric contact model assumptions: the model properties are derived

assuming the elastic behaviour of the contacting objects can be approximated using a modi-

fied Winkler elastic foundation model, and that the contact surface is approximately flat. A

method to deal with the cases where this latter assumption is not valid is also presented.

• The new contact plate concept. It is introduced as a mechanism to “measure” the contact

forces and torques acting between two bodies.
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• The demonstration that the contact forces and moments can be expressed in terms of the

volumetric properties of the volume of interference between the two bodies, defined as the

volume spanned by the intersection of the two undeformed geometries of the colliding bod-

ies. The properties of interest are: the volume of the volume of interference, the position of

its centroid, and the inertia tensor about its centroid.

• The demonstration that the two deformable body contact model equations are in fact identical

to the ones for one deformable body case, with the exception that the contact stiffness of the

two deformable body contact model corresponds to an equivalent stiffness defined in terms

of the stiffness of each body.

• The demonstration that the contact normal corresponds to one of the eigenvectors of the

volume of interference inertia tensor.

• The new concept of average surface velocity. It gives a measure of motion that accounts for

both the relative translational and angular motions.

• The finding of dimensionless factors called the Contensou factors. These factors relate the

friction force and spinning torque caused by the Coulomb friction, and how these vary as a

function of the relative motion between the bodies.

• A volumetric version of the seven-parameter bristle friction model. The friction model in-

cludes both the tangential friction force and spinning friction torque. The model uses the

Contensou factors to control the behaviour of the Coulomb friction.

• A new general-purpose contact model based on volumetric properties that includes the nor-

mal contact force and damping, rolling resistance torque and tangential and spinning friction

force and torque. It features a contact stiffness proportional to the contact area and leads

automatically to the correct selection of the point of action of the force. This volumetric

contact model can be used to model contact dynamics for a broad range of object shapes

because the volumetric quantities that serve as input to the contact model can be determined

for any object shape. In particular, the volumetric contact model is able to handle contacts

between objects that have edges and corners, and where the dimension of the contact surface

can be large with respect to the size of the objects.

1.4.3 Implementation Framework

Although it is not reported in detail in the present document, a important contribution of the work

accomplished in this research is the implementation of an open-architecture and object-oriented

framework that facilitates the creation of contact models based on compliance, and their integration

into a numerical simulation environment. Appendix A provides more details on the framework and

explains how it is used to implement a number of variations of the proposed contacts models.
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Literature Survey

This chapter reviews the literature on contact dynamics modelling methods for use in a multibody

dynamics simulation system. The first section presents a review of the main contact modelling

approaches and provides the rationale for the method selected in this work: contact models based

on compliance. In Section 2.2, the Hertz theory model is reviewed and its use and limitations for

modelling contact between objects with simple and complex geometries is investigated. Section 2.3

gives the background on an alternative to the Hertz theory for modelling elastic contacts: the Win-

kler elastic foundation model. Section 2.4 presents an analysis of the contact friction phenomena

and the various models that have been proposed to model its behaviour. Finally, Section 2.5 sum-

marizes the principal references that serve as basis for the contributions presented in this work.

2.1 Contact Dynamics Modelling

This section presents the state-of-the-art of contact modelling methods. The reviewed methods are

suitable for use in an operational environment, where simulation results must be obtained quickly

and reliably.

2.1.1 Historical Background

The physical phenomena occurring during the impact of two or more bodies are a topic of contin-

uous research. Nowadays, with the aid of increasingly powerful computer hardware and advanced

software the realistic modelling and fast simulation of complex impact situations of two or more

bodies is feasible. Already in 1639 Marci derived first relations of impacting bodies based on ex-

periments. Huygens found then in 1669 that for the fully elastic impact the normal velocities before

and after the impact have the same magnitude but opposite direction. This kinematic relation was

then extended by Newton in 1686 who derived experimentally the coefficient of restitution and

postulated the impact hypothesis for central impacts with kinetic energy loss. In 1738 Euler de-

scribes the contact of two fully elastic impacting bodies with a massless spring, herewith defining

11
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the impact as a continuous process. Poisson divides in 1835 the impact into a compression and

restitution phase and postulates the impulse hypothesis, which says that the impulses in the two

impact phases can be related by a coefficient of restitution.

Hertz interpreted in 1882 the elastic normal impact as a quasi-static process and derives a static

solution, neglecting elastic wave propagation within the bodies. He showed that within the contact

region, there is an elliptical distribution of the contact pressure. Integrating the pressure over the

area, he determined the compressive reaction force. He then obtained the normal displacement

at the surface of the body from the Boussniesq solution for a force applied normal to the surface

of an elastic half space (Goldsmith, 1960; Timoshenko and Goodier, 1970). The resulting force

approach law features a stiffness coefficient that depends on the material properties and geometries

of the colliding bodies. A graphical procedure not only considering the normal but also tangential

impulse changes due to friction was demonstrated by Routh in 1889. However, this graphical

approach is not easily extensible to the three-dimensional case.

The motivation for contact modelling and simulation shows a great variety. For design, analysis

as well as model-based control a very detailed investigation of the dynamics of complex mechan-

ical, often multibody, systems is needed. In general, two main approaches for the description of

impacts can be distinguished, those that assume the colliding bodies are perfectly rigid and those

that assume some form of compliance. Depending on the application they bear certain advantages

and disadvantages. A more detailed overview thereof can for instance be found in Szabó (1987)

and in Lüder (2000). As indicated in Section 1.1.3, continuum models based on FEM are not in-

cluded in the present analysis because of the large computational overhead associated with these

methods.

2.1.2 Rigid Body Contact Models

The rigid-body approach is only concerned with the description of the global impact response,

i.e., the motion after the impact depending on the motion at the beginning of the impact. Im-

pact hypotheses are applied such as Newton’s kinematic (Han and Gilmore, 1993) or Poisson’s

(Glocker and Pfeiffer, 1992) impulse or Stronge’s (Stronge, 2000) energy based impact hypothesis,

to derive a complete set of equations. Hereby, the equations of motion are derived by balancing the

system’s momenta before and after the impact, i.e., without explicitly considering contact compli-

ances. This approach assumes the collision to be an instantaneous and discontinuous phenomenon,

i.e., a discrete event, and a momentum balance is performed to calculate the velocity jumps. This is

also known as piecewise analysis (Lankarani, 1996) and stereo-mechanical theory (Stronge, 2000).

Klarbring (1990) investigates a contact problem with friction involving one contact point and

two degrees-of-freedom. Lankarani and Pereira (2001) classified the planar frictional impact prob-

lem in seven cases, and account for all modes of impact i.e., sliding, sticking, and reverse sliding in

the compression and restitution phases. The classification is based on the pre-impact system con-

figuration and velocities. Friction during the impact is accounted for through the introduction of a



Chapter 2: Literature Survey 13

friction impulse. Stronge (2000) introduced the concept of an infinitesimal deformable particle to

obtain the changes in velocity as a function of the impulse during the infinitesimal contact period.

This allows following the evolution of the contact process and variation in relative velocity across

the contact patch as a function of the impulse.

Some contact dynamics simulation systems never compute the contact forces, and only use

collision impulses to enforce the non-penetration constraint, i.e., the equations of motion are solved

at the velocity level only (Mirtich and Canny, 1995). For lasting contact, Pfeiffer and Glocker

(1996) show that the resulting dynamic equations can be setup as a linear complementary problem,

where the contact accelerations are used as complementary variables to the contact force. To avoid

deviations from the geometric constraints, the contact distance can be used instead of acceleration

as a variable complementary to the contact force (Hotz et al., 1999). A comprehensive presentation

of the rigid-body contact dynamics fundamentals is given by Glocker (2001). Sharf and Zhang

(2006) propose an alternative approach for solving the non-colliding contact problem for objects of

any shape. The method is also based on rigid-body dynamics but leads to an explicit closed-form

solution for the normal contact force.

However, these rigid-body approaches fall short in representing the underlying impact phenom-

ena by neglecting the small displacements during collision. Moreover, the utilized coefficient of

restitution is often defined independently of the normal component of the relative velocity, which

contradicts experimental measurements (Goldsmith, 1960). Also, in the case of Dextre, the ma-

nipulator itself is inherently flexible, and, when the manipulator comes into contact with its envi-

ronment, the impact durations are significantly larger then the sampling period of the discrete-time

control system of the manipulator. As a result, the impact duration cannot be assumed to be in-

stantaneous. In the context of robotic operations, the time-history of the force profile is of critical

importance, as it affects the ability of the robotic system to remain stable while performing contact

tasks. Also, recent studies have shown that the stiffness of the contact greatly influences the stabil-

ity of robotic systems under discrete-time control (Kövecses et al., 2007). Consequently, rigid body

models, which assume the stiffness to be infinite, provide an inadequate reference for validating

the performance of space robotic systems in contact.

2.1.3 Regularized Contact Models

The second class of contact models are the regularized contact models. The term regularized de-

scribes the reformulation of a problem to derive a solvable formulation (Lichtenberg and Liebermann,

1992). In this particular case, the regularization consists in changing the nature of the impact from

a discontinuous process into a continuous one. The contact forces are described as a function of

the contact deformation by smoothening the discontinuity of the impact and friction forces in the

constraints (Brogliato, 1996; Vielsack, 1996). This approach is often referred to as the penalty

method, whereby the model returns a measure of the constraint violation; the larger the violation,

the higher the penalty.
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In contrast to the contact models based on the rigid body assumption, compliant models de-

scribe the rate-dependent normal and tangential compliance relations over time. Herewith, a

velocity-dependent coefficient of restitution is easily incorporated, a behaviour consistent with

experimental observation (Goldsmith, 1960). These models can be easily integrated within the ex-

isting simulation systems at the CSA, which are based on standard ODE solvers. Using this contact

modelling approach, it is also easy to add sophisticated friction models, such as the dwell-time de-

pendent friction model proposed in Gonthier et al. (2004), and which will be described in detail in

Section 3.2.2.

Another key feature of compliant contact models is that they naturally handle contact between

flexible systems. The joints of robotic systems designed for space are usually equipped with plan-

etary gears or harmonic drives to maximize the torque output since the available power is very

limited. These gear reduction systems introduce significant joint flexibility in addition to the in-

herent link flexibility. These flexibilities are typically associated with some form of damping,

e.g., joint viscous friction. Hence, the flexibilities affect the overall system dynamics, particularly

during impacts. If the robotic systems were perfectly rigid, the impacts would be instantaneous.

Instead, the real robotic systems deform during the collisions and remain in contact for significant

time periods. The damping associated with the manipulator flexibilities also increases the amount

of energy dissipated during the impact and therefore effectively lowers the coefficient of restitution

of the impact process. These dynamic interactions are not as easily included in the discrete contact

modelling approach.

Finally, the stiffness properties of the compliance can be directly related to the colliding object

geometries and to the material Young’s modulus. Hence, a model more related to physical quanti-

ties and thus more intuitive can be derived. For these reasons, the compliant modelling approach

was selected for the proposed contact modelling method. The main difficulty in using this method

lies in the fact that the resulting set of equations become numerically stiff and have very small time

constants when the contact stiffness is high. But these issue are mitigated by the fact that the con-

tact events are occurring at low velocities, and that the existing simulation facilities are designed to

operate with small integration step sizes.

2.2 Contact Models Based on Hertz Theory

The discussion from the preceding section indicates that the regularized model approach is better

suited to meet the requirements for the contact model specified in Section 1.2. This section looks in

more detail at the literature regarding the implementation of compliant contact models in multibody

simulations. These models are essentially non-linear spring models used to predict the force acting

to separate the colliding bodies. This force will be hereafter called the normal contact force to

distinguish it from the frictional forces acting in a direction tangential to the contact surface.
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2.2.1 Hertz Theory

The first published work on the subject of contact mechanics was written by Hertz (1896). His

analysis of the contact between two elastic bodies remains today one of the most important ex-

amples of a solution to a classical problem in the theory of elasticity. Since then, a large volume

of work has been published on solving contact mechanics problem using the classical theory of

elasticity.

In order to apply the theory of elasticity to the contact mechanics problem, the bodies are

assumed to be homogeneous, isotropic and linearly elastic, and the plastic flows are treated quasi-

statically. Solutions have been found for classical contact problems, where the colliding bodies

have simple geometries such as spheres or cylinders (Gladwell, 1980; Johnson, 1985; Barber, 1992;

Fischer-Cripps, 2000). Alexandroff and Pozharskii (2001) reported results for non-classical three-

dimensional contact problems.

On the other hand, the use of contact models derived from Hertz theory should be restricted

to contact between bodies with non-conformal geometries, i.e., where the shape of the two bodies

have sufficiently dissimilar profiles, such that the contact regions are small in comparison to the size

of either body. This restriction is imposed by the half-space approximation used to solve the contact

mechanics problem. In this theory, the deformations are assumed negligible outside the small

contact region. In these circumstances, the contact stresses comprise a local ‘stress concentration’

which can be considered independent of the stresses in the bulk of the two bodies.

The Hertz contact force law (Goldsmith, 1960; Timoshenko and Goodier, 1970) establishes

that for two spheres i and j in direct-central impact, the normal contact force fk is a function of the

relative local inter-penetration (or indentation) and is given by

fk = k |x|p , (2.1)

where the relative local inter-penetration x is defined as the maximum distance between the un-

deformed surfaces of the two spheres. The force-approach law based on Hertzian theory yields

p = 3/2 when the two contacting bodies are linearly elastic spheres. The generalized parameter k

depends on the material properties and the radii Ri and Rj of the spheres, i.e.,

k =
4

3π(hm,i + hm,j)

(

Ri Rj

Ri + Rj

)1/2

, (2.2)

where the material properties hm for the spheres i and j are

hm,l =
1 − ν2

l

π El
with l = i, j . (2.3)

The variables νl and El are the Poisson’s ratio and the Young’s modulus associated with each

sphere respectively. Note that the form of Equation (2.1) is also valid for other types of geometries,
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and that Equation (2.2) represents the special case of two elastic spheres. To model the contact

force of a sphere and a plane, one of the radii is set to infinity, and Equation (2.2) simplifies to

k =
4

3π(hm,i + hm,j)
R

1/2
i , (2.4)

where i refers to the properties of the sphere and j to the properties of the plane as defined above.

2.2.2 Models Based on Hertz Theory

Typical regularized models consist of a combination of spring and damper elements with linear

or nonlinear force characteristics. For direct central and frictionless impacts Hunt and Crossley

(1975), Khulief and Shabana (1987), and Lankarani and Nikravesh (1988) use a continuous contact

model with a local compliance in the normal direction. The energy dissipation is a function of a

damping constant which can be related to the impact velocity and the coefficient of restitution e.

Marhefka and Orin (1999) demonstrated the validity of the expression for the damping, and that

the derived formulations are only valid for e close to unity.

Compliant contact models based on Hertz’s Theory are typically expressed in the form of an

equation relating the depth of inter-penetration of two bodies to the contact force. This distance

is obtained using specialized geometric algorithms in order to detect the occurrence of collisions

and compute some relevant metric feeding into the compliance models. These algorithms will be

referred to hereafter as collision detection and collision metric algorithms. These topics are covered

next.

2.2.3 Collision Detection, Penetration Depth

Many surveys have been published that discuss the techniques that have been developed to effi-

ciently detect collisions (Lin and Gottschalk, 1998; Jimenez et al., 2001). Most of these techniques

focus on the problem of detecting collisions between two or more rigid body objects that are defined

either by a large set of polygons, or a set of quadratic surfaces.

The fastest methods currently available for detecting collisions between rigid body objects

combine extensive preprocessing with assumptions about temporal coherence and geometric or

topological properties. Other techniques make fewer assumptions about the type of objects they

will be applied to. The latter use a multi-level collision detection scheme to concentrate the search

to regions where collisions have a potential of occurring. To this end, bounding boxes are set up

around the objects and collision tests are first performed on these simpler geometries. As a result,

the heavy computational effort required for the detailed geometry collision tests is restricted to a

subset of objects in close proximity. Different researchers have experimented with bounding shapes

such as axis-aligned bounding boxes (AABBs), spheres, object-oriented bounding boxes (OBBs)

and others; see O’Brien (2000) for a more extensive discussion on the subject.
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The work presented here will focus on the detailed modelling and simulation of contact forces

between arbitrary geometries and not on the high level sweep-and-prune methods. The two com-

monly used methods to perform the low-level geometric collision tests are: (1) an exact mathemat-

ical formulation of the contact distance between selected geometrical features of the objects, and

(2) an optimization method to converge on the location of the closest point.

Closest Feature Algorithms

The main advantage of the collision detection algorithms based on closest feature detection is that

they provide an exact measure of the contact distance. Typical feature pairs are the vertex-face

pairs and edge-edge pairs found in geometries represented by a set of polygons. A good example

of this type of collision detection system is V-Clip, which is well adapted to three dimensional

collision detection system for contact dynamics simulation (Mirtich, 1998).

Closest feature algorithms can be defined for other geometric features, such as cylinders or

disks (Kecskeméthy et al., 2000), but this requires a case by case analysis and is not easily appli-

cable to any geometric feature pair. Furthermore, this approach is prone to geometric singularities

and is context dependent. For example, when two disks are overlapping on each other, but not in-

tersecting, which one is on top? Are they contacting through their surfaces are through their edges?

The answers to these questions depend on the context within which the geometric feature pair is

considered.

Hence, closest feature algorithms are typically used only for polygonal geometries. On the

other hand, they are very efficient since the resulting equations are simple to solve. Addition-

ally, these algorithms can be easily tailored to return a penetration distance and a contact normal

direction when objects are colliding. This feature makes makes them readily suitable for the im-

plementation of contact force models based on the penetration distance. The penetration distance

is most commonly (and arbitrarily) defined as the length of the shortest relative translation that re-

sults in the objects losing contact. However, a more robust definition is given by Heidelberger et al.

(2004).

Optimization Algorithms

An alternative formulation for the collision detection problem relies on an optimization approach.

Here, the object geometries can be described by quadratic surfaces, and the minimal separation or

inter-penetration distance of two objects is found using an optimization method. One of the first

algorithms proposed in this category is the GJK algorithm (Gilbert et al., 1988). Van Den Bergen

(1999) implemented an enhanced version of the GJK algorithm (Cameron, 1997) in combination

with AABB trees that can also compute the penetration distance. Sharf and Nahon (1995) proposed

to define the interference distance as the distance by which objects should be shrunk until contact

is lost. The latter definition also works for objects bounded by quadratic surfaces.
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Collision detection algorithms based on optimization methods can handle objects bounded by

quadratic surfaces, but at the cost of introducing one or more numerical tolerances required by

the optimization algorithm. If the objects under consideration are very stiff, then the convergence

threshold must be set very small in order to minimize a corresponding contact force “noise” re-

sulting from the numerical imprecision of the collision detection technique. As a result, collision

detection algorithms using an optimization scheme to identify the contact distance or penetration

depth are not necessarily the best choice for modelling the contact dynamics of stiff objects.

2.2.4 Contact Normal

The determination of the contact normal, i.e., the direction along which the resultant force prevent-

ing penetration must act, is a parallel problem to the determination of the penetration depth. It has

been less formally investigated, perhaps because of it seemingly intuitive solution. However, there

are situations where the contact normal cannot be determined by simple observation. For example,

when two cubes touching each other at the corners the interaction becomes complex and a more

robust and reliable method is required. Ideally, the user of the contact dynamics simulation system

should not have to figure out a priori the direction of the contact normal.

For collision algorithms based on closest feature distance, the contact normal problem is triv-

ial: the contact normal is the direction along which the penetration distance is measured. For the

example above, a two-corner intersection between two cubes would yield a list of 6 point-face pairs

(there are two corner points facing three faces each) and 9 edge-edge pairs (there are three edges

connected at each of the two corners), each of which gives a contact distance and corresponding

penetration direction. Mirtich (1998) discusses how to obtain the contact force from a set of result-

ing contacting feature pairs. For algorithms based on an optimization method, the answer is not as

straight-forward, but solutions have been proposed (Van Den Bergen, 2001).

Another approach is used by Nagle1 and Tenaglia et al. (1999) to obtain the contact normal.

The idea is to “wrap” the objects into a viscoelastic shell of uniform thickness, or skin, and simply

use the minimum distance direction evaluated by the collision detection algorithm as the contact

normal. Of course, the skin thickness and stiffness must be selected such that inter-penetration

never exceeds the combined skin thickness of both objects. This shortcut solves two problem at

once: the same algorithm can be used for collision detection and penetration and the contact normal

is always well defined.

Alternatively, the contact surface normal can be determined as a function of the curve defined

by the intersection of the two undeformed body surfaces. When the curve lies within a plane,

then the contact normal is simply set as the normal of the plane. When this curve is not inscribed

within a plane, i.e., it is three-dimensional, then a best-fit plane is found such that it minimizes

the distance to each point of the curve, or, alternatively, that it maximizes the projected surface

area of the intersection curve. The contact surface normal is then set to the normal of the best-fit

1See Patent No. 5,644,204 on Animats website: www.animats.com



Chapter 2: Literature Survey 19

plane. This definition for the contact normal based on the intersection curve ensures that the contact

normal will always change direction smoothly as the colliding bodies move with respect to each

other. This method for determining the contact normal is commonly used by multibody dynamics

simulation software packages such as ADAMS2 and Working Model3.

The various definitions for the contact normal presented above share a common deficiency:

they are nothing more then an arbitrary choice for the contact normal definition. These choices are

not based on the mechanical analysis of the problem, and, as such, there is no justification that any

of these methods yield a physically representative selection of the contact surface normal.

2.2.5 Modelling Contact Between Objects with Complex Geometries

The continuous approach has often been disregarded in the context of real-time or near real-time

simulation because of a perceived lack of computational efficiency. While it is true that the numer-

ical integration of the differential equations through an impact phase requires that the solver takes

relatively small steps at that time, it is not clear however that the overall process is less efficient than

the discrete approach. Indeed, there are at least two contact dynamics simulation systems using the

continuous approach to model contact dynamics, and both of them are targeted for use in the con-

text of real-time simulation of low velocity robotic tasks involving hard contact with the external

environment (Ma, 2000; Tenaglia et al., 1999). In the world of computer animation, Falling Bodies

stands out as being the only physically-based animation system using the continuous approach.

On the other hand, these latter contact dynamics simulation systems often take simplifying

“shortcuts” to generalize the use of simple contact models, e.g., using a model of two spheres

colliding with each other to calculate the contact forces between objects with more complicated

shapes. In general, such generalizations are not representative of the physical phenomena at work

during contact, and, hence, are not correct. The deficiencies related to these simplifying assump-

tions are best explained by looking at examples. Two cases are presented next.

Case Study 1: Falling Bodies

The software product Falling Bodies sold by Animats is a good example of a contact dynamics

system based on a regularized approach. Fortunately, (or unfortunately) their technology has been

patented, so the information on the technology is public domain.

Falling Bodies uses the enhanced GJK (Cameron, 1997) collision detection algorithm com-

bined with the patented skin approach to determine the contact distance, penetration distance and

contact normal. The problem of contact force noise discussed in Section 2.2.3 is avoided by se-

lecting a spring model with an exponential force profile. With such a model, the “local stiffness”

of the spring is low when the penetration depth is small, and becomes high when the penetration

distance is in the order of the skin thickness.

2Personal conversation with Mr. Rajiv Rampalli (MSC Software).
3
http://www.workingmodel.com/vn4d/faqlist.html

http://www.workingmodel.com/vn4d/faqlist.html
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The contact force noise is only noticeable when the contact force varies slowly, such as when

the system is in static equilibrium. In static equilibrium, the magnitude of the contact force is much

smaller than the magnitude of the contact force during impact. For stiff materials, the difference

is by several orders of magnitude. Thus, by introducing an exponential spring instead of Hertz-

type model, Falling Bodies can significantly reduce the numerical force noise by using a lower

spring stiffness coefficient, since the spring model will naturally increase the stiffness when the

penetration depths become larger. Hence, it can be concluded that the spring model used in Falling

Bodies was selected for its numerical properties and not because of the physics of the collision

process.

Another problem when using an optimization scheme like the GJK algorithm is that the location

where the maximum object inter-penetration occurs can move instantaneously from one location

to another. The case where a square block rests on a plane in static equilibrium is considered. If

the block is slightly perturbed, then one corner will start sinking into the plane. The GJK algorithm

will therefore converge to this corner and this is where the contact force will be applied. Then, the

contact force will push that corner up. This will cause the collision detection algorithm to converge

to another corner, which will be also pushed up, and so forth. Hence, a cycling behaviour will

appear as a result of the method of determination of the contact force location. In turn, there will

be a resulting moment “noise” about the block’s centre of mass due to these sudden changes in the

location of the contact force point of action, even if the force itself does not change in magnitude.

Again, this behaviour is not consistent with the actual behaviour of the contact interaction.

Case Study 2: Contact Force With V-Clip

The block resting on a plane example discussed in the previous section is now reconsidered. The

contact force location cycling behaviour can be avoided if separate contact models are assigned at

each corner of the block, such that a force is always acting at each point, and that the overall load

of the block is distributed among the four contact models.

Here, each feature pair (e.g., vertex-face and edge-edge) is assigned to individual contact mod-

els, and a contact force is applied at each corner whenever this corner of the block penetrates the

plane. What was just described is the implementation of a contact dynamics system using a closest

feature-type of collision detection algorithm. In Section 2.2.3 the V-Clip collision detection sys-

tem was introduced. V-Clip is a closest feature collision detection algorithm designed to return the

list of closest (or penetrating) features. Hence, the force cycling problem is avoided when using a

closest-feature contact force approach.

On the other hand, there are other situations where this modelling approach yields physically

inconsistent behaviour. First, a particularity of this modelling approach is that the contact stiffness

is directly proportional to the number of features in contact. This is a property of the contact

modelling system, not of the physical phenomena.

Another inconsistency occurs when the objects are rotating with respect to each other. The
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same block resting on a plane example is considered again, but when it is sliding and spinning with

respect to the plane. During the motion, it may happen that one of its corners becomes stationary.

If the contact models used at each vertex-face feature pair includes some model of the stick-slip

frictional effect, the corner of the block that is not moving will stick, while the other corners

would be sliding. However, the entire contact surface is undergoing the translational and rotational

motion; it just happens that one point on it is not moving. Hence, it is best to consider the contact

surface as a whole and not just at the corners.

It may also happen that the point that is locally stationary is not be located at a corner. In this

case, the contact models located at the four corner points would simply miss the phenomenon. This

behaviour is an artifact of the modelling system and is not consistent with the physics of stick slip

phenomenon, i.e., either the face touching the plane is sticking or it is sliding. But it will not have

one corner sticking while the others are sliding.

2.3 An Alternative to Hertz Theory

In the previous section, it was observed that contact dynamics modelling systems that rely on

compliant contact models often drastically simplify the interaction of complexly shaped bodies to

simple cases, or even point contacts. The significance of the shapes of the colliding bodies on

the resulting contact forces is generally not taken into account, or not modelled in a consistent

manner for all components of the contact force, namely, normal and tangential force, rolling and

spinning resistance torques. The Hertzian contact model, which assumes an elastic half-space

approximation, is often used to model contact phenomena.

2.3.1 The Winkler Elastic Foundation Model

Strictly speaking, Hertz theory should be used to model contact mechanics only when colliding

body surfaces can be described by second-order polynomials. In practise however, its application

can be extended to bodies with smooth surfaces as long as the resulting contact area remains small

with respect to the dimensions of the bodies. Even though the geometric boundary conditions may

not be exactly fulfilled, the Hertz theory’s assumption that the pressure distribution over the contact

area is elliptical will still apply, or at least provide a good approximation, such that the theory still

applies (Johnson, 1985).

On the other hand, there are situations where the dimensions of contact areas are significant

with respect to the size of the bodies and the assumption of elliptical pressure distribution is no

longer valid. This situation occurs when the geometries of the colliding bodies are conforming, i.e.,

they have similar shapes such that the resulting contact area becomes large. Johnson suggested to

use the Winkler elastic foundation as a simple approximation for the contact pressure distribution.

The foundation model can be used in complex situations where half-space theory would be very

cumbersome:
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The difficulties of elastic contact stress theory arise because the displacement at any

point in the contact surface depends upon the distribution of the pressure throughout

the whole contact. To find the pressure at any point in the contact of solids of given

profiles, therefore, requires the solution of an integral equation for the pressure. This

difficulty is avoided if the solids can be modelled by a simple Winkler elastic founda-

tion, or ‘mattress’ rather than an elastic half-space. (Johnson, 1985).

Figure 2.1 shows the foundation model, where kf is the elastic modulus of the foundation and hf is

the arbitrarily chosen depth of the foundation mattress. The SI units of kf and hf are [N/m2] and

[m], respectively.

f n

hfkf

Figure 2.1: The Winkler elastic foundation model.

Hippmann (2004) uses this approach to deal with complex, i.e., conforming, geometries and

suggests methods of how to obtain the foundation depth and stiffness. However, the method as-

sumes the geometries are composed of polygons, and hence it is not very well suited for objects

with curved surfaces. The global body-to-body contact force is obtained by numerically summing

up the force contribution from each contacting polygon. The local polygon normal force magnitude

is readily found as a function of the polygon area and the inter-penetration depth, while its direction

is determined arbitrarily using some heuristic rules. The model also includes a simple tangential

friction model. Hasegawa and Sato (2004) used a similar approach to implement a real-time rigid

body simulation for a haptic device using a more sophisticated friction model with state transitions

between the static and dynamic friction forces. Their contact force model uses the contact volume

as a metric to evaluate the contact force. O’Brien (2000) also suggested using the contact volume

to obtain the contact force, but without justifying it.

2.3.2 Obtaining Volumetric Information

The authors cited in the previous section used polygonal models to obtain the contact volume and

the contact force thereof. However, the polygonization of a geometry introduces undesirable side-

effects in the modelling of contact forces. For example, a sphere that is perfectly round will not

roll in the same way as a faceted sphere made out of polygons. Typically, the contact dynamics is

very sensitive to these geometric nuances. The alternative is to use a geometric description system

that describes the shapes exactly, without the polygon approximation.
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Projective geometry is a fundamental branch of geometry, invented in the 17th century and

formalized in the 19th century. Almost forgotten since then, it has recently been reconsidered by

Rotgé (1997) because of its remarkable algorithmic attributes. The classical Euclidean geometry

is a subset of affine geometry, which is itself a subset of projective geometry. Projective geometry

is a method of describing geometry that focuses on the relative relationship between the features

of a geometry, rather then looking at the dimensions of the object, e.g., position and length, which

correspond to a Euclidean representation.

The relational nature of the geometric description in projective space allows an exact definition

of the geometries, not subject to floating point imprecision and not requiring a polygonal discretiza-

tion. The resulting solid modelling technology uses instead polynomials to characterize projective

algebraic surfaces (Rotgé and Farret, 2007). It represents objects using simple projective primi-

tives, e.g., quadric, cubics, quartics, etc. In fact, this polynomial technology uses the projective

algebraic surfaces as primitives and functional expressions as structural relationship descriptors.

In this approach, the basic idea is that complex solids can be represented as compositions of the

primitive by means of arithmetic and logical operators. The result is a solid modelling technology

that provide the means to render and manipulate exact volumes and extract volumetric information;

see Figures 2.2 and 2.3.

Figure 2.2: Volumic renderings of the International Space Station.

The contact model for conforming contacts presented in Chapter 4 relies on the polynomial

technology to obtain the volumetric information it needs to evaluate the contact force. Parallel

Geometry Inc.4 (LLG), which promotes this technology, has developed for the CSA a suite of

collision detection and collision metrics functions that permit the implementation of the proposed

contact modelling framework. The technology also includes a novel ellipsoid-based high-level

pruning technology that optimizes the collision detection queries. This approach is different than

usual sweep-and-prune methods described in Section 2.2.3, which are typically based on boxes or

spheres. Here the advantage is that the ellipsoid can be stretched or squeezed around the object

4http://www.llgeometry.com

http://www.llgeometry.com


24 Contact Dynamics Modelling for Robotic Task Simulation

Figure 2.3: A volumic model of Dextre.

shapes to get a very close fit. The resulting collision detection system can therefore be optimized

for highly complex environments, and yet remain very efficient (Doyon et al., 2004).

The literature survey has up to now mainly focused on the normal contact force acting to prevent

inter-body penetration. However, friction plays an equally important role in the modelling of body-

to-body interaction forces. This topic is presented in the next section.

2.4 Tangential Friction Models

The interaction forces between two moving bodies is the result of complex physical phenomena.

Two aspects are inherently present when computing contact loads. These are friction and normal

contact. Historically, these two aspects were treated separately, despite the fact that in reality they

constitute a single physical phenomena. This section presents a review and analysis of the contact

friction phenomena.

Portions of the text in this section are extracted from de Carufel et al. (2000), an unfinished

document prepared as part of an internal research project lead by the Robotics Section at the CSA.
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Authorization to reproduce the text was obtained5 and the contribution from the original authors is

acknowledged. Some of the text and figures from the original document are included in this thesis

because the original document was never published.

2.4.1 Historical Background

Tribology as a science was born in England at the beginning of this century. However, the study

of friction is relatively old. Leonardo da Vinci at the end of the XVth century described in his

Notebooks the analysis of the motion of a brick on an inclined flat wall. His statements reflected

what is known today as the fundamental laws of friction. However, it is only some two centuries

after and apparently without the knowledge of da Vinci’s work that Guillaume Amontons6 stated

the laws of friction in 1699 (Bennewitz, 2007). They are summarized as:

1. The friction force is a force opposing the motion, proportional to the normal load.

2. The friction force is independent of the contact area.

One of the most substantial contributions to tribology is the work of a French army engineer,

Charles Augustin Coulomb. Stimulated by the French war industry, he established scientifically

the basic laws of tribology. His statements on the relation that exists between the micro-structure

of the interfacing bodies in contact and the friction force has survived up until now. In his model,

the surface roughness was represented by bristles and the friction force was explained by the effort

necessary to move two brushes relative to each other, with their bristles in contact. Using this

analogy, the difference between static and kinetic friction could be explained by the fact that, at

higher speeds, the bristles may jump over gaps resulting in a less opposition to the motion. The

reduction of friction due to lubrication could also be explained by lubricant filling up the gaps.

In the 1930s and 1940s, and with the intention of understanding wear and lubrication for in-

dustrial purposes, Bowden and Tabor (1939) investigated the microscopic behaviour of solids in

contact. Tribology as it is defined today was born. The rate of publication in tribology has been

increasing ever since. An impressive amount of publications, treating both experimental and theo-

retical studies, is available today. The following discussion is a summary of the ideas that emerged

from these investigations and that are considered fundamental to tribology.

2.4.2 Unlubricated Friction

In his work, Coulomb used the bristle model to represent the topography of the contact surface.

A generalization of the bristle was introduced by Bowden and Tabor: the asperity model. While

5Permission to reproduce the text from the document “CDMLib Reference Manual–CSA Internal Project” was given

by Érick Dupuis (Erick.Dupuis@space.gc.ca), Robotics Section Manager, Canadian Space Agency.
6Presentation at the European Academy (1699).

Erick.Dupuis@space.gc.ca
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bristles are long and thin by definition, asperities can have any height and size. This generalization

directly led to the concept of apparent and true surface of contact.

A study of the topography of the contact area is necessary to explain and understand friction.

Consider the situation where two bodies Bi and Bj are in contact over a finite dimension area Ac

(Figure 2.4). The protuberance of each surface are called asperities. They may have different

height, slopes and radius of curvature of the tip, and the slopes may differ in different directions.

In reality, the two bodies are in contact only over a portion of the total area Ac. The sum of those

microscopic contact surfaces is called the true area of contact At as opposed to the apparent area

of contact Ac.

BiBi

Bj

Bj Ac

True Contact Sites

N

U

F

Figure 2.4: Contact topology schematic.

With this representation, friction can be intuitively analyzed. Although the stress at the contact

surface appears relatively low, the stress at the true contact sites may become extremely high.

Assuming constant normal loads N , any increase in the tangential force F contributes to bring

the true contact sites to their plasticity limits. When they all reach that level, breakaway occurs

and sliding is initiated. This observation is in agreement with the work of Rabinowicz (1956) and

Dahl (1968) who suggested pre-sliding microscopic displacement occurring during stiction (Dahl

effect). This model also explains the dissipative behaviour of the friction process, both in stiction

and in sliding.

The asperity model can also explain other important observations on the macroscopic behaviour

of friction. For example, it can explain the reduction in friction forces in the kinetic regime. During

sliding, some asperities are brought in contact and are deformed up to the plasticity limit. In that

process however, some asperities are freed, releasing a certain amount of elastic strain energy

that can be partly used to deform newly contacting asperities, thus reducing the amount of work

necessary to maintain motion. Finally, the asperity model can also explain one of the fundamental

laws of friction. The increase in normal load is reflected at the asperity level by an increase in true

contact surface. As a result, the amount of tangential force necessary to bring all contact sites to

the plasticity limit is also increased. Analysis have demonstrated that for most materials, the true
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contact area is a linear function of normal load, and that the static friction force is a linear function

of the true contact area. This corresponds to the second law of Amontons.

The topography of different surfaces have later been measured using precise profilometric in-

struments. This demonstrated the validity of the asperity model (Majumbar and Bhushan, 1991;

Greenwood and Williamson, 1966; Mann et al., 1994; Bailey and Sayles, 1991). Throughout the

years, researchers have used contact mechanics to study the asperity contact problem. Various

models were developed using elasticity and elasto-plasticity approaches (Rigney and Hirth, 1979;

Avitzur et al., 1984; Chang et al., 1987; Chang and Ling, 1992).

A realistic view of asperities is given in (Majumbar and Bhushan, 1991). Asperities are most

likely as represented in Figure 2.5. There are various levels of asperities, ranging from machining-

level to molecular-level protuberances. Each level plays an important role in the friction phenom-

ena. This was captured in their fractal model of the topography.

Figure 2.5: Fractal topology model.

2.4.3 Lubricated Friction

Lubrication has been used for a long time to reduce friction and wear. Obviously, lubrication and

tribology are very closely related. Wear is essentially a result of friction. Again for industrial and

military purposes, the problem of lubrication was studied in great detail in the XIXth century. A

good approach for the understanding of lubrication in frictional contacts is through the analysis

of the Stribeck curves presented in Figure 2.6 relating the relative velocity between the lubricated

contacting surfaces and the friction force for constant normal loads.
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Figure 2.6: A typical Stribeck curve.

There are four distinctive regions to the Stribeck curve; see Armstrong-Helouvry et al. (1994).

Region I is called the stiction region. In this regime, the lubricant fills up the voids at the contact

surface without preventing the contact of asperities. Consequently, the friction can be explained

using the same argument as those used for static dry contacts. Region II is the boundary lubrica-

tion region. The lubricant, trapped in the gaps between asperities, moves to the true contact sites

and forms along both surfaces a boundary layer preventing rubbing between the molecular level

asperities. The result is a decrease in friction associated with the flow development of the lubricant

and the onset of motion. This phenomenon is referred to as the Stribeck effect. Region III is the

partially lubricated region. As the flow develops, the fluid film increases in thickness, pushing apart

the two surfaces and reducing the amount of asperities that may come in contact. However, as the

flow is developing, the shear stress present in the film becomes the dominant effect of friction. As a

result, friction keeps on reducing up to a point where the reduction in asperity contacts becomes in-

significant with respect to the increase in shear stress. Finally, region IV is the full fluid lubrication

region. The flow is fully developed and the dominant effect on the variation of the friction force is

the shear stress in the fluid, proportional to the relative velocity for Newtonian fluids. The residual

Coulomb friction force is due to the interaction present between asperities with height greater than

the fluid film thickness.

2.4.4 Dynamics of Friction

In the previous subsections, friction was viewed as a static process that could be described by alge-

braic equations only. However, it was clearly demonstrated that some phenomena associated with

friction are dynamic in nature. Some researchers (Rabinowicz, 1956; Dahl, 1968; Hess and Soom,

1990) performed experimental studies that suggested some behaviours clearly associated with dy-

namics present in friction. The most important experiment is the stick-slip experiment (Rabinowicz,

1956) for which a schematic is shown in Figure 2.7(a). It simply consists of a slider attached to a
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fixed wall with a spring and a damper resting on a conveyor. The conveyor motion is then controlled

in velocity to provide some measurement of the friction force (Bell and Burdekin, 1969).
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Figure 2.7: The Bowden and Leben stick-slip experiment.

A typical spring force response is also presented in Figure 2.7(b). At first, the static friction is

dominant and the force builds up in the spring. When the breakaway force is reached, the slider

starts to move backward due to the reduction in the friction force associated with kinetic friction.

When the relative motion between the slider and the conveyor reaches zero, the slider sticks and

the process is repeated. If the damper is selected to be such that the position at which stiction

re-occurs is near the equilibrium between spring force and kinetic friction, the stick-slip process

is avoided. From the static analysis presented in the preceding sections, this explanation makes

sense. However, it cannot predict the difference between the point A, B and C. In fact, it has been

observed that the maximum stiction force is a function of the dwell time as shown in Figure 2.7(c).

Consequently, the level of stiction present at the first breakaway (point A) is higher than under

steady state operation (point B). Also, when the speed of the conveyor is increased, the stiction

force is reduced (point C). If it is increased to a certain level, stick-slip disappears and the spring

force corresponds to the value shown by the dotted line. A similar result is obviously reached if

the spring is stiffened. These observations cannot be explained using the static arguments of the

preceding section.

2.4.5 Modelling Friction in Multibody System Simulation

A general contact model must include a sub-model for the tangential friction forces such that

oblique-frictional impacts can be treated as well. To obtain these forces, the stiction and Coulomb

friction coefficients µS and µC are applied to relate normal and tangential forces during the stick-

ing and sliding states, as shown in Whittaker (1937), Keller (1986), Han and Gilmore (1993),

Wang and Mason (1992), and Battle (1993). These coefficients are also known as static and ki-

netic coefficients of friction respectively. An extension of the above mentioned models can be

found in Lüder (2000) in which the impact of rigid bodies, including friction and energy dissipa-

tion, is modelled using a regularized approach with spring, dash-pot elements and hysteresis in



30 Contact Dynamics Modelling for Robotic Task Simulation

normal and tangential directions. Stronge (2000) shows that contact models with compliance in

the directions normal and tangential to the contact surface area provide a good prediction of ex-

perimental results for oblique impacts. As was seen in Section 2.4.2, friction models using local

compliance are also known as bristle models (Canudas de Wit et al., 1995). Tenaglia et al. (1999),

and Ma (2000) also extended the direct central contact force model to three dimensions by adding

a tangential compliance effect to model the friction.

2.5 Research Focus

The research presented in this thesis extends and combines the results presented in previous work.

This section summarizes the principal references that are the foundation for this work. The theoreti-

cal results fall in two categories: (1) a contact model for bodies that have non-conformal geometries

and (2) a general contact model appropriate for a wide range of object geometries.

The contact model for non-conforming geometries is treated in Chapter 3. For this case, the

Hertz theory is applicable and the proposed normal contact model is based on the non-linear

spring model proposed by Hunt and Crossley (1975), and introduces a new method of defining

the hysteretic damping term. A new bristle friction model is presented that extends the work from

Canudas de Wit et al. (1995) and de Carufel et al. (2000), and in particular, it is adapted to the

context of multibody simulation with impact with the introduction of a load-dependent tangential

stiffness term. The friction model is expressed in vector form and includes dynamic effects such as

the dwell-time dependency of the stiction force.

To handle a more general class of geometries, the Winkler elastic foundation model (Johnson,

1985) is used in Chapter 4 as the theoretical basis for the derivations of a general contact model.

The resulting contact model normal and tangential components uses the same parameter set as the

model presented in Chapter 3, but the model includes the rolling resistance and spinning friction

torque effects as well. A formal definition for the contact normal is given and the behaviour of

friction when the contact surface is large is investigated.

Appendix A presents a flexible object-oriented framework that can be used to implement a very

wide variety of contact models, including the models presented in Chapters 3 and 4.
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Point Contact Model

In this chapter a contact model based on Hertz theory is presented. This modelling hypothesis

imposes that the contact region be small compared to the dimensions of the colliding bodies and,

hence, that the colliding bodies have non-conformal geometries. A more general contact model,

which can handle conformal as well as non-conformal geometries and which includes both spinning

friction and rolling resistance effects will be presented in Chapter 4. The first section of this chapter

presents the multibody framework within which the contact model resides, and Section 3.2 presents

the normal and tangential components of the contact model. Finally, Section 3.3 discusses methods

to obtain or estimate the contact model parameter values.

3.1 Point Contact Model Framework

The contact model for non-conformal geometries takes the form of a lumped-parameter non-linear

spring. The relationship between the spring deformation and the resulting force can be derived

when each body is approximated as a semi-infinite elastic solid bounded by a surface. This ideal-

ization simplifies the boundary conditions and makes available the large body of elasticity theory

results that has been developed for the elastic half-space. A simple function relating the local

surface deformation to the force causing this deformation is then readily obtained. The local defor-

mation can be parameterized as a function of the penetration depth of the undeformed bodies. This

analysis produces a single algebraic expression relating the penetration depth to the normal contact

force i.e., a spring model.

To include the contact model into a multibody dynamics simulation system, it is also necessary

to specify the point where the contact force will be applied. Since the contact region is assumed to

be very small, the moments generated by the local deformations in the contact region are neglected.

Obviously, the contact force should act in the direction that minimizes the constraint violation and,

hence, the direction of the normal contact force should also be determined.

This section will demonstrate how to set up the proposed contact model for the simulation of

collisions between two rigid bodies with arbitrary non-conformal shapes. The case of the sphere-

31
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plane pair will be presented as an example.

3.1.1 Point of Action of the Contact Model

The contact model presented in Section 2.2.1 computes the contact force fk between two non-

conforming rigid bodies as a function of the penetration depth x. For a given non-conforming

geometric pair, a point of action pa is defined as the point where the equal contact forces with

opposite directions are applied to the two bodies. In the case of the sphere-plane pair, the Hertz

force approach law is based on the deepest penetration distance. The point of action is selected

as the point along the sphere surface at which the sphere surface normal is exactly opposite to the

plane normal. This choice is convenient since by measuring the height of the point of action with

respect to the plane surface, the desired penetration distance is obtained.

The states of two arbitrary bodies Bi and Bj are described by defining body-fixed frames Ki and

Kj attached to Bi and Bj , respectively. The origin of each frame is located by the position vectors

ri and rj relative to an inertial “world” frame Kw. Their orientation relative to Kw is described by

the rotation matrices Ri and Rj . The frames translate at a velocity vi and vj and rotate with an

angular velocity ωi and ωj . For the sphere-plane example, the position of the centre of the sphere

(Bi) with respect to Ki is psph, and the sphere radius is R. The surface of the plane (Bj) is located

at a height hj along the plane normal n from the origin of Kj; see Figure 3.1. When performing

vectorial operations, all vectorial quantities are resolved in Kw. Typically, psph and n are specified

in local frame coordinates, but they can be easily transformed into Kw by using Ri and Rj .

Ki
n

psph

ri pa

Kw

hj

rj

Kj

|x|

Figure 3.1: Point of action and penetration depth for a sphere-plane pair.
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In the case of the sphere-plane geometric pair, the point of action is found as

pa = ri + psph − Rn , (3.1)

where n points from Bj to Bi. The height x of the point of action with respect to the plane is given

by

x = (pa − rj) · n− hj , (3.2)

which is the expression for the penetration depth needed to evaluate Equation (2.1). This same ex-

pression can be used to detect contact, i.e., when x ≤ 0, so a separate collision detection algorithm

is not needed for this case. In the general case, pa must first be identified using a collision detection

algorithm. Then, pa is arbitrarily assumed to belong to one of the bodies, say Bi, after which the

surface normal n and height h to the surface of the other body Bj can be found as a function of

(pa − rj). In this thesis, the contact normal n will always be interpreted as pointing from body

Bj toward body Bi. Accordingly, the relative translational velocity of Bi with respect to Bj at the

point of action is given by

vr = vi + ωi × (pa − ri) − vj − ωj × (pa − rj) . (3.3)

Once the force generated from the local surface deformations has been computed, its contri-

bution to the forces f i and f j and moments τ i and τ j acting on the bodies at their respective

body-fixed frames Ki and Kj is given by

f i = f c ; τ i = (pa − ri) × f c

f j = −f c ; τ j = −(pa − rj) × f c

, (3.4)

where f c is the total contact force and includes both the normal force acting to prevent constraint

violation and the frictional forces. A more sophisticated model for the normal contact force will be

presented in Section 3.2.1, while Section 3.2.2 will introduce a novel friction model.

The proposed contact model adds little computational overhead to the multibody dynamics

simulation since Equation (2.1) is a simple explicit expression, and thus it is suitable for a real-time

implementation. For the case of arbitrary geometries, the extra computational effort will be focused

on finding the location of the point of action, the penetration depths and the direction along which

is it measured. The determination of these quantities has been intensely investigated in the past

decade, and for which very efficient algorithms are available, e.g., Lin and Gottschalk (1998) and

Jimenez et al. (2001).
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3.1.2 Contact Surface Normal Projection Matrices

Although the model presented here assumes that the size of the contact area is negligible compared

to the size of the colliding bodies, the contact surface nonetheless has a normal n along which

the normal contact force acts. For the derivations in the coming sections, it is useful to partition

the vectorial quantities into sub-components that are tangential and normal to n. To this end, the

projection operator N that projects any vector u onto the surface normal n is defined as

un = n (n · u) = nn · u = N · u . (3.5)

Hence, N is a dyadic operator. The matrix operation for nn is [n] [n]T and is sometimes referred

to as the “outer product” as opposed to the “inner product” operator [n]T [n]. Here, the brackets

[·] indicate the vector n is treated as a column matrix with the components of n resolved in some

frame. Clearly N ·n = n and using N, u can be decomposed into a vector un normal to the contact

surface S and ut tangential to the surface such that u = ut + un; see Figure 3.2. ut and un are

given as

u = (I − N + N) · u = (I − N) · u + N · u = ut + un , (3.6)

and

un = N · u = un n ,

ut = (n × u) × n = u − n (n · u) = (I − N) · u = T · u ,
(3.7)

where un = n ·u, I is the unit dyad and T = I−N is the projection operator projecting the vector

u on the plane tangential to n. Hence, by definition

N + T = I . (3.8)

n
u

ut

un

Figure 3.2: The normal and tangential components of the vector u.
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3.1.3 Contact Model Components

The contact model presented in this chapter includes compliance in both the normal and tangential

directions. With n defined as the outward unit vector normal to the contact surface and pointing

from Bj toward Bi, the contact force f c is decomposed into normal f n and tangential f t components:

f c = f n + f t = fn n + f t , (3.9)

where the magnitude of the normal force is fn. Similarly, the relative velocity vr at the point of

action pa is expressed in terms of its normal and tangential components vn and vt as

vr = vn + vt = vn n + vt , (3.10)

where the magnitude of the normal velocity is vn.

3.2 Point Contact Sub-Models

As was seen in Section 2.2.5, contact models derived from the Hertz theory have been used for

modelling contact forces in multibody dynamics simulation packages. One of their key features

is that the contact force can be expressed directly in terms of a geometrically identifiable metric

—the penetration depth. Today, many collision detection packages can also provide a penetration

depth estimation when a geometric ‘overlap’ is detected. As a result, the implementation of a

Hertz theory-based contact model into a multibody dynamics package is fairly straightforward.

The previous section showed how this is done for the case of a sphere-plane geometric pair.

Hertz’s theory provides a good approximation of the contact force between hard compact bod-

ies where the contact region remains small in comparison with the size of either body. For non-

conforming elastic bodies, the local deformations in the contact region resulting from the reaction

forces will create a small area where the surface of the bodies conform exactly. The multi-body

dynamics simulation packages that use Hertz theory-based contact force models generally do not

consider the moments produced in the contact region, although these effects have been carefully

studied (Johnson, 1985). Since the contact area is small with respect to the size of the bodies, the

moment arm of the contact force about each body’s centre of mass will typically produce a mo-

ment that is much larger than the moment resulting from the rolling and spinning frictional effect

occurring in the contact region. However, for a realistic simulation these effects may be important,

and neglecting them may result in a qualitatively unrealistic simulation; see Section 5.1.

The Hertz force-approach law described in Section 2.2.1 only provides information about the

force acting to separate two colliding bodies and is valid for direct-central frictionless impacts only.

To implement a general point contact model, the tangential forces must also be modelled such that

oblique-frictional impacts can be treated as well. The next two sub-sections present sub-models for
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the normal contact and tangential friction forces.

3.2.1 Normal Contact Force Model

The normal contact force model derived in this section belongs to a special class of non-linear

spring models. Given that the Hertz non-linear spring behaviour is a well understood phenomena,

the analysis presented here will concentrate on the mechanism through which the energy is dissi-

pated. The work presented here is based on previous derivation by Hunt and Crossley (1975) and

Lankarani and Nikravesh (1990). A brief overview of their work is presented next.

Previous Work

The compliant normal-force model proposed by Hunt and Crossley (1975) for direct central and

frictionless impacts is a non-linear spring-damper model of the form

fn = λ |x|p ẋ + k |x|p , (3.11)

where x and ẋ = vn are the penetration depth and velocity, λ is the hysteresis1 damping factor and

k is the spring constant. Section 3.1 shows how x and vn are computed for a sphere-plane geometric

pair. The force-approach law based on Hertz theory yields p = 3/2 when the two contacting bodies

are linearly elastic spheres. Non-linear spring models for other geometric pairs have been derived

(Johnson, 1985). As discussed in Hunt and Crossley (1975), this damping model is consistent with

the expectation that the total contact force should vanish when the indentation goes to zero. See

Figure 3.3 for comparison of the effect of a linear damping term vs. the hysteretic damping term

on the contact force during impact.

Clearly, in the case of the spring with the linear damping term, the contact force can be seen

to be positive and non-zero at the start of the impact phase, and negative and non-zero at the end

of the impact phase. This behaviour contradicts two characteristics that should be expected from

a consistent contact model: that the contact force should be zero at zero penetration, and that the

contact force should always be positive, i.e., there should not be any any “sticking” effect. Note

that in both figures, the energy dissipated during the impact corresponds to the area inside the loop.

It has been shown that at low impact velocities and for most linear materials with an elastic

range (Goldsmith, 1960), the coefficient of restitution can be approximated by

eemp = 1 − α vi
n , (3.12)

where α is an empirically determined constant that is valid for a limited range of impact velocities

and vi
n is the normal relative velocity at the start of the impact phase. For steel, bronze or ivory, α is

1The terminology used by Hunt and Crossley is inappropriate. The dynamic behaviour associated with the damping

term does not have hysteresis. The output of the model only depends on the current state of the system.
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Figure 3.3: Linear vs. hysteretic damping in a normal contact force model.

equal to 0.08. . . 0.32 s/m. Assuming that the energy dissipated during the compressive phase and

during expansion phase are equal, Hunt and Crossley approximated the hysteresis damping factor

as a function of the restitution coefficient and vi
n as

λHC =
3

2
(1 − eeff)

1

vi
n

k , (3.13)

where the effective coefficient of restitution for the contact model eeff is defined as:

eeff = −vo
n/v

i
n , (3.14)

and vo
n is the normal relative velocity at the end of the impact phase. Using the definition of eemp

for eeff, Equation (3.13) simplifies to

λHC =
3

2
αk . (3.15)

Lankarani and Nikravesh performed a similar analysis, but they instead assumed that the amount of

energy dissipated was much less then the energy stored in compression. This assumption allowed

them to express the velocity at any point during the compression phase as a function of the initial

impact velocity. Using this result, they then evaluated the integral of the energy dissipated during
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the impact phase, and assuming again symmetric distribution of the energy dissipation around the

hysteresis loop, they obtain an expression for the hysteresis damping factor as follows

λLN =
3

4

(

1 − e2
eff

) 1

vi
n

k , (3.16)

or

λLN =
3

2
αk

(

1 − α vi
n

2

)

, (3.17)

when eeff is estimated using eemp. A comparative study of these damping factor definitions as

well as others is given by Zhang and Sharf (2004), including a definition based on the analytical

solution of the equations of motion. However, the latter definition was initially proposed by the

author (Gonthier et al., 2002) and is presented in the next section.

A New Damping Factor Definition

If the colliding bodies i and j have a mass mi and mj , respectively, then the effective mass m can

be obtained from m−1 = m−1
i + m−1

j (Lankarani and Nikravesh, 1990). Defining the damping

factor a by λ = a k, the equation of relative motion m ẍ = −fn can be written as

m v̇n + k |x|p (1 + a vn) = 0 , (3.18)

where the Hunt and Crossley contact model has been expressed in the form

fn = k |x|p (1 + a vn) , (3.19)

and the bodies are assumed to be in contact when x < 0. To prevent the contact model from

applying tensile forces, a must be selected such that

1 + a vn ≥ 0 ∀ vn . (3.20)

As Marhefka and Orin (1999) and Stronge (2000) showed, Equation (3.18) is separable and can be

integrated over the impact phase as follows

∫ vo
n

vi
n

vn

1 + a vn

dvn +
k

m

∫ xo

xi

xp dx = 0 , (3.21)

where xi, xo are the penetration depths at the start and end of the impact phase. The second

integral term of Equation (3.21) is the work done by the elastic term over the collision event and

is therefore equal to zero. Hence, vo
n depends exclusively on vi

n and a, and is independent of the

system’s effective mass, stiffness, or the type of spring model used. To get a better understanding
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of the relationship between vi
n, vo

n and a, the definition for eeff is substituted into Equation (3.21)

and the first integral term is solved. The result is

a vi
n − ln

(

1 + a vi
n

)

+ eeff a vi
n + ln

(

1 − eeff a vi
n

)

= 0 . (3.22)

Since a and vi
n always appear together in Equation (3.22), a dimensionless factor d defined as d =

eeff a vi
n is introduced and a closed-form relationship for d and eeff independent of vi

n is obtained.

The solution to Equation (3.21) simplifies to

1 + d/eeff

1 − d
= ed(1+1/eeff) . (3.23)

The solution for the closed-form expression has multiple branches (one of them being d = 0).

However, a valid solution for this problem should be such that Equation (3.20) is satisfied. Noting

that for vi
n < 0, the value of vn is limited by vi

n < vn < −eeff vi
n. Hence, the valid solution branch

for d will be such that d ≤ 1 for any eeff. On the other hand, the damping factor cannot be negative

since this would cause energy to be gained during impact. Hence, 0 ≤ d ≤ 1. Figure 3.4 shows the

corresponding solution branch for d. Clearly, d is always less than or equal to 1 and goes to zero

at eeff = 1. The solution can be obtained by solving Equation (3.23) with a numerical bisection

algorithm. A good initial guess, dest = 1 − e2
eff is provided.
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Since the relationship between eeff and d is constant, the solution can be found a-priori and

does not need to be computed during the simulation. This branch uniquely defines the damping

factor d as a function of eeff. Therefore, a vi
n = d/eeff is also a function of eeff only, which is a

constant for a given impact. Thus, the damping factor a is always inversely proportional to vi
n (and

vo
n) for any eeff and for any impact velocity. The expression for a is

a =
d

eeff vi
n

, (3.24)

and the hysteresis damping factor is now given as

λ =
k d

eeff vi
n

. (3.25)

Equation (3.25) predicts that λ will become very large as eeff becomes small, an observation that is

consistent with the need to have high energy dissipation in plastic impacts.

A definition of dHC corresponding to the model proposed by Hunt and Crossley can be obtained

by setting Equation (3.25) equal to Equation (3.13) yielding

dHC =
3

2
eeff (1 − eeff) . (3.26)

Similarly, a definition of dLN corresponding to the model by Lankarani and Nikravesh gives the

following expression

dLN =
3

4
eeff (1 − e2

eff) . (3.27)

Figure 3.4 shows that both the Hunt and Crossley and the Lankarani and Nikravesh definitions

for d approximates the solution of the closed-form expression (Equation (3.23)) only in the region

where eeff is near unity. Of the two, the Hunt and Crossley definition appears to give a better

approximation. However, for a simulation using either dHC or dLN for eeff 6= 1, the condition

vi
n = −eeff vo

n is violated by the results.

Physical Nature of Normal Energy Dissipation

The hysteretic damping formulation in Equation (3.11) is a convenient mathematical instrument to

express on a macroscopic scale the complex dynamic effects occurring at the microscopic level.

The hysteretic damping term from Equation (3.11) is an energy dissipation mechanism that elimi-

nates the system energy in a manner that is consistent with the overall physical process, but it does

so by neglecting the details of the actual phenomena. In essence, the hysteretic damping is a spe-

cial kind of non-linear damper, and it dissipates energy as a function of the motion of the contact

surface. However, the actual phenomena is different.

During impact, the energy is mainly dissipated by the plastic deformation of the surface as-
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perities coming into normal contact and through vibrational waves propagating through the elastic

bodies. In the latter case, the resulting energy loss is due to a transfer of energy from the overall

kinetic energy of the body into internal vibrational energy. The pressure waves associated with

these internal vibrations propagate through the bodies and are eventually damped out by the ma-

terial. This latter mode of energy dissipation exists when the collisions occur at relatively low

velocities, such that the speed of the internal pressure waves is significantly higher than the relative

body velocity. Hu and Schiehlen (2003) present more detailed investigation on the effects of wave

propagation and structural vibration on the modelling of multibody systems with impact.

Stoianovici and Hurmuzlu (1996) experimentally investigated the validity of the rigid-body as-

sumption. They studied how the flexibility of a body affects the effective coefficient of restitution of

an impact and defined a criterion to distinguish compact rigid bodies from elongated flexible ones.

Their findings indicate that the hysteretic damping correctly models the normal energy dissipation

for bodies satisfying the compact rigid-body criterion. Hence, although the hysteretic damping

mathematically corresponds to a non-linear damper, it accurately reproduces the effect of energy

dissipated in vibrational impact. On the other hand, because the hysteretic damping approximates

this effect realistically does not imply that the surface motion behaviour is that of non-linear spring-

damper mechanism. The hysteretic damping “mimics” the energy dissipation of the asperity plastic

deformation and the material vibration.

In reality, as the bodies collide, there are small local deformations due to the plastic defor-

mations of the surface asperities that occur on top of the overall contact surface deformation that

causes the bulk of the contact pressure. The size of these small plastic deformations is compara-

ble to that of the asperities, and is therefore negligible. Additionally, the contact surfaces undergo

small but rapid oscillations caused by the displacement of the pressure waves. The magnitude of

the pressure wave increases with the force of the collision, and therefore cause more damping.

However, these oscillations are not modelled explicitly in the contact model; only their energy dis-

sipation effect is in the form of hysteretic damping. Hence, the model represents the shape of the

contact surface that corresponds on average to the shape of the quasi-static deformation. That is,

the shape of the deformed surfaces is assumed to correspond to the mean value of the oscillations.

This latter observations will be useful in Chapter 4 to develop a better formulation for the volumet-

ric contact model. It however highlights the fact that the contact model should not be interpreted

as corresponding to a non-linear spring-damper mechanism; only its mathematical representation

does.

While the damping in the normal contact force is a significant phenomenon through which

energy is dissipated during the impact phase, it is also important to consider the effects of the

friction acting along the surface of the contacting bodies in the region of contact. This is considered

next.
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3.2.2 Tangential Friction Force Model

Unlike the derivation done in the previous section, where the magnitude of the normal contact

force was derived using scalar equations, the surface friction force is a vectorial quantity by nature.

For oblique and/or non-collinear impacts, the dynamics of motion will in general be coupled in all

directions. Thus, it would be incorrect to use two independent, one-dimensional friction models for

the friction forces acting along a two-dimensional surface. Furthermore, the stick-slip transitions

cannot be considered in the context of an arbitrary direction, e.g., when two colliding bodies are

moving with respect to each other; they cannot be sticking in one direction, and sliding in another.

Bristle Fiction Force Model

Canudas de Wit et al. (1995) introduced a one-dimensional dynamic friction model that combines

the stick-slip behaviour and Stribeck effects, which is characterized by decreasing friction with

increasing velocity at low velocity (Armstrong, 1991). To model these frictional effects, it is pos-

tulated that the two rigid bodies make contact through elastic bristles. The friction force is mod-

elled as a function of the bristle deformation z and deformation rate ż; essentially a simple linear

spring-damper model. The dissipative nature of this bristle model is consistent with the dissipative

behaviour of the friction process of the asperity model presented in Section 2.4.2. However, the

original bristle friction model was introduced in a context where the normal load acting between

the two bodies was constant. For modelling impacting bodies, this simplification is not appro-

priate. It is therefore useful to re-consider the physical analysis that lead to the selection of the

spring-damper elements as the bristle model.

The asperity model also suggests that the true area of contact constitutes in fact only a fraction

of the total contact area between two bodies. The true contact area corresponds to the sum of the

areas where the surface asperities come in contact; see Figure 3.5. It is the interaction of these

surface asperities that causes the friction phenomena. These asperities interact in two ways.

First, under a constant normal load, an increase in tangential load will bring the contact sites to

their plasticity limits. When they all reach their limits, breakaway occurs and sliding is initiated.

This breakaway is preceded by a pre-sliding microscopic displacement: the Dahl effect. The model

therefore suggests that the friction force behaves like a spring model when the tangential load does

not exceed the breakaway limit. The stiffness of this pre-sliding spring model is related to the

number of the asperities in contact and to the size of each individual contact site, or in other words,

to the size of the true area of contact.

Secondly, the size of the true contact area has been shown to increase linearly as a function

of the normal load. This implies that an increase in normal load will increase the number of

asperities in contact and increase the size of the local contact sites. Figures 3.5(a) and 3.5(b) show

the change in size of the contact sites as the load increases. Hence, the plasticity limit of each

asperity contact site will increase, and because the number of contact sites will also increase, the
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Figure 3.5: The asperity contact sites.

tangential breakaway force will increase as well. This behaviour is consistent with the observation

by Coulomb, whereby the friction force increases linearly with the normal load, i.e., the friction

force is directly proportional to the size of the true area of contact.

However, it was just observed that the tangential stiffness of the pre-sliding spring model be-

haviour of the friction is also related to the size of the true area of contact. Hence, an increase

in normal load should also affect the stiffness of the pre-sliding spring behaviour in the frictional

phenomena. It is therefore suggested that the stiffness of the bristle used to model the pre-sliding

spring behaviour be made proportional to the load. A similar argument can be made for the dis-

sipative behaviour of the friction process, i.e., that it should be proportional to the size of the true

area of contact, which is itself proportional to the normal load.

The bristle model proposed by Canudas de Wit et al. (1995) can easily be transformed into a

vectorized friction model by simply expressing the bristle deformation z as a vectorial quantity, z,

without affecting the model properties. It is then further modified by making its effective stiffness

and damping proportional to the normal load fn as follows

f br = fn σo z + fn σ1 ż = fn (σo z + σ1 ż) , (3.28)

where f br is the friction force generated from the bending of the bristle, σo and σ1 are the relative

stiffness and damping coefficients and have SI units of m−1 and s · m−1 respectively.

The bristle state will be defined at the velocity level, and integrated to obtain local deformation.

However, the use of the original Canudas de Wit et al. model results in ordinary differential equa-

tions (ODEs) that are very stiff at low relative velocities (i.e. small vt), and cannot be solved using

explicit ODE solvers. The bristle state dynamics can be shown to have a time constant of 1/|vt|,
which becomes very large at low velocities, while the time constant associated with the relative
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body motion dynamics are small and constant during stick. A new definition for the bristle state is

therefore needed, and it is presented next.

Bristle Dynamics Model

The bristle dynamics model for ż is reformulated into two distinct sub-models: ż st for the stick-

ing regime and ż sl for the sliding regime. A sticking state function s is introduced to transition

smoothly between the stick-slip friction regimes. The deformation rate is now expressed as

ż = s ż st + (1 − s) ż sl , (3.29)

where

s = e
−
vt · vt

v2
S , (3.30)

and vS is the velocity at which the Stribeck effect occurs. With this formulation, ż becomes ż st

(sticking case) when vt approaches zero, i.e., (1 − s) 0. If vt increases, ż becomes ż sl (sliding

case), i.e., s 0.

When the friction state is in the stiction regime, the relative motion of the bristles should match

exactly the relative motion of the rigid bodies, i.e. the surfaces stick together. Hence, ż st is defined

as

ż st = vt . (3.31)

The sliding rate ż sl is defined in terms of the Coulomb friction force fC that acts while the two

bodies are sliding with respect to each other. Coulomb friction acts in a direction opposite to the

relative velocity vt between the two bodies and its magnitude is µC fn, where µC is the Coulomb

friction coefficient. To simplify the notation, the negative sign for the Coulomb friction will be

included in the formulation later on. The friction force fC is thus described by

fC = µC fn dirε(vt, vε) , (3.32)

where dirε returns a unit vector along the direction of vt. The function dirε uses the relaxed sign

convention near a small velocity tolerance vε to regularize the function at small vector magnitudes

and avoid the possibility of dividing by zero. It is therefore suitable for a numeric implementation

and is given as

dirε(u, uε) =



















u
|u| ; |u| ≥ uε

u
uε

(

3
2 · |u|uε

− 1
2

(

|u|
uε

)3
)

; |u| < uε

, (3.33)



Chapter 3: Point Contact Model 45

where u and uε are a vector and a scalar value, respectively. While the two rigid bodies are

sliding with respect to each other, the friction force fbr applied by the bristle should be fC. Setting

Equation (3.28) equal to Equation (3.32), and solving for ż ≈ ż sl yields

ż sl =
1

σ1
µC dirε(vt, vε) −

σo

σ1
z . (3.34)

Equation (3.34) is a first order ODE and has a time constant τbr = σ1/σo. The bristle dynamics

time constant τbr controls how fast the bristles reach a steady-state deformation when two rigid

bodies are moving at a constant relative velocity. Interestingly, although the bristle force itself is

proportional to the normal load fn, the bristle velocity is not. It is a function of the tangential

relative velocity direction and the constant parameters σo, σ1 and µC only.

To summarize, the bristle deformation rate is given as

ż = svt + (1 − s)

(

1

σ1
µC dirε(vt, vε) −

σo

σ1
z

)

. (3.35)

Dwell Time Dependency of Friction

While the two rigid bodies are sticking to each other, the maximum friction force is limited by the

stiction force µS fn, where µS is the stiction coefficient. Experimental observations (Rabinowicz,

1956; Bell and Burdekin, 1969) have shown that the full magnitude of the stiction force does not

come into effect as soon as the relative velocity becomes zero. Instead, the maximum stiction force

gradually increases over time, and eventually reaches the upper limit µS fn. This phenomenon is

also called dwell-time dependency.

On the other hand, the temporal lag effect associated with the dwell-time is only present for the

slip-stick transition, i.e., it takes some time for the microscopic asperities to settle into each other

and for the molecular bonding to take place. As soon a stick-slip transition occurs, these bonds

shatter at once. Hence, there is a need to include two time constants to correctly model the dwell-

time effect on the maximum stiction force. A new state, sdw, is introduced to model the effect of

the dwell-time on the maximum stiction force

ṡdw =











1
τdw

(s − sdw) ; s − sdw ≥ 0

1
τbr

(s − sdw) ; s − sdw < 0

, (3.36)

where τdw is the dwell-time dynamics time constant and τbr is the bristle dynamics time constant, as

before. Typically, τdw should be at least an order of magnitude larger then τbr. With the definition

proposed for ṡdw in Equation (3.36), sdw simply follows the value of s with a long time delay as s

goes to 1 (sticking) while it follows it very quickly (as fast as the bristle dynamics allow) when s
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goes to zero (sliding). The maximum stiction coefficient µmax can now be defined as

µmax = µC + (µS − µC) sdw , (3.37)

such that the maximum stiction force fmax is

fmax = µmax fn . (3.38)

As mentioned previously, the bristle friction force should never exceed fmax at any time. In partic-

ular, the stick-slip friction regime transition can only happen if the magnitude of the bristle force

becomes saturated, such that the surfaces of the two rigid bodies can start accelerating with respect

to each other and the relative velocity increases beyond vS. To this end, the saturation function

sat(u, umax) is defined as

sat(u, umax) =











u ; |u| ≤ umax

u
|u| umax ; |u| > umax

. (3.39)

The magnitude of both f br and fmax are proportional to fn; see Equations (3.28) and (3.38). Hence,

the saturation of fbr by fmax can be written as

sat(f br, fmax) = fn sat(σo z + σ1 ż, µmax) . (3.40)

When the magnitude of the bristle force exceeds fmax, ż needs to be re-computed to ensure the

result for Equation (3.28) is consistent with the scaling of f br. Setting Equation (3.28) equal to

Equation (3.40) the new expression to compute ż is

ż =
1

σ1
sat(σo z + σ1 ż, µmax) −

σo

σ1
z . (3.41)

Again, Equation (3.41) shows that the bristle dynamics is independent of fn, and is governed by

τbr = σ1/σo which is constant. This feature ensures that the friction model will never cause

numerical problems, even when the relative velocity is low, which is a key advantage over the

formulation proposed by Canudas de Wit et al. (1995).

In Section 3.2.2 it was established that both the bristle stiffness and damping should be propor-

tional to the true area of contact and hence to the normal load. To include the effect of lubrication in

the friction model, a viscous damping term is added and it is also made proportional to the normal

load. The rationale here is that the shear stress from the lubrication fluid increases when the fluid

film thickness decreases. Hence, with a higher normal load, the fluid film thickness will shrink and

the shear stress will increase.

The tangential friction force f t can now be computed. A term proportional to the relative
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tangential velocity and to the normal load is added to account for viscous friction so that

f t = −fn (sat(σo z + σ1 ż, µmax) + σ2 vt) , (3.42)

where σ2 is the relative viscous damping coefficient. It is seen that Equation (3.42) is very similar

to Equation (3.28), except for the addition of the saturation function and the viscous damping term.

Equation (3.42) also includes the negative sign to ensure that the friction model force acts against

the motion. Clearly, at any point in time, the friction model will always return a friction force that

is proportional to the normal. This behaviour is consistent with the observations by Coulomb.

The proposed friction model is a seven parameter model; see Table 3.1 for a list of the friction

model parameters. Note that the bristle dynamics time constant is inferred from σo and σ1, and a

numerical tolerance vε must also be specified. As a guideline the vε should be at most one tenth

of vS. This minimizes the impact of the dirε function regularization on the system dynamics when

|vt| < vε since the friction model will have already switched into the “stick” mode in this velocity

range; see Equations (3.29) and (3.30). The value of vε = 1/100 vS was used for all simulation

examples presented in this thesis. The next section proposes methods to establish the values for the

all contact model parameters.

Parameter Description

µS Stiction friction coefficient (static friction)

µC Coulomb friction coefficient (kinetic friction)

σo Load-dependent bristle stiffness

σ1 Load-dependent bristle damping coefficient

σ2 Load dependent viscous damping coefficient

vS Stribeck velocity

τdw Dwell-time dynamics time constant

Table 3.1: Friction model parameters.

3.3 Point Contact Model Parameters

To use the contact model in a multibody dynamics simulation, the parameters of the model must

be known or selected. This section will discuss how each parameter of the contact model could be

obtained experimentally in general terms. The goal of the discussion in this section is to show that

all the contact model parameters can be obtained through an experimental procedure, or otherwise

inferred from relevant data.

However, in an operational context, it may not always be feasible to perform all the necessary

experiments to find values for these parameters. Most often, only the most important values will be

known, such as the contact stiffness, or the Coulomb friction coefficient(s). The discussion in the

section will therefore also focus on general rules to select these parameters, such that appropriate
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values can be quickly identified to get a simulation running. First the parameters for the normal

contact model will be examined followed by a discussion on the friction model parameters.

3.3.1 Normal Contact Force Model

The normal contact model has two types of parameters which can be independently set: the param-

eters for the stiffness and those affecting the damping behaviour.

The contact stiffness parameter can be found using the Hertz theory; see Equation (2.2) and

in the literature (Gladwell, 1980; Johnson, 1985; Barber, 1992; Alexandroff and Pozharskii, 2001;

Fischer-Cripps, 2000). The stiffness can also be identified experimentally (Lange and Gonthier,

2003; Agar et al., 2005), essentially by curve fitting a force versus indentation depth plot when the

force is applied quasi-statically.

The damping term for the proposed contact model is directly a function of the coefficient of

restitution. One option is to measure this coefficient directly by performing an impact experiment

and measuring the velocity just before and after the impact, or by simply tuning the parameter

such that position history curves match with the experimental data (Stoianovici and Hurmuzlu,

1996). Finally, the impact behaviour of many materials has been studied (Goldsmith, 1960) and

the coefficient of restitution can be found using Equation (3.12).

The normal contact model was developed under the assumption that there is an impact cycle

with incoming and outgoing velocities. Obviously, when the contact occurs at very low velocities,

the bodies may never bounce away from each other when an external force such as gravity is acting

on the system. Hence, in the actual implementation, the contact model includes a minimal velocity

threshold vsmall that must be specified. When the initial impact velocity is less then vsmall, the

hysteretic damping factor becomes constant, i.e.,

a =
d

e vsmall

. (3.43)

Experimentally, vsmall can be determined by measuring the last initial impact velocity before the

bodies stop bouncing with respect to each other. If this information is not available, the value

selected for vsmall should be small compared to the expected impact velocities of the simulation

scenarios, e.g., less than 1 mm/s for a typical robotic task. vsmall is not a numerical threshold

parameter like vε; its value affects a physical phenomenon, i.e., the last impact velocity before

lasting contact occurs. Its value should in general be larger then vε because vε is a purely numerical

tolerance.

The primary role of tolerance vε is avoid the numerical problem associated with a division by

zero. However, the regularization of the dirε when the magnitude of the relative tangential velocity

is less than vε also has an essential role in the numerical implementation. When the relative velocity

is very small, its direction will become numerically indeterminate, i.e., will be directly a function of

the noise in the numerical solution of the ODE. Hence, it is important filter out these meaningless
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values of direction.

One additional parameter was added to the normal contact model implementation for Simulink.

When using fixed-step solvers, Simulink does not allow the detection of the exact time at which the

collision occurs. Instead, the contact force starts being applied at the first time step after the bodies

come into contact. Hence, the contact force is not applied as soon as the bodies start touching

and this “error” can cause an increase in total system energy. To avoid the artificial increase in

energy, the penetration depth at the time the contact is first detected is used as a reference position

to calculate a relaxed penetration depth estimate xr as follows

xr = x − xr,o (3.44)

where xr,o is set equal to the current penetration depth at the instant the impact is detected. The

relaxed depth estimate is then used in place of the true penetration depth to calculate the normal

contact force. As a result, the contact force at the detected instant of impact is zero. The reference

position xr,o is then slowly brought back to zero using a first order ODE with a slow time constant.

Hence, the numerical relaxation introduces an additional state xr for which the solver must find the

solution. The resulting numerical relaxation ODE is given as

ẋr,o = − 1

τr

xr,o , (3.45)

where τr is the numerical constraint relaxation time constant. This time constant should be selected

large enough so that the dynamics of the numerical relaxation does not affect the dynamics of

the system. A suggested range of values is τr ≥ 1 s. The numerical relaxation of the constraint

is a compromise solution to deal with the drawback of the fixed-step solver implementation in

Simulink: a temporary error in position is introduced, but the artificial energy gain is avoided.

It should be noted that the numerical constraint relaxation process has no impact on the system

dynamics when a variable-step solver is used in Simulink. In this case, Simulink iterates to find

the exact time of impact at machine-precision accuracy and, hence, the initial penetration depth is

zero.

3.3.2 Tangential Friction Force Model

The friction model unavoidably requires a value for the Coulomb friction coefficient µC. Without

this value, is it impossible to know how much friction needs to be applied. However, most of the

other parameters of the friction model can be inferred from this value and a few general estimates.

The Coulomb friction coefficient can be determined by applying a normal load on a contact

surface at a constant velocity and measuring the tangential force. Performing the same experi-

ment at different velocities yields both the Coulomb friction coefficient µC and the relative viscous

damping coefficient σ2, which can be inferred from the slope of the force versus velocity curve.

If the simulation scenario involves relative motion occurring at low velocities, the effect of σ2 can
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usually be neglected, i.e., σ2 ≈ 0. This is the case for most space-based manipulator tasks.

The stiction coefficient µS can be obtained using the apparatus shown in Figure 2.7(a). How-

ever, if the pre-sliding distance can be measured, then this latter experiment will also provide the

value for the stiction coefficient. To measure the pre-sliding distance, the contacting objects must

be at rest and a constant normal load must be applied. Then a slowly increasing tangential force

should be applied and the relative displacement of the objects is measured. Once the stiction limit

is reached, the objects will start to rapidly accelerate with respect to each other, i.e., a stick-slip

transition is provoked. This latter experiment provides a value for the stiction force, and since the

normal force is known, the stiction coefficient µS is readily obtained. The same experiment can be

performed at various loads to obtain more reliable data. Alternatively, if the simulation does not

requires the friction to include a stick-slip behaviour, then µS can be set arbitrarily equal to µC,

which in effect deactivates the stick-slip modelling mechanism of the friction model.

The pre-sliding experiment also provides a measure for the pre-sliding displacement δz. If the

tangential force is increased very slowly during the experiment, then the relative velocity at the

contact surface should be very small and bristle stiffness parameter can be inferred directly from

the pre-sliding displacement measurement. Setting Equation (3.28) equal to µS fn, and noting that

at the time the tangential force reaches the breakaway limit force, the bristle deformation is δz and

the bristle velocity ż ≈ 0, the bristle relative stiffness is found simply as

σo =
µS

δz
(3.46)

Alternatively, if the pre-sliding experiment data is not available, it is possible to simply pick a

value that would be suitable for a given simulation scenario. For example, an operations engineer

would not necessarily care that the simulation accurately replicates the pre-sliding displacement

behaviour. In this case using a value much smaller than the size of the objects involved would be

adequate, e.g., δz = 0.1 mm for a typical robotic payload.

Obtaining a value for σ1 is more tricky. If the pre-sliding displacement δz can be measured,

then one option is to hit one object with a tangential impacting force that is small enough not to

cause the object to slide, but large enough to generate some measurable oscillations. The second

object should be held firmly to the ground. The magnitude of the oscillations will be in the order

of δz but will decay in time. While in stiction, the oscillating system essentially behaves as a mass

held stationary by a spring-damper. The equation of motion is as follows:

m ẍ + fn σ1 ẋ + fn σo x = 0 , (3.47)

where m is the mass of the object hit by the impacting force. If the normal force corresponds to

the weight of the object, then fn = m g, where g is the acceleration due to gravity. In this case,
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Equation (3.47) simplifies to

ẍ + g σ1 ẋ + g σo x = 0 . (3.48)

A general form for second order differential equation is

ẍ + 2 ζ ωdẋ + ω2
d x = 0 , (3.49)

where ζ is the damping ratio and ωd is the damped frequency of the system. Normally, the value

for ζ should be in the range from 0 to 1, with the value of 1 corresponding to the critically damped

case. Values over 1 correspond to an over-damped system. When ζ = 1, then ωd = ωnat =
√

g σo,

where ωnat is the natural undamped frequency of the system. The parameters ωd and ζ can be found

by looking at the frequency and the rate of decay of the oscillations. Comparing Equations (3.48)

and (3.49), it is clear that σo and σ1 can be identified from the impact experiment, i.e.,

σo =
ω2

d
g ,

σ1 =
2 ζ ωd

g .

(3.50)

On the other hand, performing the impact experiment may not always be possible. The example

of the operations engineer is considered once more. If the value for the pre-sliding displacement

was based on engineering judgement, then it makes no sense to identify σ1 experimentally. Some

heuristic rule should be used instead.

A body sliding freely on a rough surface is considered. If no other external forces act on

this body, it will eventually stop moving under the action of the friction force, and its total kinetic

energy will vanishes as soon as it stops. The kinetic energy associated with the translational motion

does not get converted into internal vibrational energy. The kinetic energy is simply dissipated by

the plastic deformation of the surface asperities. Hence, the vibrational energy associated with the

oscillations discussed above should also vanish quickly. The value for σ1 must therefore be selected

such that the friction model dissipates energy quickly when the stiction phase is initiated and that

the tangential oscillations are minimized. In other words, it is desirable to have high damping and

maintain a quick system response. These conditions are obtained when the oscillating system is

critically damped, i.e., ζ is set 1. Using this setting, σ1 is set simply as

σ1 = 2

√

σo

g
, (3.51)

which implies that the bristle time constant τbr = σ1/σo is

τbr =
2√
g σo

=
2

ωnat

. (3.52)
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Next, to obtain the dwell-time dynamics time constant τdw, it is necessary to perform the Bowden

and Leben stick-slip experiment described in Section 2.4.4 for various conveyor-belt velocities.

These experiments will determine the range of relative surface velocity at which the dwell-time

dynamics have an influence. The behaviour can then be reproduced in simulation to identify a

representative value for τdw. However, if this value cannot be determined experimentally, or the

modelling of the dwell-time dynamics is not relevant to the simulation scenario, then a value can

be selected by picking a value greater then τbr by an order of magnitude since the model assumes

the bristle dynamics time-constant to be much faster then the dwell-time dynamics.

Alternatively, the dwell-time dynamics feature of the friction model can be disabled altogether

by setting sdw equal to s in the friction model instead of using the first order ODE in Equa-

tion (3.36). This later choice effectively removes the dwell-time dependency feature of the friction

model. In effect, τdw is set to zero, i.e., there is no delay between s and sdw.

Finally, the Stribeck velocity can be determined as follows. When the magnitude of the relative

tangential velocity reaches twice the value of the Stribeck velocity parameter vS, Equation (3.30)

shows that the sliding mode coefficient (1 − s) = (1 − e−4) = 0.98, i.e., the friction model is

in sliding mode. Hence, the range of values of the velocity in the region III of the Stribeck curve

shown in Figure 2.6 corresponds roughly to twice the value of the Stribeck parameter of the friction

model. The exact estimate for vS must be found experimentally by tuning the value of vS to fit the

experimental data. However, when it is not possible to perform these experiments, a value much

smaller than the expected relative tangential velocities should be used, e.g., 1 mm/s for a typical

robotic task.



Chapter 4

Volumetric Contact Model

This chapter presents a new contact modelling approach based on volumetric properties. The chap-

ter provides the derivations from first principles of all the contact model components. The pre-

sented theoretical derivations are based on a Winkler elastic foundation model, a simplified version

of elastic stress theory. Unlike the model presented in Chapter 3, which was based on the Hertz

theory, the use of this new contact model is not restricted to bodies with non-conformal geometries.

4.1 Elastic Foundation Model

Figure 4.1 shows an example of bodies with conformal geometries. The figure shows a typical

payload Dextre will be handling, and the worksite into which it must insert or from which it must

extract the payload. Because the two bodies have many flat sub-surfaces, the resulting area of

contact can become relatively large, thereby invalidating the fundamental assumption of small area

of contact upon which the Hertz theory is built. A different compliant contact modelling scheme is

therefore needed to tackle this type of simulation.

This chapter introduces an alternative contact modelling approach that can address the contact

mechanics problem for bodies of arbitrary shape, whether they are conforming or not. This new

modelling method is based on a compliant contact model approach but uses information related

to the volume of inter-penetration of the colliding bodies. This volume is defined as the volume

spanned by the intersection of the two undeformed geometries of the colliding bodies and will be

called hereafter the volume of interference. In contrast to most other compliant modelling meth-

ods, which are commonly based on the point of deepest penetration, the proposed method yields

a contact force proportional to the volume of interference, specifies that the force should be ap-

plied at the centroid of this volume and that the rolling resistance and spinning friction torques are

proportional to the geometric inertia tensor of the volume of interference. This chapter presents

detailed derivations demonstrating why the volumetric properties can be used to correctly account

for all components of the contact forces acting between two colliding bodies, and introduces a new

method to determine the normal of the contact surface. The volumetric contact model derivations

53
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Figure 4.1: Two bodies with conformal geometries: a battery box and its worksite.

are based on the Winkler elastic foundation model approximation presented in Section 2.3.1. The

next section explains how the foundation model is adapted to the context of contact modelling for

a multibody simulation.

4.1.1 Contact Model Hypothesis

Before establishing the volumetric contact model theory, it is necessary to consider the context in

which the contact model will be used. For typical robotic tasks, it is expected that:

1. The maximum contact force is bounded and will never exceed the material elastic limit.

2. The contacting bodies are stiff.

3. The impacts occur at low velocities.

4. The Amontons laws of friction are applicable.

The first hypothesis indicates the normal contact forces can suitably be modelled using a com-

pliant contact model based on the elastic properties of the contacting object material. In other

words, the contact force will never plastically deform the object. In the context of space robot

operations, the first hypothesis is in fact a requirement for any robotic task operation. A space-

based robotic system should never damage any of the payloads or the environment, given the cost

of launching the payloads and the enormous effort required if they need to be replaced.
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The second hypothesis, considered in conjunction with the first one, indicates that the inter-

penetration depth between objects in contact should be small. Basically, the space-based robotic

systems will be applying small forces to fairly rigid objects, so it is reasonable to assume that the

inter-penetration depths to be orders of magnitude smaller than the object sizes, i.e., negligible.

For example, the maximum force Dextre1 was designed to apply is 111 N, whereas the payloads it

must manipulate are made of aluminium, titanium or steel.

The third hypothesis suggests that the dissipative nature of the contact phenomena can be mod-

elled by including a hysteretic damping term in the normal contact force law. This type of energy

dissipation mechanism is appropriate to model low-speed impacts, as seen in Section 2.2.2.

The last hypothesis is a prerequisite to be able to include any Coulomb-type of friction model,

with or without stick-slip modelling. The law stipulates that the friction force is proportional to

the normal load. This has a significant implication on the implementation of the contact model:

the friction force acts perpendicular to the normal load, or otherwise the normal load would not be

“normal”.

4.1.2 Contact Surface

To tackle the derivations of the contact model properties using the elastic foundation model as-

sumption, the fourth assumption from the previous section must be generalized to the whole contact

model: it will be assumed that the contact surface is flat.

This latter assumption has two consequences: first the contact normal is constant over the

contact area, and second that the normal force of the contact model will be perpendicular to the

tangential friction force. Given that the inter-penetration depth has already been established as very

small, the flat surface assumption does allow the modelling of contact between convex geometries

— conforming or not. In these cases, the object shapes never ‘wrap around’ each other, such that

motion perpendicular to the normal contact direction is not hindered by the geometry of the objects,

and is affected only by the frictional forces.

Figure 4.2(a) shows two convex geometries in contact, a cube and a sphere, with the sphere

shown at three different locations. An arrow shows the normal contact force acting on the sphere

at each location. For all the positions of the sphere, it is seen that any motion of the sphere per-

pendicular to the normal force can only result in frictional forces. The shape of the cube will not

constrain the sphere from moving ‘sideways’ to the normal contact force direction.

However, when dealing with a convex-concave geometric pair this is no longer the case. An

object can be inserted into another, such that sideways motion will not only induce frictional forces,

but will also cause new parts of the geometries to come into contact, thus introducing normal forces

from a different direction. Figure 4.2(b) shows such a case. Here, when the sphere is moved to

the right, a new contact force appears and blocks its right-wise motion. This force is not frictional

by nature. It corresponds to the normal contact force from the wall to the right of the sphere. To

1SPAR-SS-SG-2899 SPDM Specification - Rev. C
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(a) (b) (c)

Figure 4.2: Concave and convex objects.

deal with this problematic case, all objects must be decomposed in convex sub-parts such that the

contribution of contact forces from each individual convex sub-component is accounted for. This

solution is illustrated in Figure 4.2(c), where the concave shape is split into two separate convex

shapes, such that two different objects contribute to the contact force acting on the sphere.

The convex-object subdivision process can be considered for a curved concave surface as well.

The case of a contact between a sphere and a corner is considered again, assuming this time the

contact is frictionless. Figure 4.3(a) shows the sphere touching the corner in two places. Again,

when the sphere is moved to the right this will affect only the contact force of the vertical wall

to the right of the sphere, but will not affect the force between the horizontal part of the corner

and the sphere: these forces correspond to two distinct physical phenomena and should be treated

separately. As before, the corner is split into two distinct (and convex) parallelepipeds such that

two contact forces are applied.

(a) Square corner. (b) Corner with an angle. (c) Round corner.

Figure 4.3: A sphere in contact with a corner.

Next, consider the forces acting on the sphere when an angle is introduced in the corner, as

shown in Figure 4.3(b). There are now three distinct forces acting on the sphere. Again, the

additional force could be modelled by introducing a prism geometry in addition to the two paral-

lelepipeds, thus resulting in three distinct contact models. The same process can be repeated as the

number of angles increases even further, thus resulting in even more contact models. Eventually,
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with a fine enough discretization, the corner surface will become smooth, and the forces will ap-

pear continuous, as shown in Figure 4.3(c). In the end, the number of convex sub-objects needed

to accurately represent a concave curved surface will depend on the accuracy requirements of the

simulation scenario.

It should be noted that increasing the number of contact elements will not increase the overall

contact force since the force of each contact sub-element is proportional to the volume of interfer-

ence contained in that element, and that the overall volume is independent of the number of contact

elements. Hence, with this volumetric approach, the modelling of contact between objects with

complex shapes can be accomplished by splitting the objects into a sufficiently large number of

convex sub-objects without affecting the stiffness properties of the contact phenomena.

4.1.3 Adapting the Elastic Foundation Model for Modelling Contact

The basic concept for the Winkler elastic foundation model was presented in Section 2.3.1. The

foundation model is usually conceptualized as a flat mattress of springs into which a hard non-flat

object is pressed; see Figure 2.1. However, since the contact model assumes the contact surface is

flat, it is more convenient to imagine that it is the flat surface which is hard and that it is the non-flat

object that is deforming.

Furthermore, in this work the elastic foundation model will be interpreted in a figurative sense.

It is usually construed as a mattress of springs in compression when the two bodies collide. Instead,

the foundation model will be interpreted as a set of tensile springs attached to the undeformed

surfaces of the colliding objects, and acting to separate them. In other words, the colliding body

surfaces are allowed to pass through each other and the foundation springs pull on the inside surface

of each body to bring them apart. Figure 4.4 shows the new elastic foundation concept, with the

f n

kv

Figure 4.4: The modified Winkler elastic foundation model.

normal contact force f n and where the volumetric stiffness is kv = kf/hf. The parameter kv has

SI units of [N/m3]. This interpretation of the foundation model has the advantage of avoiding the

need to explicitly define the foundation depth hf and it emphasizes the relationship between the

shape of the volume of interference and the normal contact force. In Figure 4.4, the contour of the

volume of interference is shown in dashed lines.

A few additional definitions are now introduced to help define the Winkler elastic foundation
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contact model in terms of body-fixed quantities. To model the contact of two deformable bodies,

a thin, flat, rigid and massless plate is inserted between the two deformable bodies such that the

contacting surface of each body conforms exactly to the plate, called hereafter the contact plate;

see Figure 4.5. The contact plate ensures the flatness of the surface of contact. It is also assigned

the same frictional properties as the surfaces of the two colliding bodies.

nj

Kw

fs,j(s)

fs,i(s)

Contact Surface S

Contact Plate

ni

s

Bi

Bj

Figure 4.5: The contact surface between two deformable bodies.

Figure 4.5 shows the resultant contact surface S obtained by inserting the contact plate between

the bodies Bi and Bj . The vector s shows the location of an infinitesimal surface element dS relative

to inertial reference ‘world’ frame Kw. The orientation and position of the plate will be investigated

in further detail in Section 4.3.7. The local elastic foundation deformation depths of bodies Bi and

Bj at s are obtained with the body shape functions fs,i(s) and fs,j(s) respectively, where fs,i(s) and

fs,j(s) correspond to the distance by which the foundation spring is “stretched” on each side of the

contact plate and are measured along the normal directions ni and nj respectively. ni and nj are

selected to be pointing out of bodies Bi and Bj , such that nj = −ni. The contact surface normal

n is defined as pointing out of Bj toward Bi following the convention adopted in Section 3.1 and,

hence, n = nj = −ni.

Similarly as was done in Section 3.1, the states of the two bodies Bi and Bj are defined using

two body-fixed frames Ki and Kj . The origin of each frame is defined by the position vectors

ri and rj relative to Kw; see Figure 4.6. Their orientation with respect to Kw is assumed to be

described by the rotation matrices Ri and Rj . The frames translate at a velocity vi and vj and

rotate with an angular velocity ωi and ωj . Now, let ρi and ρj represent the location of a point s on

the contact surface S relative to bodies Bi and Bj respectively, and given as

ρi = s− ri ,

ρj = s − rj .
(4.1)

Figure 4.6 also shows hi(ρi,ni) and hj(ρj,nj) which give the body surface heights above ρi



Chapter 4: Volumetric Contact Model 59

Ki

hi(ρi,ni)

Bi

n

ρi

fs(s)

ri

s

Kw

rj
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Contact Surface S
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Figure 4.6: Parameters for the Winkler elastic foundation model.

and ρj , measured along the directions ni and nj with respect to the body reference frames Ki and

Kj , respectively. The lengths hi(ρi,ni) and hj(ρj ,nj) are defined by the geometry of bodies Bi

and Bj , and their values depend only on the tangential components of ρi and ρj , respectively, i.e.,

hi(ρi,ni) = hi(T · ρi,ni) and hj(ρj,nj) = hj(T · ρj ,nj), where T is the projection operator

defined in Section 3.1.2. The shape functions fs,i(s) and fs,j(s) are defined in terms of the surface

height function as follows,

fs,i(s) = hi(ρi,ni) − ni · ρi = −hi(ρi,n) + n · ρi ,

fs,j(s) = hj(ρj ,nj) − nj · ρj = hj(ρj,n) − n · ρj ,
(4.2)

where hi(ρi,ni) = −hi(ρi,n) and hj(ρj,nj) = hj(ρi,n). The shape function fs(s) = fs,i(s) +

fs,j(s) of the volume of interference as a function of the location s on the contact surface S is then

fs(s) = hj(s − rj,n) − hi(s− ri,n) + n · (rj − ri) . (4.3)

Equations (4.2) and (4.3) constitute the basic foundation model expressions that relate the pattern

of deformation of the bodies to their geometry.

4.2 One Deformable Body Contact Model

This section presents the derivations for a contact model between one deformable body and one

perfectly rigid one. Here, it will be assumed that the body Bi is deformable while the body Bj
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is rigid. The contact plate is therefore attached to Bj and only the deformation of Bi will be

considered. In other words, the contact surface of Bj is flat and fs,j(s) = 0∀ s. This simplification

has two important consequences. First, the contact pressure felt at any point of the contact surface

is directly a function of fs(s) = fs,i(s), and secondly, the contact normal direction is known since

it corresponds to a flat surface on Bj .

This simplified model will facilitate the derivations of a number of fundamental relationships

that are needed in the next section to complete the derivation and analysis for the two deformable

body contact model. But first, a few basic relationships must be introduced.

4.2.1 Contact Model Framework

This subsection introduces a number of definitions and relationships defined in terms of the shape

function fs(s). Although the contact model presented in this section assumes the body Bj is rigid,

the derivations from this subsection are not subject to this restriction and hence, are equally valid

when fs,j(s) 6= 0.

Volume of Interference and Centroids

The volume V of the volume of interference is given by

V =

∫

S
fs(s) dS =

∫

V
dV . (4.4)

From Equation (4.4), it is seen that fs(s)dS = dV . The centroid pc of the volume of interference

is found using

pc =
1

V

∫

V
p dV , (4.5)

where p is the position vector of an infinitesimal volume element dV relative to Kw. The contact

surface area Ac, is given as

Ac =

∫

S
dS , (4.6)

and the location of the weighted centroid sc on S is defined as

sc =
1

V

∫

S
sfs(s) dS . (4.7)

Here, fs(s) is analogous to a variable density function of the surface. Equations (4.5) and (4.7)

correspond to the mean value vector definition from the First and Second Mean Value Theorems

respectively. Similarly, an average volume ‘height’ can be defined in terms of the area Ac by ap-

plying the First Mean Value Theorem definition to the surface integral definition of Equation (4.4).
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The result is

hv = V/Ac , (4.8)

where hv represents an average value of fs(s) over S. A point p of the volume of interference can

be related to a point s on the surface S using the projection operator T introduced in Section 3.1.2.

The position s on the surface S in terms of p is thus given as

s = T · p + hp n , (4.9)

where hp is the height of contact plate with respect to Kw; see Figure 4.7.

Centroid of Surface

Bj

Volume of Interference
n

hp
n

s

ρs
sc

pc

p

Kw

Centroid of Volume

Contact Surface S

Bi

Figure 4.7: The volume of interference and contact surface centroids.

The relationship between sc and pc is obtained by substituting Equation (4.9) into Equa-

tion (4.7), such that

sc =
1

V
T ·
∫

V
p dV +

hp

V
n

∫

S
fs(s) dS , (4.10)

which simplifies into

sc = T · pc + hp n , (4.11)

which says that the centroid of the volume of interference lies exactly on the normal to the weighted

centroid of the surface. The vector sc can be decomposed into tangential and normal components
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as follows,

sc = T · sc + N · sc = T · sc + hp n . (4.12)

When comparing Equations (4.11) and (4.12), it is obvious that

T · sc = T · pc . (4.13)

Next, the position vector ρs of a point on the surface relative to the volume of interference centroid

pc is defined as

ρs = s − pc . (4.14)

Integrating ρs over the contact area S gives

∫

S
ρsfs(s) dS =

∫

S
(s − sc)fs(s) dS + (sc − pc)

∫

S
fs(s) dS . (4.15)

Using Equations (4.4) and (4.7), the first integral on the right-hand side of Equation (4.15) is

evaluated to be

∫

S
(s − sc) fs(s) dS =

∫

S
sfs(s) dS − sc

∫

S
fs(s) dS = V sc − V sc = 0 . (4.16)

Hence, Equation (4.15) becomes simply

∫

S
ρs fs(s) dS = (sc − pc)V . (4.17)

The vector sc − pc is decomposed and simplified using Equation (4.13) as follows

sc − pc = T · sc − T · pc + N · (sc − pc) = N · (sc − pc) . (4.18)

Hence, sc − pc is parallel to n, as indicated by Equation (4.11). Expressing ρs in terms of its

normal component ρn and tangential component ρ t gives

ρs = (s − sc) + (sc − pc) = ρ t + ρn = ρ t + ρn n , (4.19)

where ρn = n · ρn. Clearly, s − sc is tangential to S and it has just been shown that sc − pc is

normal to S. Therefore, it can be concluded that

ρ t = s− sc

ρn = sc − pc

. (4.20)

Hence, ρn locates sc relative to pc; see Figure 4.8.
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Figure 4.8: The position vector ρs and its normal and tangential components.

For the two deformable body contact model, the determination of ρn is not necessarily straight-

forward. However, it is easy to obtain here since the location of the contact surface is known. When

the body Bj is rigid and hp is known, then ρn is given as

ρn = hp n − Npc . (4.21)

Using the definitions for ρ t and ρn, Equations (4.16) and (4.17) become simply

∫

S
ρ tfs(s) dS =

∫

S
sfs(s) dS − sc

∫

S
fs(s) dS = 0 (4.22)

and

∫

S
ρsfs(s) dS = ρn V . (4.23)

Equations (4.22) and (4.23) are useful relationships and will be used in the next section to simplify

the contact model equations. Also, for the following derivations, all quantities will be derived

relative to the volume of interference centroid pc.
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Volume-Inertia and Surface Inertia Tensors

Finally, one additional quantity (or property) is defined: the contact surface weighted second mo-

ment of area, Js, and is given as follows

Js · ωr =

∫

S
(ρs × (ωr × ρs)) fs(s) dS ; (4.24)

where ωr could be any vector, but in this work will correspond to the relative angular velocity

between the bodies Bi and Bj . Js can also be expressed using dyadic notation in the form of a

second order tensor

Js =

∫

S
((ρs · ρs) I − ρs ρs) fs(s) dS . (4.25)

By virtue of the Second Mean Value Theorem, an average tensor Jρs,avg can be found such that

Js = Jρs,avg

∫

S
fs(s) dS = V Jρs,avg , (4.26)

where Jρs,avg depends exclusively on the shape of the contact surface. One can think of Js as the

inertia tensor for a volume of unit density about the centroid pc. Js appears in a recurring fashion in

the coming derivations and is one of the three volumetric properties on which the proposed contact

model is based. The other volumetric properties are the volume V of the volume of interference

and its centroid pc.

The expression for Js can be simplified when its constitutive equation is re-written in terms of

normal and tangential components. The vectors ρs and ωr are expressed as ρn + ρ t and ωn + ωt,

respectively. The vectorial part of Equation (4.24) is thus written as

ρs × (ωr × ρs) = (ρn + ρ t) × ((ωn + ωt) × (ρn + ρ t))

= (ρn + ρ t) × (ωn × ρn + ωn × ρ t + ωt × ρn + ωt × ρ t)

= ρn × (ωn × ρ t) + ρn × (ωt × ρn) + ρn × (ωt × ρ t)

+ ρ t × (ωn × ρ t) + ρ t × (ωt × ρn) + ρ t × (ωt × ρ t) .

(4.27)

Simplifying the cross-product terms between parallel vectors, e.g., n× n = 0, yields

ρs × (ωr × ρs) = ρ t × (ωn × ρ t) + ρ t × (ωt × ρ t) + ρn × (ωt × ρn)

+ ρn × (ωn × ρ t) + ρ t × (ωt × ρn) .
(4.28)

The second line of Equation (4.28) is now examined in more detail. The triple vector cross-product
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identity2 is applied to the terms in the second line of Equation (4.28) yielding,

ρn × (ωn × ρ t) + ρ t × (ωt × ρn) = (ρn · ρ t)ωn − (ρn · ωn)ρ t

+ (ρ t · ρn)ωt − (ρ t · ωt)ρn ,

= − (ρn · ωn) ρ t − (ρ t · ωt) ρn ,

(4.29)

where the dot-products of perpendicular vectors have been eliminated, e.g., ρn · ρ t = 0. Placing

the resulting expression back into the original integral from Equation (4.24), and moving terms that

do not depend on s outside the integral gives

− (ρn · ωn)

∫

S
ρ tfs(s) dS −

(
∫

S
ρ tfs(s) dS · ωt

)

ρn = 0 , (4.30)

since the integrals in Equation (4.30) evaluate to zero (Equation (4.22)). Hence, the terms in the

second line of Equation (4.28) can be neglected because they does not contribute to the final result

of the integral. Applying the triple cross-product identity to the first line of Equation (4.28) yields

[(ρ t · ρ t) I − ρ t ρ t] (ωn + ωt)+ (ρn · ρn) ωt = [(ρ t · ρ t) I − ρ t ρ t]ωr +(ρn · ρn) ωt , (4.31)

where ρn · ωt = 0 was used to simplify the expression. Summarizing, the derivations show that

Equation (4.27) simplifies into

ρs × (ωr × ρs) = ρ t × (ωr × ρ t) + ρn × (ωt × ρn)

= [(ρ t · ρ t) I− ρ tρ t]ωr + (ρn · ρn)ωt .
(4.32)

Hence, Js can be expressed in the form

Js = [Jt + (ρn · ρn)V T] , (4.33)

or alternatively,

Js · ωt = [Jt + (ρn · ρn)V I] · ωt ,

Js · ωn = Jt · ωn ,
(4.34)

where

Jt =

∫

S
((ρ t · ρ t) I − ρ t ρ t) fs(s) dS . (4.35)

Jt corresponds to the surface-inertia tensor expressed relative to the surface centroid sc. Equa-

tion (4.33) shows that the surface inertia taken about pc corresponds to the inertia Jt to which the

term ρ2
n V is added to account for the position offset from pc to sc, where the ‘mass’ of the surface-

2
a × (b × c) = (a · c)b − (a · b) c = (a · c)b − c (a · b) = [(a · c) I − ca]b
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inertia tensor is the volume V . This offset term corresponds to the parallel-axis theorem shift value

for the change in axis of rotation location from sc to pc.

The surface-inertia tensor Js is closely related to the volume-inertia tensor Jv of the volume

of interference. The term ‘volume-inertia’ is used to distinguish it from the more commonly used

‘mass-inertia’ tensor, i.e., the former has SI units of [m5] whereas the later has units of [kg · m2].

When post-multiplied by the angular velocity ωr, Jv is defined as

Jv · ωr =

∫

V
(ρv × (ωr × ρv)) dV

=

∫

V
((ρv · ρv) I − ρv ρv) dV · ωr ,

(4.36)

where ρv = p−pc. The second integral form yields the usual volume-inertia tensor expressed rel-

ative to the centroid pc. The vector ρv can be decomposed into normal and tangential components

ρv,n and ρv,t as follows

ρv,n = N · (p − pc) ,

ρv,t = T · (p − pc) = T · p− T · pc = s − sc = ρ t .
(4.37)

The definitions from Equations (4.37) can be substituted into Equation (4.36), and simplified in

the same manner as was done for Js by using Equations (4.28). The terms in the second line of

Equations (4.28) are re-written as was done in Equation (4.29) and can also be shown to evaluate to

zero when they are placed back into the integral (4.36), but the proof is different than for the case

of Js and it is given next.

First, the position of a point p in the volume of interference is expressed in terms the position

of its projection s on the contact surface and its height h with respect to this projected position.

The height is measured in the direction of n; see Figure 4.7. The expression for p is given as

p = s− hn = ρ t + sc − hn , (4.38)

which implies that

ρv,n = ρn − hn ,

ρv,t = ρ t .
(4.39)

The volume V of the volume of interference can now be found by splitting the volume integral

Equation (4.4) into a double integral of the position of point p relative to the contact plate, inte-

grated over the surface S of the contact surface as

∫

V
dV =

∫

S

∫ 0

−fs(s)
dh dS =

∫

S
[h]0

−fs(s) dS =

∫

S
fs(s) dS = V . (4.40)
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Second, the integral of ρv,n over the height h of the contact plate is evaluated as

∫ 0

−fs(s)
ρv,n dh =

∫ 0

−fs(s)
(ρn − hn) dh ,

= ρn

∫ 0

−fs(s)
dh −

∫ 0

−fs(s)
h dhn ,

= [h]0
−fs(s) ρn −

[

h2

2

]0

−fs(s)
n ,

= fs(s)

(

ρn − fs(s)
2

)

n ,

(4.41)

where the term in parentheses corresponds to the position of mid-point of fs(s) along the height h

relative to the position of the centroid pc. The mid-point position fs,m(s) is thus given as

fs,m(s) = ρn −
fs(s)

2
. (4.42)

Using the result from Equation (4.41), the expressions from Equation (4.29) can be substituted into

the volume integral (4.36) and evaluated as follows

−
∫

V
[(ρv,n · ωn)ρ t + (ρ t · ωt)ρv,n] dV =

= −
∫

S

(

∫ 0

−fs(s)
ρv,n dh · ωn

)

ρ t dS −
∫

S
(ρ t · ωt)

∫ 0

−fs(s)
ρv,n dh dS

= −ωn

∫

S
fs,m(s) fs(s)ρ t dS −

[(
∫

S
fs,m(s) fs(s)ρ t dS

)

· ωt

]

n .

(4.43)

Invoking the Second Mean Value Theorem, the mid-point height value fs,m(s) inside the integrals

of Equation (4.43) can be replaced by a constant mid-point height value fs,m,avg(s) averaged over

the entire surface S. Equation (4.43) is thus re-written as

−
∫

V
[(ρv,n · ωn)ρ t + (ρ t · ωt)ρv,n] dV =

= −ωn fs,m,avg(s)

∫

S
fs(s)ρ t dS −

[(

fs,m,avg(s)

∫

S
fs(s)ρ t dS

)

· ωt

]

n ,

= 0 ,

(4.44)

since the integral terms in Equation (4.44) evaluate to zero, see Equation (4.22).

Hence, the terms of Equation (4.29) evaluate to zero when they are placed back into the integral

(4.36), and only the terms in the first line of Equation (4.28) remain to be evaluated to obtain Jv.

The expression for Jv thus becomes

Jv · ωr = Jt · ωr +

∫

V
(ρv,n · ρv,n) dV ωt , (4.45)
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where Jt is defined as before. The integral term in Equation (4.45) can be simplified by virtue of

the First Mean Value Theorem as follows

∫

V
(ρv,n · ρv,n) dV = ρ2

v,n,avgV , (4.46)

where ρv,n,avg is a value representing the average distance in the direction of the normal n of all

points in the volume of interference relative to pc. The value of ρv,n,avg can only be determined if

the shape of the volume V is known, while the value ρn in Js is invariant with respect to the surface

integral, i.e., ρn is not a function of s. Jv can now be expressed in a general form as

Jv =
[

Jt + V ρ2
v,n,avg T

]

. (4.47)

Equations (4.33) and (4.47) show the close relationship between Jv and Js. The difference between

the two is V (ρ2
v,n,avg − ρ2

n)T which has a small value for three reasons. First, the values for ρv,n,avg

and ρn will in general be small and in the same order of magnitude because the inter-penetration

depth is expected to be small. Secondly, the values are squared, which reduces the volume-inertia

tensor difference further by one order of magnitude. Finally, the values are subtracted, therefore

resulting in an even smaller difference value.

Jv is the volume-inertia tensor of the volume of interference and can be obtained either numer-

ically or analytically. Hence, for the implementation of the contact model, Jv will be used as an ap-

proximation of Js. In fact, Jv approximates Js exactly when multiplied by ωn, i.e., Jv ·ωn = Js ·ωn,

and the error is small when multiplied by ωt, i.e., Jv · ωt ' Js · ωt.

Expressing Local Velocities Relative to the Centroid

To include energy dissipation effects into the contact model, expressions for the relative transla-

tional velocity vr at a point s on the contact surface is found as

vr = vi + ωi × ρi − vj − ωj × ρj . (4.48)

Also, the relative angular velocity ωr of the surfaces at any point on S is given as

ωr = ωi − ωj . (4.49)

Substituting ρi and ρj as given in Equation (4.1) and expressing s in terms of pc and ρs as defined

in Equation (4.14), the relative velocity given in Equation (4.48) becomes

vr = (vi + ωi × (pc − ri)) − (vj + ωj × (pc − rj)) + ωr × ρs . (4.50)

The first two terms in Equation (4.50) correspond to the relative velocity of the surfaces of the two

bodies, as if the centroid of the volume pc was located on the contact surface, while the third term
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is a correction term to account for the fact that pc is not on the contact surface. Note that in general

the volume of interference centroid is not on the contact surface. However in these derivations, no

such assumption was made and therefore the relative velocity at the centroid vc can be defined as

vc = (vi + ωi × (pc − ri)) − (vj + ωj × (pc − rj)) . (4.51)

The relative velocity vr at a point s of the surface S can now be simply expressed as a function of

the relative velocity at the centroid vc and the relative angular velocity ωr as follows

vr = vc + ωr × ρs . (4.52)

Decomposing the Relative Velocity into Tangential and Normal Components

Equation (3.7) can be used to determine vt, vn, ωt, and ωn. Equation (4.52) can now be decom-

posed into two equations, one for the tangential direction and one for the normal direction. For the

latter, vr is multiplied by N and Equation (4.52) becomes

vn = N · vc + N · (ωt × ρ t) + N · (ωt × ρn) + N · (ωn × ρs) . (4.53)

The last two terms in Equation (4.53) are zero, since the second factor of each expression is per-

pendicular to n. Taking the dot product of Equation (4.53) with n, the equation simplifies to

vn = vcn + n · (ωt × ρ t) , (4.54)

where vcn = n · vc. Similarly, the tangential component of vr is obtained by pre-multiplying

Equation (4.52) by T, i.e.,

vt = T · vc + T · (ωt × ρ t + ωt × ρn + ωn × ρ t + ωn × ρn) . (4.55)

Equation (4.55) can be simplified by noting that ωn × ρn = 0 and that ωt × ρ t produces a vector

perpendicular to the surface. Furthermore, since ωt×ρn and ωn×ρ t produce a vector perpendicular

to n, it follows that

vt = vct + ωt × ρn + ωn × ρ t , (4.56)

with vct = T · vc. The first two terms on the right-hand side of Equation (4.56) do not depend on

s and can be combined as follows

vt = vsct + ωn × ρ t , (4.57)
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where

vsct = vct + ωt × ρn . (4.58)

The term ωt × ρn corresponds to the velocity of sc relative to pc in the direction tangential to n.

Hence, vsct is the relative tangential velocity at sc. Equation (4.58) shows that whenever ωt or ρn

is small and negligible, vsct = vct. In the context of simulation of robotic tasks, it is expected that

ωt will never be large and that inter-penetration depth will be small, and therefore ρn will be small.

As a result, it will generally be acceptable to assume vsct ≈ vct.

4.2.2 Normal Force Model

The contact force produced by the deformation of the contacting surfaces can be found by inte-

grating the pressure on the contact surface over the contact area. The Winkler elastic foundation

provides an approximation for the stiffness of the contact model only, and does not include any

damping effect to dissipate energy during the contact process. In compliant contact models, the

energy dissipation can be modelled using a hysteretic damping term as shown in Section 3.2.1. A

modified Winkler elastic foundation model is proposed to obtain the local contact pressure p(s),

and which includes the hysteretic damping effect as follows

p(s) =
dfn

dS
= kvfs(s) (1 + a vn) , (4.59)

where fs(s) is the normal elastic displacement of the foundation as before, and a is the hysteretic

damping factor. a is a function of the coefficient of restitution and of the initial normal impact

velocity vi
n; see Equation (3.24). The normal contact force f n = fn n is therefore given as

fn =

∫

S
dfn = kv

∫

S
fs(s) dS + kv a

∫

S
vn fs(s) dS . (4.60)

The first integral term is solved using Equation (4.4) and results in kv V . This part corresponds to

the normal force due to the material stiffness. The second integral is solved using Equation (4.54)

as

fn = kv V + kv V a vcn + kv an ·
(

ωt ×
∫

S
ρ tfs(s)dS

)

. (4.61)

The integral term of Equation (4.61) is zero; see (4.22). Hence, the normal contact force is found

to be simply

f n = kv V (1 + a vcn)n , (4.62)
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where

a =
d

eeff vi
cn

, (4.63)

and vi
cn corresponds to initial normal impact velocity at sc. Figure 4.9 shows how f n acts on a

sphere-box pair (non-conformal geometries) and a cube-box pair (conformal geometries).

f nf n

Figure 4.9: The normal force acting on a sphere and a cube.

It is interesting to note that although the derivation presented in this section is based on the

pressure distribution across the area of contact, it is not necessary to determine the shape and

location of the contact area to evaluate Equation (4.62). Instead, only the volume V of the volume

of interference and its centroid pc must be determined. These quantities can be obtained either

analytically or numerically. Since the contact plate is attached to Bj , the direction of the contact

normal is readily known. As a result, the magnitude and direction of f n can be determined using

purely geometric and kinematic information. The stiffness term in fn can be expressed as kv V =

(kv Ac) hv where hv is directly related to the inter-penetration depth; see Equation (4.8). Hence,

the resulting linear stiffness kl = kv Ac of the contact model is proportional to the contact surface

area.

To implement the contact model in the context of a multibody dynamics simulation, the point

of action of the contact force must be selected; see Section 3.1.1. The correct point of action where

f n should be applied is the centroid of the distributed load, a location that has not yet been identified

in the current derivation. Instead, it is proposed to use the centroid of the volume of interference

as point of action of the contact force. This change in location may cause a moment that must be

accounted for to correctly model the normal contact force. This extra torque is considered next.

4.2.3 Rolling Resistance Torque Model

Since the pressure at the contact surface is a function of the normal displacement and velocity at

each point, the load distribution profile is generally not symmetric about the centroid of the volume

of interference. It is therefore necessary to consider the moments generated by the contact pressure
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distribution. To this end, the infinitesimal rolling resistance torque dτ r is defined as follows

dτ r = ρs × df n . (4.64)

Using Equations (4.59) and (4.54), dτ r can be integrated over the contact area S. Substituting

Equation (4.54) and moving all the terms that do not depend on s outside of the integral gives

τ r = kv (1 + a vcn)

[
∫

S
ρsfs(s) dS

]

× n

+kv a

∫

S
(ρs × (ωt × ρs)) fs(s) dS .

(4.65)

The integral term in the first line of Equation (4.65) can be simplified employing Equation (4.23)

and noting that ρn × n is zero. Re-writing the second term using dyadic notation yields

τ r = kv a

∫

S
((ρs · ρs) I − ρs ρs) fs(s) dS · ωt (4.66)

or

τ r = kv aJs · ωt . (4.67)

Figure 4.10 shows how τ r acts on sphere-box pair and a cube-box pair.

τ rτ r

ωt

ωt

Figure 4.10: The rolling resistance torque acting on a sphere and a cube.

When the bodies are rolling with respect to each other, then τ r is a rolling resistance torque

acting to prevent the rolling. Equation (4.67) shows that if the two bodies are not rolling with

respect to each other, i.e., |ωt| = 0, then the normal force is distributed symmetrically around the

volume of interference centroid, so the net moment at the centroid is zero. See also that τ r does not

depend on f n. Hence, the centroid of the volume of interference is a logical choice as the point of

action of the contact force fn. For any other choice, an additional moment proportional to f n and

the moment arm about the centroid would be required.
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4.2.4 Tangential Friction Force Model

The forces resulting from friction in the tangential direction are considered next. In order to keep

the formulation as general as possible, a friction force that is both dependent on relative surface

velocity and load will be considered. Once the general formulation is derived, it can be specialized

for Coulomb friction or viscous friction for example. The infinitesimal frictional force element df t

is defined as

df t = µvt dfn , (4.68)

where µ is some constant that will be defined in the model implementation. It is interesting to

note that if the normal force is kept constant, µ will be a viscous friction coefficient, while if the

magnitude of vt is set to one, µ would represent either the static or kinetic friction coefficient.

Substituting the definition of dfn as given in Equation (4.59) into Equation (4.68), the tangential

friction force is found by integrating the force df t over the area,

f t = µ kv

∫

S
(1 + a vn)vt fs(s) dS . (4.69)

By recalling the expression for vt from (4.57), Equation (4.69) can be written as

f t = µ kv

∫

S
(1 + a vn) fs(s) dS vsct + ωn ×

[

µ kv

∫

S
(1 + a vn) ρ t fs(s) dS

]

. (4.70)

The first term in the equation above corresponds to Equation (4.60), and can be simplified in the

same manner. The second term can be shown to be zero. Substituting Equation (4.54) into the

integral of the second term, called I1 hereafter, gives

I1 = µ kv (1 + a vcn)

∫

S
ρ t fs(s) dS + aµ kv

∫

S
(n · (ωt × ρ t)) ρ t fs(s) dS . (4.71)

The integral first term of Equation (4.71) is evaluated to zero using Equation (4.22), while the

second term can be shown to be zero by virtue of the chain rule, i.e.,
∫

u dv = uv −
∫

v du and

setting dv to

dv = (n · (ωt × ρ t)) fs(s) dS , (4.72)

and solving for v gives

v = n ·
[

ωt ×
(
∫

S
ρ t fs(s) dS

)]

. (4.73)
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Using the Equation (4.22), the integral is evaluated, showing that v = 0, and therefore I1 = 0. f t

can now be evaluated and simplifies to

f t = µ kv V (1 + a vcn)vsct , (4.74)

or

f t = µ fn vsct . (4.75)

f tf t

vct

vct

Figure 4.11: The tangential friction force acting on a sphere and a cube.

Figure 4.11 shows how f t acts on a sphere-box pair and a cube-box pair. As discussed pre-

viously, |ρn| will typically be small for fairly rigid bodies and can be usually neglected. Hence,

vsct in Equation (4.75) can be substituted by vct without affecting the friction model behaviour

significantly.

4.2.5 Spinning Friction Torque Model

In the previous section, the effect of friction due to translational motion was studied. When the

contacting surface has a non-negligible area, this tangential friction force will also produce a mo-

ment that acts to prevent the bodies from turning with respect to each other. More precisely, the

spinning friction is a torque that acts to prevent motion when the bodies have a non-zero relative

angular velocity ωn with respect to each other. Similar to the steps followed in Section 4.2.3, an

infinitesimal spinning friction torque dτ s is defined as follows

dτ s = ρ t × df t . (4.76)

The spinning torque is found by integrating Equation (4.76) over the area. Substituting the defini-

tion for df t from Equation (4.68), the integral to evaluate is

τ s = µ kv

∫

S
(1 + a vn) (ρ t × vt) fs(s) dS . (4.77)
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Substituting the definition for vt from Equation (4.57), τ s becomes

τ s =

[

µ kv

∫

S
(1 + a vn)ρ t fs(s) dS

]

× vsct

+ µ kv

∫

S
(1 + a vn) (ρ t × (ωn × ρ t)) fs(s) dS .

(4.78)

The first integral term of Equation (4.78) is exactly I1 from Equation (4.70), and has been shown

to be zero. Therefore, Equation (4.78) simplifies to

τ s = µ kv

∫

S
(1 + a vn) (ρ t × (ωn × ρ t)) fs(s) dS . (4.79)

Replacing the definition for vn from Equation (4.54) into Equation (4.79) gives

τ s = µ kv (1 + a vcn)

∫

S
(ρ t × (ωn × ρ t)) fs(s) dS

+ µ kv a

∫

S
(ρ t × (ωn × ρ t)) (n · (ωt × ρ t)) fs(s) dS .

(4.80)

The second integral in Equation (4.80) can be integrated in parts and can be shown to be zero; see

Equations (4.72) and (4.73). The double cross product in the first integral involving ρ t, can be

replaced by a double cross product involving ρs since it operates on ωn and the ρn component in ρs

will not contribute in the final result. In other words, the moment of inertia about ωn is not affected

by the relative location along n about which it is evaluated. Hence, Equation (4.25) can be used to

find a simple expression for the spinning friction

τ s = µ kv (1 + a vcn)Js · ωn , (4.81)

or

τ s = µ
fn

V
Js · ωn . (4.82)

Figure 4.12 shows how τ s acts on a sphere-box pair and a cube-box pair.

4.3 Two Deformable Body Contact Model

The two deformable body contact model is based on the theoretical framework of the one de-

formable body model. However, there is a key difference: the location and orientation of the

contact plate are no longer known. The derivations presented in this section will therefore focus

on the body deformation processes occurring on both sides of the contact plate to determine its

location and orientation.

The deformation of each body as it is pressed onto the contact plate can be described in terms

of its deformation volume, defined as the section of the undeformed body geometry that is located
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τ s

τ s

ωn
ωn

Figure 4.12: The spinning friction torque acting on a sphere and a cube.

below the contact plate surface. This volume corresponds to the volume of interference used by the

one deformable body contact model. Hence, the forces and torques generated by the deformation

of each body can be obtained using the one deformable body contact model. The contact plate

position, orientation and motion will be determined by studying the combined effects of the forces

and torques generated by the deformation of the two bodies.

Since the derivations involve the analysis of the deformations on each side of the contact plate,

the quantities related to each body will be distinguished by adding the body index to the variable.

Thus, quantities relating to Bi and Bj will be denoted by the subscripts i and j, respectively. The

quantities without either subscript will be understood to relate to the entire volume of interference.

4.3.1 Contact Model Framework

This subsection introduces quantities pertaining to the volumes of deformation of bodies Bi and

Bj , and relates them to the corresponding quantity of the volume of interference, as defined in

Section 4.2.

Volume of Interference and Centroids

The resulting deformation volumes Vi and Vj on each side of the plate are found by obtaining the

surface deformation depths fs,i(s) and fs,jj(s) at a point s on the contact surface and integrating

over the contact surface area S such that

Vi =

∫

S
fs,i(s)dS , Vj =

∫

S
fs,j(s)dS . (4.83)

Vi and Vj are related to the total deformation volume V since fs(s) = fs,i(s) + fs,j(s), thus

V =

∫

S
fs(s)dS =

∫

S
fs,j(s) dS +

∫

S
fs,i(s) dS = Vi + Vj . (4.84)
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The centroids pc,i and pc,j of deformation volumes Vi and Vj , respectively, are found using

pc,i =
1

Vi

∫

Vi

p dV , pc,j =
1

Vj

∫

Vj

p dV . (4.85)

The deformation volumes share the same contact area Ac and have an average volume ‘height’

hv,i = Vi/Ac , hv,j = Vj/Ac . (4.86)

For each deformation volume, the location of the weighted contact surface centroids sc,i and sc,j

are defined as

sc,i =
1

Vi

∫

S
sfs,i(s) dS , sc,j =

1

Vj

∫

S
sfs,j(s) dS . (4.87)

The centroid sc can be expressed in terms of sc,i and sc,j as using the relationship from Equa-

tion (4.84) as

V sc = (Vi + Vj) sc =

∫

S
sfs(s)dS =

∫

S
sfs,i(s)dS+

∫

S
sfs,j(s)dS = Vi sc,i+Vj sc,j . (4.88)

For now, sc,i will be selected to be equal to sc,j . Section 4.3.2 will show that this choice is not

arbitrary, and that it is in fact an equilibrium condition defining the orientation of the contact plate.

Using this assumption, Equation (4.88) shows that

sc = sc,i = sc,j . (4.89)

The position vectors ρs,i and ρs,j of a point s on the surface S relative to deformation volumes

centroids pc,i and pc,j are defined as

ρs,i = s− pc,i , ρs,j = s − pc,j . (4.90)

As was demonstrated in Section 4.2.1, ρs,i and ρs,j can be decomposed into components normal

and tangential to the contact plate as

ρn,i = sc,i − pc,i , ρn,j = sc,j − pc,j ,

ρ t,i = s− sc,i , ρ t,j = s − sc,j .
(4.91)

Comparing Equations (4.91) and (4.89), it becomes clear that

ρ t,i = ρ t,j = ρ t = s − sc . (4.92)

As derived in Section 4.2.1, it can be shown that (sc − pc,i) and (sc − pc,j) are also parallel to n,

and therefore it follows that pc,i, pc,j , pc, and sc are collinear.
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Surface Inertia Tensors

Finally, the surface inertia tensors Js,i and Js,j of each deformation volume are defined with respect

the centroid of the total volume of interference pc. These are given as

Js,i =

∫

S
((ρs · ρs) I − ρs ρs) fs,i(s) dS = Vi Jρs,avg ,

Js,j =

∫

S
((ρs · ρs) I − ρs ρs) fs,j(s) dS = Vj Jρs,avg ,

(4.93)

where Jρs,avg is defined as in Section 4.2.1. Again, it follows that

Js,i + Js,j = (Vi + Vj)Jρs,avg = V Jρs,avg = Js . (4.94)

Body Velocities With Respect to the Contact Plate

In Section 4.2, the contact plate is attached to the body Bj . Hence, its motion corresponds to the

motion of that body. Here however, the contact plate moves between the two bodies since both

bodies deform during impact. Essentially, the contact plate behaves as a 6 degrees-of-freedom

body constrained by the deformation forces from Bi and Bj . To characterize the plate position,

orientation and motion, the forces acting on it must be determined. These forces also depend on

the translational and angular velocity of the plate relative to each body. In this section, expressions

for these relative velocities are derived.

The plate motion will be characterized in terms of the motion of the weighted surface centroid

sc. Recall that sc has been assumed to be located at the same position as the weighted surface

centroids sc,i and sc,j of the deformation volumes Vi and Vj on each side of the plate. As was

shown in the derivation for vr in Equation (3.3), the translational motion of a point s on the contact

plate relative to Bi is given as

vr,i =
(

vp + ωp × ρ t

)

− (vi + ωi × ρi) , (4.95)

where vp and ωp are the translational and angular velocities of the contact plate at sc. Note that

the contact plate motion could have been characterized by using any other point on the plate, thus

yielding a different value for vp and ωp. However, since sc is already defined, it is convenient

to use this location on the contact plate. The angular motion of the contact plate relative to Bi is

simply given as

ωr,i = ωp − ωi . (4.96)

Substituting the definition for ρi in Equation (4.95), and expressing s in terms of pc,i and ρs,i, the
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relative motion is expressed as

vr,i = vc,i + ωr,i × ρs,i , (4.97)

where vc,i is defined as

vc,i =
(

vp − ωp × ρn,i

)

−
(

vi + ωi × (pc,i − ri)
)

(4.98)

and describes the relative velocity of body Bi with respect to the contact plate at pc,i. By definition,

pc,i = ρn − ρn,i + pc, and therefore Equation (4.98) can be written in terms of pc as

vc,i =
(

vp − ωr,i × ρn,i − ωi × ρn

)

− (vi + ωi × (pc − ri)) . (4.99)

Similarly, the translational motion of a point s on the contact plate relative to Bj is given as

vr,j =
(

vp + ωp × ρ t

)

− (vj + ωj × ρj) , (4.100)

and the relative angular motion is given as

ωr,j = ωp − ωj , (4.101)

such that

vr,j = vc,j + ωr,j × ρs,j , (4.102)

where vc,j is expressed as

vc,j =
(

vp − ωr,j × ρn,j − ωj × ρn

)

− (vj + ωj × (pc − rj)) . (4.103)

Now, vc was defined in Equation (4.51) and is related to vc,i and vc,j as

vc = (vc,j − vc,i) + (ωr,j × ρn,j − ωr,i × ρn,i − ωr × ρn) . (4.104)

In Equation (4.104), the terms inside the second parentheses on the right hand-side only contribute

velocities tangential to the contact plate. Hence, it is concluded that

N · vc = vcn n = N · (vc,j − vc,i) = vcn,j nj − vcn,ini , (4.105)

where vcn,i = ni ·N ·vc,i and vcn,j = nj ·N ·vc,j . Substituting the convention for ni and nj gives

vcn = vcn,i + vcn,j . (4.106)
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Similarly, the normal velocity at any point s on the contact surface is obtained by pre-multiplying

Equations (4.97) and (4.102) by N. Simplifying Equation (4.54) leads to

N · vr,i = vn,i = vcn,i ni + (ωt,i × ρ t) ,

N · vr,j = vn,j = vcn,j nj + (ωt,j × ρ t) ,
(4.107)

when recalling that ρ t,i = ρ t,j = ρ t. Writing the expressions in scalar form gives

vn,i = ni · vn,i = vcn,i + ni · (ωt,i × ρ t) ,

vn,j = nj · vn,j = vcn,j + nj · (ωt,j × ρ t) .
(4.108)

By applying the convention for ni and nj , the normal velocities vn,i and vn,j are related to vn as

follows

vn = n · (vn,j nj − vn,i ni) = vn,j + vn,i

= vcn,i + vcn,j + n ·
[(

T (ωp − ωj) −T (ωp − ωi)
)

× ρ t

]

= vcn + n · (ωt × ρ t) ,

(4.109)

which corresponds to the definition from Equation (4.54). Hence, in vectorial form the relationship

for the relative velocities in the normal direction is simply

vn = vn,j − vn,i . (4.110)

The relationship for the normal angular velocity can be obtained by pre-multiplying Equation (4.49),

(4.96) and (4.101) by N, and noting that ωr = ωr,j − ωr,i, hence,

ωn = ωn,j − ωn,i . (4.111)

Equation (4.111) can be expressed in scalar form by taking the dot product with n on both sides

ωn = ωn,i + ωn,i , (4.112)

where the convention for ni and nj was used.

A relationship for the relative velocities at the centroids sc, sc,i and sc,j in the tangential direc-

tion can also be obtained from Equation (4.104). Re-writing it as

(vc + ωr × ρn) = (vc,j + ωr,j × ρn,j) − (vc,i + ωr,i × ρn,i) (4.113)

and pre-multiplying both side by the projection operator T yields

(vct + ωt × ρn) = (vct,j + ωt,j × ρn,j) − (vct,i + ωt,i × ρn,i) , (4.114)
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where the cross-product operations between the parallel parts of the vectors have been removed.

In Equation (4.114), the terms inside the parentheses correspond to the relative velocities at sc, sc,i

and, sc,j respectively. Hence is is seen that

vsct = vsct,j − vsct,i , (4.115)

where

vsct,i = vct,i + ωt,i × ρn,i

vsct,j = vct,j + ωt,j × ρn,j .
(4.116)

The tangential velocity of a point s located at ρ t from the surface centroid sc and relative to the

centroids sc = sc,i = sc,j is obtained by adding ωn × ρ t = (ωn,j − ωn,i) × ρ t to the surface

centroid velocity expressions, namely,

(vsct + ωn × ρ t) = (vsct,j + ωn,j × ρ t,j) − (vsct,i + ωn,i × ρ t,i) , (4.117)

where the relationship between the normal angular velocities given in Equation (4.111) was used

while recalling that ρ t = ρ t,i = ρ t,j . Equation (4.117) corresponds to the definition of the tangen-

tial velocity expression for vt given in Equation (4.57). Hence it is concluded that

vt = vt,j − vt,i , (4.118)

where

vt,i = vsct,i + ωn,i × ρ t,i ,

vt,j = vsct,j + ωn,j × ρ t,j .
(4.119)

The relationship for the tangential angular velocities can be obtained by pre-multiplying Equa-

tions (4.49), (4.96) and (4.101) by T and noting that ωr = ωr,j − ωr,i, i.e.,

ωt = ωt,j − ωt,i . (4.120)

Given that vr,i = vn,i + vt,i and vr,j = vn,j + vt,j , and according to the definitions of vr, ωr, vr,i,

ωr,i, vr,j and ωr,j it can be seen that

vr = vr,j − vr,i ,

ωr = ωr,j − ωr,i .
(4.121)
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4.3.2 Contact Plate

The position and orientation of the contact plate are directly affected by the contact pressure acting

on each side of the plate. On the other hand, the amount of deformation causing the contact pressure

is determined by the position and orientation of the contact plate. Hence, the two problems are

inter-dependent and must be solved at the same time.

Equivalent Stiffness

To determine the pressures acting on the contact plate, the body-to-body interaction is studied

under quasi-static loading conditions. The quasi-static normal contact forces f n,i = fn,i ni and

f n,j = fn,j nj pushing on each side of the plate are found by integrating the contact pressure over

the contact area S, i.e.,

fn,i =

∫

S
kv,ifs,i(s)dS = kv,i Vi ,

fn,j =

∫

S
kv,jfs,j(s)dS = kv,j Vj ,

(4.122)

where kv,i and kv,j are the volumetric stiffness of Bi and Bj respectively. Note that in general

kv,i 6= kv,j . The normal contact force fn is the result of the force applied on each side of the plate,

and therefore

f n = fn,j nj = −fn,i ni , (4.123)

where f n is taken to have a positive value when it points in the direction of nj = n. It follows that

2 f n = fn,j nj − fn,i ni = (kv,i Vi + kv,j Vj)n . (4.124)

On the other hand, the contact plate is massless: it will always be in equilibrium. As a result, the

sum of the normal forces acting on the contact plate should be zero. The sum of the normal forces

acting on the contact plate is therefore given as

fn,i ni + fn,j nj = 0 , (4.125)

which yields

kv,i Vi = kv,j Vj . (4.126)
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Equation (4.126) indicates that the volume on each side of the contact plate will be different when

kv,i 6= kv,j . Combining Equations (4.84) and (4.126) gives expressions for Vi and Vj in terms of V

Vi = ri V , where ri =
kv,j

kv,i + kv,j
,

Vj = rj V , where rj =
kv,i

kv,i + kv,j
.

(4.127)

The ratios ri and rj relate the size of the volume of deformation of the bodies to the size of the

total volume of deformation V , i.e., the volume of interference. When the stiffness of one body is

much larger than the stiffness of the other body, the ratios reduce to values of 0 and 1 as follows

ri = 0 ; rj = 1 , when kv,i � kv,j (Bi rigid) ,

ri = 1 ; rj = 0 , when kv,i � kv,j (Bj rigid) ,
(4.128)

and therefore

Vi = 0 ; Vj = V , when kv,i � kv,j (Bi rigid) ,

Vi = V ; Vj = 0 , when kv,i � kv,j (Bj rigid) .
(4.129)

The Equation (4.129) confirms the fact that rigid bodies do not deform, i.e., Vi = 0 when Bi is

rigid and Vj = 0 when Bj is rigid. This observation will play a key role in the determination of the

contact plate velocities later in this section.

Next, a new equivalent contact stiffness kv is defined such that

2V kv = kv,i Vi + kv,j Vj . (4.130)

Substituting the expressions for Vi and Vj given above results in

2V kv = kv,i ri V + kv,j rj V . (4.131)

The V can be eliminated in the expression above such that an expression for kv only in terms of

kv,i and kv,j is found as

kv =

(

1

kv,i
+

1

kv,j

)

−1

. (4.132)

Interestingly, when one of the bodies becomes rigid, for example Bi and therefore kv,i � kv,j , then

Equation (4.132) indicates that kv = kv,j . Similarly, if Bj is rigid, then kv = kv,i. Hence, when the

stiffness of one body is set to infinity, the definition of kv reduces to the one deformable body case,

i.e., kv corresponds to the stiffness of the deformable body.
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Comparing Equations (4.124) and (4.131), it is obvious that

f n = kv V n . (4.133)

Hence, kv and V can be used to obtain the total quasi-static normal contact force even when the

two bodies do not have the same stiffness. It is not necessary to find the values of Vi and Vj

independently. Only V needs to be computed.

Contact Plate Orientation

The contact plate orientation is determined exclusively by the moments acting on it. Since it is

massless, the moments acting on the plate should always add up to zero. Taking the moments of

the pressures from the deformation of Bi acting on the plate about the centroid sc,i gives

∫

S
ρ t,i × df n,i = kv,i

∫

S
(s − sc,i) fs,i(s) dS × ni . (4.134)

The right hand side of Equation (4.134) is easily solved using Equation (4.83) yielding

∫

S
ρ t,i × df n,i = kv,i

[
∫

S
s fs,i(s) dS − sc,i Vi

]

× ni = 0 . (4.135)

The term in brackets of Equation (4.135) evaluates to zero; see the definition of sc,i given in Equa-

tion (4.87). Hence, the contact pressure induced by the deformation of body Bi is equally dis-

tributed about the centroid sc,i. Similarly, it can be shown that the contact pressure resulting from

the deformation of body Bj is equally distributed about sc,j .

The above derivations indicate that the moment generated by the deformation of Bi is zero at

sc,i and the moment generated by the deformation of Bj is zero at sc,j . Hence, no external moments

will be applied to the contact plate when sc,i = sc,j . In other words, under quasi-static loading

conditions, the contact plate will naturally “adapt” its orientation such that sc,i = sc,j , thereby

ensuring the net resultant moment acting on it is zero. This conclusion validates the hypothesis

presented in Section 4.3.1, namely that sc,i = sc,j and therefore that sc = sc,i = sc,j .

Contact Plate Position

Given that sc = sc,i = sc,j , it follows that the centroids pc, pc,i and pc,j of the volumes V , Vi

and Vj , respectively, are located along the same line since ρn, ρn,i and ρn,j are parallel vectors.

However, Vi and Vj are sub-volumes of V such that Vi + Vj = V . Therefore, the location of the

centroid pc can be expressed as a weighted summation of the centroids pc,i and pc,j as

V pc = Vi pc,i + Vj pc,j . (4.136)
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Subtracting V sc = (Vi + Vj) sc from both sides of Equation (4.136) and using the definitions for

ρn, ρn,i and ρn,j results in

V ρn = Vi ρn,i + Vj ρn,j . (4.137)

Now, Vi and Vj can be expressed in terms of V (Equation (4.127)), and then dividing through by

V , giving

ρn = ri ρn,i + rj ρn,j . (4.138)

Equation (4.138) shows that ρn corresponds to either ρn,i or ρn,j when one of the bodies is rigid.

If a body is rigid, then its deformation volume is zero and, therefore, its corresponding offset

from the zero-volume centroid to the contact surface is also zero. Hence, when one body is rigid

Equation (4.138) simplifies to

ρn = ρn,j , when kv,i � kv,j (Bi rigid) , (4.139)

ρn = ρn,i , when kv,i � kv,j (Bj rigid) . (4.140)

Not knowing a priori what are the shapes of Vi and Vj it is not possible to determine ρn,i and

ρn,j . However, Equations (4.8) and (4.86) give information of the average volume height for a

given contact surface area Ac. If the volume of interference between the bodies is assumed to have

a constant cross-section area, then the centroids of the volumes Vi and Vj are located at 1
2 hv,i ni and

1
2 hv,j nj from the contact plate. Hence, the contact plate is located at ρn,i = −1

2 hv,i ni from pc,i

and ρn,j = −1
2 hv,j nj from pc,j . Using this approximation, the estimated values for the centroid

locations ρn,i and ρn,j are substituted in Equation (4.138). It follows that

ρn = −ri
Vi

2Ac

ni − rj
Vj

2Ac

nj , (4.141)

where the values for hv,i and hv,j have been replaced following Equation (4.86). Expressing Vi and

Vj in terms of V and noting that V = hv Ac gives

ρn =
(

r2
i − r2

j

) hv

2
n (4.142)

or

ρn =

(

kv,j − kv,i

kv,i + kv,j

)

hv

2
n . (4.143)

Equation (4.143) indicates that when kv,i < kv,j and Vi > Vj , ρn points in the same direction as

n, i.e., toward body Bi. Figure 4.13 illustrates the change in position of the contact plate location

for two cases. The dashed line shows the plate location when kv,i = kv,j , and therefore pc = sc.
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Figure 4.13: The contact plate normal offset ρn.

Figure 4.13(a) shows the case when kv,i < kv,j and therefore ρn · n > 0. It can be seen that

the contact plate moves toward Bi, thereby increasing the size of Vi and reducing the size of Vj .

Figure 4.13(b) illustrates the reverse.

Equation (4.143) can be used to obtain an estimate of the contact surface offset distance from

the centroid of the volume of interference pc. However, it requires computing a value for hv, which

in turn means the area of the contact surface Ac must be determined, i.e., hv = V/Ac. If the volume

and the direction of the contact normal n are known, then it is possible to project the volume of

interference onto the contact plate along n and obtain the resulting area of contact Ac. This can be

done analytically or numerically.

Equation (4.143) can also be used to find an estimate for the offset in the extreme cases when

one body is rigid and the other flexible. In this case the equation simplifies into

ρn = −hv
2 n , when kv,i � kv,j (Bi rigid) , (4.144)

ρn = hv
2 n , when kv,i � kv,j (Bj rigid) . (4.145)

Figure 4.14 shows the resulting contact plate position offset ρn when one of the bodies is rigid and

the other is compliant and has a constant cross section area. In this case, Equations (4.144) and

(4.145) yield the exact result.

Equation (4.143) emphasizes the dependence of ρn on the stiffness of the two bodies. When

these stiffnesses are similar, then the value of ρn becomes small. For the type of simulation sce-

narios selected in this work this assumption is valid. Furthermore, it is also expected that the

inter-penetration depths will be small. As a result, hv will be small as well. Hence, the value of ρn

is very small or negligible. As a result, the contact model implementation will assume that ρn is

negligible and hence that pc ≈ sc and vct ≈ vsct; see Equations (4.20) and (4.58).

Contact Plate Pressure Differential

The quasi-static normal contact force acting on each side of the contact plate was found to be

kv,i Vi = kv,j Vj in magnitude. The force on each side is the resultant of the pressure acting at each
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Figure 4.14: The contact plate normal offset ρn for rigid bodies.

infinitesimal surface element of the contact surface. This local pressure is directly a function of the

local deformation depths fs,i(s) and fs,j(s) of the contact surface of each body. Hence, because the

shapes of the bodies are arbitrary, fs,i(s) and fs,j(s) will in general be different. Consequently, the

local pressure on each side of the force plate should not be assumed to be equal, i.e., kv,i fs,i(s) 6=
kv,j fs,j(s). The resulting pressure differential has not been considered yet in the derivations of the

proposed contact model. Its impact, if any, will now be investigated.

A new shape function fs,p(s) is introduced to help analyze the pressure differential behaviour.

This shape function is defined as the shape the contact plate would assume if it was massless but not

rigid at all, i.e., a completely compliant surface with no stiffness. Similarly to fs,i(s) and fs,j(s),

fs,p(s) measures the distance of the flexible contact plate relative to the rigid contact plate position,

and will be assumed positive in the direction of n. Figure 4.15 shows an example of a flexible plate

shape where the contact stiffness of both bodies is assumed to be roughly equal. The dashed line

represents the rigid contact plate.

Because the flexible plate is not able to resist any normal pressure differential, the local pressure

acting on each side of the flexible contact plate will be equal. Hence, fs,p(s) would satisfy

kv,i

(

fs,i(s) + fs,p(s)
)

= kv,j

(

fs,j(s) − fs,p(s)
)

. (4.146)

Re-writing Equation (4.146) and integrating over the contact surface gives

(kv,i + kv,j)

∫

S
fs,p(s) dS = kv,i

∫

s
fs,i(s) dS − kv,j

∫

S
fs,j(s) dS = 0

= kv,i Vi − kv,j Vj = 0

(4.147)
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Figure 4.15: The flexible plate when kv,i ≈ kv,j .

or

∫

S
fs,p(s) dS = 0 . (4.148)

Equation (4.148) indicates that on average, the offset of the flexible contact surface with respect to

the rigid one is zero.

Next, the torque produced by the pressure differential on the rigid plate is analyzed. Taking the

cross-product on both sides of Equation (4.146) with ρ t gives

(kv,i + kv,j)

∫

S
ρ t fs,p(s)dS ×n = kv,i

∫

s
ρ t fs,i(s)dS ×n−kv,j

∫

S
ρ t fs,j(s)dS ×n . (4.149)

Now, both integrals on the right hand-side of Equation (4.149) have been shown to be zero (see

Equation (4.22)), and hence Equation (4.149) equals zero. Expressing ρ t in terms of s and sc in

Equation (4.149) yields

∫

S
ρ t fs,p(s) dS =

∫

S
s fs,p(s) dS − sc

∫

S
fs,p(s) dS = 0 . (4.150)

Equation (4.150) shows that on average, the torque produced by the rigid contact plate about the

centroid sc is zero. Furthermore, Equations (4.147) and (4.150) show that even though the contact

plate is rigid, and therefore that the local pressure is different on each side of it, this has no impact

on the net forces and torques produced by the deformation of the bodies. As a result, the contact

plate can be assumed to be rigid and therefore perfectly flat, thereby allowing the tangential forces

considered as being perpendicular to the normal ones.
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Contact Plate Velocities

The analysis of the motion of the contact plate presented in Section 4.3.1 focused on deriving

expressions relating the relative the velocites of each deformable body Bi and Bj to the relative

velocities of the entire volume of interference; see Equations (4.106), (4.110), (4.118) and (4.121).

However, the velocities of the contact plate vp and ωp were not determined. This section introduces

relationships defining these velocities in terms of the motion and stiffness of the bodies. These

relationships will be shown to be consistent with a quasi-static process assumption.

In Section 3.2.1, it was observed that during the collision process, the energy is not dissipated

through the action of a spring-damper type of surface deformation response. If the latter was true,

the shape of the deformation would be affected by the normal relative velocity. Instead, the normal

impact energy is dissipated by different phenomena whose effects on the shape of the deformed

surfaces are neglected. As a result, the shape of the deformed surfaces has the shape of the quasi-

static deformation, or in other words, the shape of the deformation is not affected by the normal

velocity. Hence, the collision process is treated quasi-statically. This observation also applies to

contact models based on Hertz theory, which is also based on a quasi-static process assumption;

see Section 2.1.1.

With this observation in mind, the selection of a relationship defining the contact plate veloci-

ties becomes rather arbitrary: because the collision process is treated quasi-statically, the effect of

the velocities is neglected. However, to include normal energy dissipation in the contact model,

the effect of the velocities must nonetheless be taken into account. Hence, a relationship defining

the relative body velocities is needed, but the definition must be consistent with the fact that the

collision process is treated quasi-statically.

On the other hand, the model of the contact interaction must also be consistent with the ex-

pected physical behaviour. To determine the nature of this behaviour, it is first investigated in the

extreme cases when one body is fully rigid and the other is compliant. In Section 4.2 the contact

behaviour of a collision between a purely rigid body with a deformable one was investigated. It

was observed that in this case, the contact plate was “attached” to the rigid body and that the defor-

mation process involved only the compliant body. This behaviour will now be investigated in more

detail.

First, the case where the body Bi is fully rigid and body Bj is compliant is considered. The

contact plate is attached to Bi and therefore ωp = ωi. As a result, the relative angular velocity

between the plate and the body is zero,

ωr,i = ωp − ωi = 0 (Bi rigid) . (4.151)

The velocity vp of the contact plate at sc is given as

vp = vi + ωi × (sc − ρi) (Bi rigid) . (4.152)
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To investigate vr,i, the motion vc,i at the centroid pc,i is first considered. Equation (4.98) gives vc,i

in terms of the plate and the body Bi velocities. Replacing the definition from Equation (4.152) into

Equation (4.98) and simplifying using Equation (4.20) yields vc,i = 0. Hence, the plate velocity

relative to Bi given by Equation (4.97) becomes

vr,i = vc,i + ωr,i × ρs,i = 0 (Bi rigid) (4.153)

as expected since the contact plate is attached to Bi. Next, the contact plate velocity relative to Bj

is found by replacing the definition for vp from Equation (4.152) into Equation (4.100) and noting

that ωp = ωi, thus resulting in

vr,j = (vi + ωi × (sc − ri + ρ t)) − (vj + ωj × ρj) (Bi rigid) . (4.154)

Recalling that ρ t = s − sc and that ρi = s − ri (Equations (4.20) and (4.1)), Equation (4.154)

simplifies to

vr,j = vr (Bi rigid) , (4.155)

where the definition of vr given in Equation (4.48) was invoked. The angular velocity of the plate

relative to Bj is found by replacing ωp = ωi into Equation (4.101) yielding

ωr,j = ωi − ωj = ωr (Bi rigid) . (4.156)

Secondly, the case where body Bj is fully rigid and body Bi is compliant is studied. Here, the

contact plate is attached to Bj . Similarly to the case where Bi was rigid, it can be shown that

ωr,j = ωp − ωj = 0 (Bj rigid) , (4.157)

since ωp = ωj . The motion of the contact plate at sc is given by vp as

vp = vj + ωj × (sc − ρj) (Bj rigid) . (4.158)

vc,j can be shown to be zero, and hence

vr,j = vc,j + ωr,j × ρs,j = 0 (Bj rigid) . (4.159)

The velocity of the contact plate relative to Bi is given as

vr,i = (vi + ωi × ρi) − (vj + ωj × ρj) = −vr (Bj rigid) , (4.160)
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and the angular velocity of the plate relative to Bi is

ωr,i = ωj − ωi = −ωr (Bj rigid) . (4.161)

Summarizing, the results for the Bi and Bj rigid are

ri = 0 ; rj = 1

vr,i = 0 ; vr,j = vr

ωr,i = 0 ; ωr,j = ωr















Bi rigid ,

ri = 1 ; rj = 0

vr,i = −vr ; vr,j = 0

ωr,i = −ωr ; ωr,j = 0















Bj rigid .

(4.162)

The following relationships for the relative body velocities are therefore proposed

vr,i = −ri vr ; vr,j = rj vr ,

ωr,i = −ri ωr ; ωr,j = rj ωr .
(4.163)

The relationships in Equation (4.163) satisfy all the conditions summarized in the Equations (4.162).

They also satisfy the relationships from Equation (4.121) as follows

vr = vr,j − vr,i = (ri + rj)vr = vr ,

ωr = ωr,j − ωr,i = (ri + rj)ωr = ωr ,
(4.164)

since ri + rj = 1. For example, the case where kv,i = kv,j is examined. The relationships in

Equation (4.163) give

vr,i = −1
2vr , vr,j = 1

2vr ,

ωr,i = −1
2ωr , ωr,j = 1

2ωr ,
(4.165)

and hence,

vr,j = −vr,i ,

ωr,j = −ωr,i .
(4.166)

When kv,i = kv,j , it is observed that the contact plate velocities are half of the relative translational

and angular velocities of the bodies. As a result, the velocity of the bodies as perceived from the

contact plate are equal and opposite. Figure 4.16 illustrates this case for the translational relative

velocities.

The proposed relationships for the relative velocities can also be invoked to obtain equivalent
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Figure 4.16: Body velocities relative to the contact plate for kv,i = kv,j .

relationships for the tangential and normal velocity components. The relationships for the normal

components of the relative velocities are summarized as

vcn,i = vcn,i ni = −ri vcn ; vcn,j = vcn,j nj = rj vcn ,

ωn,i = ωn,i ni = −ri ωn ; ωn,j = ωn,j nj = rj ωn ,
(4.167)

which can be expressed in scalar form as

vcn,i = ri vcn ; vcn,j = rj vcn ,

ωn,i = ri ωn ; ωn,j = rj ωn ,
(4.168)

such that vcn,i + vcn,j = (ri + rj) vcn = vcn and ωn,i + ωn,j = (ri + rj)ωn = ωn as expected;

see Equations (4.106) and (4.112). Similarly, the components of the relative velocities at sc in the

tangential direction are obtained as

vsct,i = −ri vsct ; vsct,j = rj vsct ,

ωt,i = −ri ωt ; ωt,j = rj ωt .
(4.169)

Again, the proposed definition satisfies vsct,j − vsct,i = (ri + rj)vsct = vsct and ωt,j − ωt,i =

(ri + rj)ωt = ωt; see Equations (4.118) and (4.120).

The proposed relationships for the relative velocities guarantee that the relative velocities of

the contact plate with respect to a rigid body are zero. This behaviour is consistent with the expec-

tation of having zero deformation volume for the rigid body. If the plate was moving with respect

to the rigid body, there would be a resulting volume of deformation. The proposed definitions

also indicate that the relative plate velocities will be equal and opposite when the stiffness of the

bodies is equal. This results is also consistent with the expected physical behaviour since the corre-

sponding deformation volumes must be equal. Given that they share the same contact surface area,

any change in contact surface velocity should be equally distributed between the two relative body

velocities, such that the deformation volumes remain equal.

Hence, the proposed relative velocity relationships correspond to the expected physical be-

haviour. However, it has not been shown yet that the proposed relationships are also consistent
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with the assumed quasi-static nature of the collision process. This latter condition will be tested

when establishing the two deformable body contact model equations of the contact forces and

moments.

4.3.3 Normal Force Model

To find the normal force acting on the contact plate, the quasi-static assumption is relaxed, such that

the effect of the relative velocity between the contact plate and the bodies can also be considered.

The modified Winkler elastic foundation model presented in Section 4.2.2 is used once more to

obtain the local contact pressures caused by the deformation of Bi and Bj . The pressure pi(s) and

pj(s) from bodies Bi and Bj acting on an infinitesimal surface element dS of the contact plate are

given as

pi(s) =
dfn,i

dS
= kv,ifs,i(s) (1 + ai vn,i) ,

pj(s) =
dfn,j

dS
= kv,jfs,j(s) (1 + aj vn,j) ,

(4.170)

where fs,i(s) and fs,j(s) are the normal elastic displacements of the surface of each body, and ai

and aj are the hysteretic damping factors of Bi and Bj , respectively. The latter are a function of

the coefficient of restitution and of the normal velocities vi
n,i and vi

n,j at the time of impact; see

Equation (3.24). Integrating the contact pressures one each side of the contact plate yields

f n,i = kv,i Vi (1 + ai vcn,i)ni ,

f n,j = kv,j Vj (1 + aj vcn,j)nj ,
(4.171)

where

ai = d
eeff vi

cn,i

,

aj = d
eeff vi

cn,j

,
(4.172)

and vi
cn,i and vi

cn,j corresponds to initial normal impact velocity at sc. The relative normal velocity

at the time of impact is governed by the same relationship as the normal relative velocity at any

moment of the collision process. Hence, the relationships in Equation (4.168) are used to replace

vi
cn,i and vi

cn,j in Equation (4.172), thus resulting in

ai = d
eeff ri v

i
cn

,

aj = d
eeff rj vi

cn

.
(4.173)
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Similarly, the terms vcn,i and vcn,j in the equations for f n,i and f n,j can also be replaced by ri vcn

and rj vcn, respectively; see Equation (4.168). Substituting the definition for ai and aj in Equa-

tion (4.173) into the expressions for fn,i and f n,j in Equation (4.171) and simplifying the ri and rj

terms yields

f n,i = fn,i ni = kv,i Vi (1 + a vcn)ni ,

f n,j = fn,j nj = kv,j Vj (1 + a vcn)nj ,
(4.174)

where a is defined as before (Equation (4.63)).

The contact plate was assumed to be massless. As a result, the sum of the forces and moments

acting on it should always add up to zero. Summing the force in the normal direction gives f n,i +

f n,j = 0. Expressing the result in scalar form in the n direction gives

kv,i Vi (1 + a vcn) = kv,j Vj (1 + a vcn) , (4.175)

which indicates that kv,i Vi = kv,j Vj for any value of vcn, or in other words, the shape of the

deformed surfaces is independent of the normal relative velocity. As a result, the shape of the

deformed surfaces always exactly matches the shape of the quasi-static deformation, which implies

that the resulting process is quasi-static. Hence, the proposed relative velocity relationships from

Equation (4.163) yield a behaviour consistent with a quasi-static process assumption when the

resulting contact model forces are examined in the normal direction. The result is also independent

of ri or rj and, hence, it is valid for any possible combination of values for kv,i and kv,j , including

the cases where one body becomes fully rigid.

To obtain an expression for the normal force in terms of properties of the volume of interfer-

ence, the force contribution from each side of the contact plate are added, namely,

2 f n = f n,j − fn,i = fn,j nj − fn,i ni = (fn,i + fn,j)n . (4.176)

Expressing the result in scalar from along the n direction gives

2 fn = (kv,i Vi + kv,j Vj) (1 + a vcn) . (4.177)

The definition of the equivalent stiffness from Equation (4.130) is used to simplify the above ex-

pression yielding

f n = fn n = kv V (1 + a vcn)n , (4.178)

which is identical in form to the equation obtained for the one deformable body case (Equa-

tion (4.62)), except that here kv now corresponds to the equivalent stiffness as defined in Equa-

tion (4.132).
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4.3.4 Rolling Resistance Torque Model

The rolling resistance torque is produced by the tangential angular motion of the bodies relative to

the contact plate. The torque is taken relative to the centroid of the volume of interference pc. The

expressions for the rolling resistance torques acting on an infinitesimal surface element are

dτ r,i = ρs × df n,j ,

dτ r,j = ρs × df n,j .
(4.179)

The solution for Equation (4.64) can be applied here even though the surface element is refer-

enced by ρs to pc instead of pc,i and pc,j . Since these points are collinear, the equations apply

nonetheless. Hence, integrating the torque on each side of the infinitesimal surface elements yields

τ r,i = kv,i ai Js,i · ωt,i ,

τ r,j = kv,j aj Js,j · ωt,j .
(4.180)

Since the contact plate is assumed massless, the rolling resistance torque from each side of the

contact plate should cancel out, i.e., −τ r,i = τ r,j . Hence, substituting the definitions for ai, aj ,

Js,i, Js,j (Equations (4.173) and (4.93)) and the relationships for ωt,i and ωt,j (Equation (4.169)),

the following equation is obtained

−kv,i
d

eeff ri v
i
cn

Vi Jρs,avg · (−ri ωt) = kv,j
d

eeff rj vi
cn

Vj Jρs,avg · (rj ωt) , (4.181)

which simplifies into kv,i Vi = kv,j Vj . Hence, the rolling resistance torque equations indicate the

proposed relative velocity relationships also result in a quasi-static process.

To express the rolling resistance torque in terms of the properties of the volume of interference,

the torques from each side of the contact plate are added

2 τ r = τ r,j − τ r,i ,

= kv,j
d

eeff rj vi
cn

Vj Jρs,avg · (rj ωt) − kv,i
d

eeff ri v
i
cn

Vi Jρs,avg · (−ri ωt) ,

= a (kv,i Vi + kv,j Vj)Jρs,avg · ωt ,

(4.182)

where a is defined as before (Equation (4.63)) and Js was obtained using Equation (4.94). Substi-

tuting the definition for the equivalent stiffness (Equation (4.130)) yields

τ r = kv aJs · ωt , (4.183)

which is identical to Equation (4.64) and where kv corresponds to the equivalent stiffness as defined

in Equation (4.132).
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4.3.5 Tangential Friction Force Model

As in Section 4.2.4, a normal load and velocity frictional force element is considered to model the

force of friction. The resulting friction force model thus corresponds to a load-dependent damper.

The friction forces f t,i and f t,j acting on each side of the contact plate are given as

df t,i = µi dfn,i vt,i ,

df t,j = µj dfn,j vt,j ,
(4.184)

where µi and µj are the same constant as in Equation (4.68), but correspond to the friction force

acting between the contact plate and the bodies Bi and Bj , respectively. The friction force produced

by an infinitesimal element of the contact surface is then integrated over the surface area, thus

resulting in

f t,i = µi fn,i vsct,i ,

f t,j = µj fn,j vsct,j .
(4.185)

The contact plate is massless and therefore −f t,i = f t,j . However, fn,i = fn,j and the tangential

velocities vsct,i and vsct,j can be expressed in terms of vsct using the relationship from Equa-

tion (4.169). The resulting expression for −f t,i = f t,j becomes

−µii fn,i vsct = µjj fn,j vsct ,

µi ri fn vsct = µj rj fn vsct ,
(4.186)

and, hence,

µi ri = µj rj . (4.187)

Equation (4.187) is a condition that ensures the frictional forces acting on the contact plate are equal

and opposite, thereby satisfying the requirement that the forces acting on a massless object must

add up to zero. To obtain the friction force in terms of the properties of the volume of interference,

the friction force from each side of the contact plate are added as follows

2 f t = f t,j − f t,i

= µj vsct,j fn,j − µi vsct,i fn,i

= (µi ri + µj rj) fn vsct .

(4.188)

An equivalent damping factor µ is introduced as follows

2µ = µi ri + µj rj , (4.189)
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such that

µi = 1
ri

µ ,

µj = 1
rj

µ .
(4.190)

Equation (4.190) indicates that µi = µj when kv,i = kv,j . On the other hand, when one body is

fully rigid, then the corresponding friction damping factor becomes infinite. For rigid bodies, the

friction damping factors are given as

µi = ∞
µj = µ

}

Bi rigid ,

µi = µ

µj = ∞

}

Bj rigid .

(4.191)

The infinite friction damping factor values in Equation (4.191) indicate that the contact plate

“sticks” to the rigid body and is not allowed to slide with respect to it. Hence, this result is com-

pletely consistent with the analysis so far which has assumed the contact plate is attached to the

fully rigid body. On the other hand, the overall friction damping factor µ remains unaffected by the

relative stiffness of the bodies. In other words, a change in value of kv,i and kv,j produce a corre-

sponding change in value of µi and µj , such that µ remains constant. It is important to remember

that the contact plate is a conceptual device introduced to facilitate the derivation and understand-

ing of the contact model equations. It does not exist in reality, and only a single friction damping

factor gives the corresponding friction force between the two bodies, i.e., µ.

Using the definition for the equivalent damping factor µ from Equation (4.189) to simplify

Equation (4.188), the following expression for the tangential friction force is obtained as

f t = µ fn vsct , (4.192)

which is identical to Equation (4.75) for the one deformable body case.

4.3.6 Spinning Friction Torque Model

The spinning friction torque is obtained by considering the contributions of the spinning friction

torques of each body as

dτ s,i = ρ t × df t,j ,

dτ s,j = ρ t × df t,j .
(4.193)
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The solution for Equation (4.76) can be applied directly here since ρ t,i = ρ t,j = ρ t. Hence,

integrating the friction torque on each side of the infinitesimal surface elements yields

τ s,i = µi
fn,i

Vi
Js,i · ωn,i ,

τ s,j = µj
fn,j

Vj
Js,j · ωn,j .

(4.194)

Since the contact plate is massless, the sum of the spinning friction torques acting about n should

be zero. Hence, setting −τ s,i = τ s,j and substituting the definitions for Js,i and Js,j from Equa-

tion (4.93), setting fn,i = fn,j = fn and applying relationship for the normal angular velocities

(Equation (4.168)) yields

−µi
fn

Vi
Vi Jρs,avg · (−ri ωn) = µj

fn

Vj
Vj Jρs,avg · (rj ωn) , (4.195)

which reduces to Equation (4.187). Hence, the relationship between the friction damping factors

for the tangential friction force balance is exactly the same for the spinning friction torque balance.

As a result, it is concluded that satisfying the relationship in Equation (4.187) will guarantee that

both the tangential friction force and spinning friction moment acting on the force plate add up to

zero, thereby satisfying the force-moment balance requirement for a massless body.

The spinning friction torque can be expressed in terms of the properties of the volume of inter-

ference. To this end, the friction forces from each side of the contact plate are added. The result is

2 τ s = τ s,j − τ s,i ,

= µj
fn,j

Vj
Js,j · ωn,j − µi

fn,i

Vi
Js,i · ωn,i ,

= (1 + a vcn) (µi ri kv,i Vi + µj rj kv,j Vj)Jρs,avg · ωn .

(4.196)

However, Equation (4.190) gives µi ri = µj rj = µ. Hence, using the definition for the equivalent

stiffness (Equation (4.130), Equation (4.196) reduces to

2 τ s = µ (1 + a vcn) (kv,i Vi + kv,j Vj)Jρs,avg · ωn ,

= 2µ kv (1 + a vcn) V Jρs,avg · ωn ,
(4.197)

Next, the definition of Js from Equation (4.94) is invoked and Equation (4.197) becomes simply

τ s = µ
fn

V
Js · ωn . (4.198)

Equation (4.198) is identical to Equation (4.82).
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4.3.7 Contact Normal

In Section 4.1.3 the concept of the contact plate was introduced to facilitate the theoretical analysis

of the body-to-body interaction. The contact plate location was established — it passes near pc —

but the direction of its surface normal n is still undetermined, although it has been established that

its orientation must satisfy sc,i = sc,j = sc and, therefore, that ρ t,i = ρ t,j = ρ t. This subsection

proposes a new and robust definition for n.

The relationship ρ t,i = ρ t,j = ρ t was used to obtain expressions relating the velocities of

each body with respect to the contact plate to the relative velocities between the bodies; see Equa-

tions (4.109) and (4.117). In turn, these relationships were used to obtain expressions for the forces

and torques acting on the contact plate, which were thereafter also expressed in terms of quan-

tities pertaining to the entire volume of interference, i.e., V , pc and Js. Hence, the expressions

derived for the volumetric contact model force and torque components already include the notion

that sc,i = sc,j = sc by definition. Consequently, the contact normal definition should be consistent

with the expressions for the contact model force and torque components.

Now, Equation (4.82) gives the relationship for spinning friction torque, which depends both

on the spinning angular velocity ωn and surface-inertia tensor Js. The resultant friction torque τ s

must act to prevent the motion. Consequently, τ s is a vector that is collinear to the angular velocity

vector ωn and points in the opposite direction. In other words, both ωn = ωnn and τ s are parallel to

the contact plate normal n. If τ s was not parallel to n, then the spinning friction would inevitably

cause a tilting effect on the bodies with respect to each other, which is physically unreasonable

because the friction from a flat contact plate cannot cause such a motion. Equation (4.198) is thus

re-written in terms of the contact plate normal n as follows,

Js · n = Jv · n = λn n , where λn =
τs V

µ fn ωn

(4.199)

and τ s is such that τ s = τs n, i.e., is parallel to n. Equation (4.199) shows that the determination

of the contact normal is in fact a standard eigenvalue problem. That is, for Equation (4.199) to be

true, n must correspond to one of the three eigenvectors of Jv. In fact, n corresponds to one of the

principal axes of Jv.

To determine n, the contact model implementation relies on a geometric estimate of the contact

normal that is guaranteed to point outwards from the surface of Bj and toward Bi. Then, this

estimate of n is fed to an algorithm implementing the Inverse Iteration Method (IIM), which refines

the estimate and returns the eigenvector closest to the geometric estimate, such that the vector is

guaranteed to be pointing from Bj toward Bi. The implementation of the IIM for a 3 × 3 positive-

definite symmetric matrix is simplified by the fact that a simple closed-form expression exists for

the inverse of such a matrix.

With the proposed definition for the contact plate normal n, it is easy to compute the corre-

sponding radius of gyration rgyr of the volume-inertia tensor about n. The eigenvalue λn corre-
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sponding to the eigenvector n is found by taking the dot-product of Equation (4.199) with n,

λn = n · Jv · n = n · Js · n = n ·
∫

S
((ρs · ρs) I − ρs ρs) fs(s) dS · n . (4.200)

The average tensor Jρs,avg can be used to find the radius of gyration rgyr of Js about n as follows

λn = n · Jρs,avg · n
∫

S
fs(s) dS = r2

gyr V (4.201)

and therefore rgyr =
√

λn/V . The radius of gyration rgyr of Jv about n will be used for the

derivations of the next section.

4.4 Volumetric Friction Model

This section adapts the bristle friction model introduced in Section 3.2.2 to the volumetric contact

model. A key difference between the point contact model presented in Chapter 3 and the volumetric

model introduced in this chapter is that the area of contact can no longer be assumed to be small.

This difference has a significant impact on the behaviour of friction.

4.4.1 Coulomb Friction

In Section 3.2.2 a friction model that was both load and velocity dependent was introduced. Coulomb

friction is a well-known phenomenon that is also load and velocity dependent (Coulomb friction

acts against the direction of motion), but where the magnitude of the velocity does not play a role.

To model this different phenomena, the infinitesimal friction element presented in Equation (4.75)

is modified by normalizing the relative velocity term vt. The negative sign ensuring the friction

force acts against the motion will be added at the end of the derivations. The infinitesimal Coulomb

friction element df tc is written as

df tc = µC
vt

|vt|
dfn , (4.202)

where µC is the Coulomb friction coefficient. The Equation (4.202) can be rearranged such that

integration over the contact surface is done on both sides:

∫

S
|vt| df tc =

∫

S
µC vt dfn . (4.203)

The solution for the right-hand side of Equation (4.203) is given directly by Equation (4.75). Equa-

tion (4.57) shows that vt varies continuously across the contact surface as a function of ρs. As

a result, |vt| also varies continuously across the contact surface and its value is always greater or

equal to zero. The First Mean Value Theorem can therefore be invoked to find an average surface
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velocity vavg as

vavg

∫

S
df tc = µC fn vsct (4.204)

and, therefore, the Coulomb friction force f tc is found to be

f tc = µC fn
vsct

|vsct|
Cv , where Cv =

|vsct|
vavg

. (4.205)

The quantity vavg is a measure of the average relative translational velocity of all points on the

contact surface. This average velocity is a function of the relative translational velocity of the

bodies Bi and Bj , but also depends on the relative angular velocity since a rotational motion induces

translational motion for any point on the contact surface that is away from the centre of the rotation.

An expression for the value for vavg will be introduced in Section 4.4.2.

Next, the effect of Coulomb friction on the spinning friction torque is investigated. As was

done for the tangential Coulomb friction, the spinning friction of an infinitesimal surface element

is considered

dτ sc = µC ρs ×
vt

|vt|
dfn . (4.206)

Once again, the magnitude of vt is carried over to the left-hand side of Equation (4.206) and an

integration over the contact surface area is performed on both sides of the equation. The First Mean

Value Theorem is invoked again, such that the magnitude of vt inside the integral is replaced by

the average relative translational velocity vavg. The solution for the right-hand side is given by

Equation (4.82). The expression for τ sc is thus obtained as follows,

τ sc =
µC fn

V vavg

Js · ωn . (4.207)

Equation (4.207) can be expressed in scalar form like Equation (4.199) since the torque caused by

the Coulomb friction is also acting in the direction of n, i.e., τ sc = τsc n. Using the definition for

the radius of gyration, Equation (4.207) becomes

τsc = µC rgyr fn

ωn

|ωn|
Cω , where Cω =

rgyr |ωn|
vavg

. (4.208)

The factors Cv and Cω on the right-hand side of Equations (4.205) and (4.208) are dimensionless

and depend on vavg. These terms directly affect the magnitude of the tangential force and spinning

torque caused by the Coulomb friction. They are studied in the next section.
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Figure 4.17: The Contensou effect.

4.4.2 Average Contact Surface Velocity

Contensou (1963) studied the behaviour of Coulomb friction for rapidly spinning objects and real-

ized that the sliding Coulomb friction force vanishes when the ratio v
ω R tends to zero, where v is

the tangential velocity magnitude, R the radius of the contact surface and ω is the normal angular

velocity. Leine and Glocker (2003) modelled this effect as a set-valued force law which they called

the Coulomb-Contensou friction. The behaviour of the Coulomb-Contensou friction, which estab-

lishes a direct relationship between the friction and the translational and angular velocities, will be

referred here to as the Contensou effect. The discussion below will show that the Contensou effect

reduces the Coulomb friction force or torque, and even eliminates them in some extreme cases.

It is interesting to observe that the Contensou effect appeared naturally in the derivations for the

proposed Coulomb friction force and torque models. The Contensou effect on the sliding friction

force was captured in the form of a dimensionless factor, namely Cv, which affects the magnitude

of the tangential friction as a function of the relative surface velocities. The proposed contact

model also associates a Contensou effect with the spinning friction torque. This latter effect is

characterized by the factor Cω which affects the magnitude of the spinning friction torque also as

a function of the relative surface velocities. These two effects will now be investigated. For the

purpose of the discussion, a simple circular contact surface will be considered.

Figures 4.17 presents a circular contact surface of radius R where the centre is moving with a

relative translational velocity v and rotating with a normal angular velocity ω. Let v = |v| and

ω R = |ω ×ρR|, where ρR is a position vector for a point located on the circle radius with respect

to the circle centre. v and ω R will be referred hereafter as the magnitude of the translational

and angular component of the relative tangential velocity respectively; see Equation (4.57). The

resulting translational velocities vA, vB , vC and vD of the four points labelled A, B, C and D

located on the circle are shown also. The relative tangential velocity at each point is obtained by

summing the translational and angular component vectors, as shown in grey.
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The Contensou effect arises because the magnitude of the velocity does not affect the friction

force, i.e., the Coulomb friction force is invariant to the magnitude of the velocity. The reduction

of the sliding Coulomb friction force for v � ω R can be explained as follows. At each point,

the Coulomb friction force acts against the local relative velocity direction. Figure 4.17(a) shows

that the direction of the velocities vA and vB at points A and B is opposite when v � ω R. If a

uniform contact pressure is assumed, the Coulomb friction force at point A will counter-balance

the force at point B. The two force directions are opposite at these points because the magnitude

of the angular velocity component exceeds the magnitude of the translational velocity component.

For the velocities at points C and D, it is seen that the direction of the velocities vC and vD will

become perpendicular to v as the ratio v
ω R tends to zero when v � ω R. Hence, when considering

the sliding friction force contribution of the four points, the total sliding friction force disappears

because either the forces from different locations of the contact surface balance themselves out, or

simply ‘lose’ their component acting against the relative translational velocity.

Next, the Contensou effect on the spinning torque caused by the Coulomb friction is studied.

The torque generated by the Coulomb friction force acting at points A, B, C , and D about the

centre of the circle is now considered. Figure 4.17(b) shows that velocity vA at A and vB at B

have the same direction when v � ω R. But since the points A and B are located at opposite

sides of the centre of the circle, the produced torques about the centre of the circle are in opposite

direction. Again, if a constant contact pressure is assumed, then the torques produced by the

Coulomb friction at points A and B will cancel each other out. Also, when the ratio ω R
v tends

to zero, then the relative tangential velocity of all points on the circle surface will have a velocity

that is parallel to v. Hence, as was observed with the points A and B, the torque produced at

any point of the contact surface will always be cancelled-out by the torque produced by a point on

the opposite side. The net impact of the Contensou effect in rotation is to eliminate the spinning

friction torque between bodies when v � ω R.

To simplify the discussion above, the observations on the behaviour of the Contensou ef-

fect were presented in a context where the contact pressure is uniform and the contact surface

is circular. However, the Contensou effect occurs for non-uniform pressure distributions as well

(Zhuravlev and Klimov, 2005). The conclusions on the Contensou effect can be extended to the

general case, as indicated by the factors Cv and Cω, which were obtained in the derivations of the

proposed contact model without any assumption about the pressure distribution or the shape of the

contact surface. The behaviour and relation of Cv and Cω is examined next.

The discussion above focused on the fact that the Contensou effect reduces the Coulomb fric-

tion force or torque, and even eliminates them in some extreme cases. However, the Contensou

effect never increases the Coulomb friction force or torque; that is, the Contensou effect does not

amplify the magnitude of the Coulomb friction. Looking at the structure of Equations (4.205) and

(4.208), it is clear that the maximum magnitudes of f tc and τsc are µC fn and µC rgyr fn respectively.
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Hence, it is concluded that

0 ≤ Cv ≤ 1 ; 0 ≤ Cω ≤ 1 . (4.209)

Furthermore, Cv and Cω are related as follows:

|vt| � rgyr ωn ⇒ Cv → 0 ; Cω → 1 ,

|vt| � rgyr ωn ⇒ Cv → 1 ; Cω → 0 .
(4.210)

Hence, a relationship that satisfies the constraints (4.209) and the behaviour summarized in Equa-

tion (4.210) must exist. The values of Cv and Cω cannot be set arbitrarily or independently: the

two values are related to one another. Also, by establishing the defining relationship between Cv

and Cω (Zhuravlev and Klimov, 2005), a correspondence between |vt|, rgyr |ωn| and vavg will be

obtained. Therefore, the following equation is proposed as a defining relationship between Cv and

Cω:

C2
v + C2

ω = 1 . (4.211)

Equation (4.211) satisfies both (4.209) and (4.210), and provides at the same time a definition for

the average surface velocity vavg introduced in Section 4.4.1 as follows,

v2
avg = vsct · vsct + ωn ·

Jv

V
· ωn , (4.212)

since

(rgyr |ωn|)2 = ωn ·
Jv

V
· ωn . (4.213)

While the definition proposed in Equation (4.211) does satisfy the criteria (4.209) and (4.210),

it is somewhat arbitrary. For example the relationship could have been defined without squaring

Cv and/or Cω and would have satisfied the criteria just as well. However, when the definition is

examined from a geometric point of view, it can be shown to be justified. Figure 4.17(c) shows

again the velocities vA, vB, vC and vD at the point A, B, C , and D respectively, of the circular

contact area. Here, the tangential and angular components of the relative tangential velocity have

comparable magnitudes. Figure 4.17(c) shows that the magnitude of the tangential velocity is the

greatest at point B, when the tangential and angular components are parallel and have the same

direction, and smallest at A when they are parallel but point in opposite direction.

On the other hand, the velocities vC and vD at the points C and D have the same magnitude,

and correspond to the configuration where the translational and angular components of the veloc-

ities are perpendicular. vC and vD also correspond to the points where the angular component of

the relative tangential velocity is rotated halfway between the positions giving the maximum value
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for relative tangential velocity |vB| and the minimum value |vA|. In this sense, the magnitude of

the velocities at points C and D correspond to the average velocity of the points located on the

circle. Velocity is a vectorial quantity and therefore it seems to be justified that the method used to

find the average velocity should be based on vectorial analysis. The magnitude of vC and vD is

given as

|vC |2 = |vD|2 = v2 + (ω R)2 , (4.214)

which corresponds exactly to the definition for vavg in Equation (4.212) when R is taken to cor-

respond to rgyr. It makes sense to use rgyr as a measure for the average surface radius since the

derivations have already shown that rgyr correlates the friction force with the friction torque; see

Equation (4.208). Here, rgyr is used to correlate ωn to an average translational velocity.

The proposed definition for vavg can lead to the condition that vavg = 0. This is problematic

because it implies a possible division by zero in the calculation of Cv and Cω; see Equations (4.205)

and (4.208). However, the definition for the average velocity was derived from observations on the

behaviour of the Contensou effect in translation and rotation. But this effect exists only in the

presence of relative motion between the objects. Hence, the relationship from Equation (4.211)

is valid only for the case where there is relative sliding motion between the objects, i.e., when

vavg 6= 0. As a result, the definitions for Cv and Cω in Equations (4.205) and (4.208) should be

used only when the friction model is in the slip-mode. When the body surfaces are sticking to each

other the Contensou effect disappears. Hence, when the body surfaces are sticking, Cv → 1 and

Cω → 1 as vavg → 0. These two “modes” for the Contensou factor definitions will be implemented

in the friction model.

4.4.3 Volumetric Bristle Force Model

To model stick-slip frictional effects, it is postulated that the two rigid bodies make contact through

a large number of tiny elastic bristles located across the contact surface S; see Figure 4.5. As was

postulated in Section 3.2.2, the stiffness and damping of the bristles should be made proportional to

the local normal load to reflect the fact that an increase in contact pressure causes the true contact

area to increase and as a result that the surface asperities contact over a larger region. Since the

stiffness and damping terms of the bristle model characterize the asperity surface interaction, they

should therefore increase with the increase in the true area of contact, i.e., increase with the local

normal load.

Hence, the infinitesimal friction force is modelled as a function of the local bristle deformation

z, deformation rate ż, and normal contact load dfn. The friction force generated on the surface

element from the bending of the bristles is described as

df br = dfn (σo z + σ1 ż) = σo z dfn + σ1 ż dfn , (4.215)
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where σo is the stiffness and σ1 is the damping coefficient, as given in Section 3.2.2. During the

sticking phase, the local bristle motion corresponds to the local relative body motion at sc, hence

ż = ż sc + ωn × ρ t , (4.216)

where ż sc = vsct corresponds to the relative tangential velocity at sc. A similar expression for the

local bristle deformation z will be derived next.

The relative lateral displacement at any point on the contact surface can be expressed as a

combination of the relative translational displacement z sc at the centroid sc and a relative rotation

θn about sc as follows

z = z sc + θn n × ρ t = z sc + θn × ρ t , (4.217)

where θn = θn n. Figure 4.18 shows the top view of a contact surface. The relative lateral dis-

placement z of an infinitesimal surface element dS is illustrated in terms of the displacement z sc

at sc and the rotation θn about sc.

θnz sc

z sc

ρ t

θn × ρ t

z

dS sc

Figure 4.18: The bristle local deformation.

Equations (4.216) and (4.217) share the same vectorial structure: the first term deals with the

motion at sc and the second term gives the resulting motion at s induced by rotational motion about

sc. Here, motion is understood to mean lateral displacement and velocity for Equations (4.217) and

(4.216), respectively. Clearly, the first term of Equation (4.216) is the time-derivative of the first

term of Equation (4.217).

For the second term in the equations, it is observed that Equations (4.217) and (4.216) only deal

with motions that are lateral to the surface. Hence, the only angular displacement that is of concern
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is the one producing lateral motion, i.e., θn rotates about n. As a result, the angular displacement

about sc can be expressed as θn = θ̇n n as done in Equation (4.217). Furthermore, the bristle

deformation models the micro-deformation of the surface asperities and, therefore, should always

be small. Hence, the angle θn will be small and, as a result, it can be treated as a vectorial quantity.

4.4.4 Tangential Friction Force Model

To obtain the total bristle friction force acting over the contact surface the force for the infinitesimal

surface element is integrated as

f br =

∫

S
df br =

∫

S
σo z dfn +

∫

S
σ1 ż dfn . (4.218)

Given that ż = vt and considering that the equation defining z has exactly the same structure as vt,

the solution for the infinitesimal tangential friction force defined in Equation (4.68) can be used to

solve both integrals, replacing µ by σo and σ1 in the first and second integrals of Equation (4.218)

respectively. The solution is

f br = fn (σo z sc + σ1 ż sc) . (4.219)

Similarly as for the bristle friction model implementation presented in Section 3.2.2, the bristle

state is defined at the velocity level and integrated to obtain local deformation z sc. The bristle

dynamics model for ż sc is formulated as two distinct sub-models: ż st for the sticking regime and

ż sl for the sliding regime. A sticking-state function s is introduced to transition smoothly between

the stick-slip friction regimes. The deformation rate is now expressed as

ż sc = s ż st + (1 − s) ż sl , (4.220)

where

s = e
−

v2
avg

v2
S (4.221)

and vS is the velocity at which the Stribeck effect occurs. The use of vavg to determine s ensures that

the friction model will be in slip mode whenever there is significant translational and/or rotational

relative motion. When the friction state is in the stiction regime, the relative motion of the bristles

should match exactly the relative motion of the rigid bodies at the contact surface. Hence, ż st is

defined as

ż st = vsct . (4.222)

As discussed in the previous section, the definition for the Contensou factor Cv given in Equa-
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tion (4.205) applies only when the body surfaces are sliding. When the surfaces are sticking, the

factor should have a value of 1. This corresponds to the case where all the bristles on the contact

surface are in contact and none are sliding, i.e., the full friction force should be in effect. A new

term Cv,s defined in terms of Cv is therefore introduced to handle the change in the sticking-state

as follows

Cv,s = s + (1 − s)Cv , (4.223)

where Cv is redefined to avoid any division by zero as

Cv =











|vsct|
vavg

vavg > vε

|vsct|
vε

vavg ≤ vε

, (4.224)

where vε is given as before. Once again, a value at least 10 times smaller than vS is recommended.

A value of vS/100 was used in the implementation. The sliding rate ż sl is defined in terms of the

Coulomb friction force f tc that acts while the two bodies are sliding with respect to each other.

Coulomb friction acts in a direction opposite to the relative velocity vt between the two bodies and

its magnitude is µC fn, where µC is the Coulomb friction coefficient. The friction force f tc from

Equation (4.205) is modified by introducing the relaxed vector direction function dirε to avoid

meaningless direction values when the vector magnitude is small

f tc = µC fn dirε(vsct, vε)Cv,s . (4.225)

While the two rigid bodies are sliding on each other, the friction force f br applied by the bristle

should be f tc. Setting Equation (4.219) equal to Equation (4.225) and solving for ż sc ' ż sl yields

ż sl =
1

σ1
µC dirε(vsct, vε)Cv,s −

σo

σ1
z sc . (4.226)

Equation (4.226) is a first order ODE and has a time constant τbr = σ1/σo. The bristle dynamics

time constant τbr controls how fast the bristles reach a steady-state deformation when two rigid

bodies are moving at a constant relative velocity. To summarize, the bristle deformation rate is

given as

ż sc = svsct + (1 − s)

(

1

σ1
µC dirε(vsct, vε)Cv,s −

σo

σ1
z sc

)

. (4.227)

The dwell-time dynamics equations presented in Section 3.2.2 are used once again to obtain the

maximum stiction coefficient µmax. The maximum force fmax is then obtained by including the
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Contensou dimensionless factor Cv,s as

fmax = µmax fn Cv,s . (4.228)

The bristle friction force is saturated using sat(f br, fmax) = fn sat(σo z sc + σ1 ż sc, µmax Cv,s) and

the bristle deformation rate is re-computed when the bristle force exceeds fmax as

ż sc =
1

σ1
sat(σo z sc + σ1 ż sc, µmax Cv,s) −

σo

σ1
z sc . (4.229)

Equation (4.229) shows that the bristle dynamics is independent of fn, and is governed by τbr which

is constant. The tangential friction force f t opposing the velocity can now be computed. A term

proportional to the relative tangential velocity is added to account for viscous friction so that

f t = −fn (sat(σo z sc + σ1 ż sc, µmax Cv,s) + σ2 vsct) , (4.230)

where σ2 is the viscous damping coefficient. Hence, the proposed friction model is again a seven

parameter model, with exactly the same parameters as for the friction model presented in Sec-

tion 3.2.2.

4.4.5 Spinning Friction Torque Model

To obtain the total bristle friction torque acting about pc, the torque for the infinitesimal surface

element is integrated as follows

τbr =

∫

S
ρ t × df br =

∫

S
σo ρ t × z dfn +

∫

S
σ1 ρ t × ż dfn . (4.231)

Again, given that ż = vt and taking into account that the equation defining z has exactly the same

structure as vt, the solution for the infinitesimal tangential friction torque defined in Equation (4.82)

can be used to solve both integrals, replacing µ by σo and σ1 in the first and second integrals of

Equation (4.231) respectively. The solution is

τbr =
fn

V
Js ·

(

σo θn + σ1 θ̇n

)

, (4.232)

where θn = θn n and θ̇n = θ̇n n. As was seen in Section 4.3.7 the spinning friction torque acts in

the direction of the contact surface normal n. Hence, it can be modelled as a 1-dimensional scalar

phenomenon as illustrated by Equation (4.208). The bristle friction model is therefore adapted in

the form of scalar expression based on the torsion angle θn, recalling that θ̇n = ωn for the sticking

case. This angle corresponds to the relative rotation of the contacting surfaces of the two colliding

bodies about sc. At any point in time, the deformation angle θn is assumed to be small, i.e., if the

deformation angle becomes large the two bodies should no longer be considered as sticking to each
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other. The scalar form of Equation (4.232) is given as

τbr = fn r2
gyr

(

σo θn + σ1 θ̇n

)

, (4.233)

where the definition for rgyr from Equation (4.201) has been used to simplify the expression. Equa-

tion (4.233) can be interpreted as the torque produced by a bristle located at rgyr from sc, where the

deformation is rgyr θn and its rate is rgyr θ̇n. Equation (4.233) satisfies the Amontons law of friction

which says that the friction should be proportional to the normal load fn.

The spinning friction model is split into two sub-models for the slipping angular velocity θ̇sl

and sticking angular velocity θ̇st. The sticking state s is used to transition between them as

θ̇n = s θ̇st + (1 − s) θ̇sl , (4.234)

where s is defined as in Equation (4.221). In the tangential friction model, the sticking friction

bristle velocity corresponded to the relative velocity between the bodies. Here, the bristle angular

velocity is set to the relative angular velocity, i.e., θ̇st = ωn.

Similar to the translational friction force model, the definition for the Contensou factor Cω is

modified to handle the change in the sticking-state as

Cω,s = s + (1 − s)Cω , (4.235)

where Cω is redefined to avoid any division by zero as follows

Cω =











rgyr |ωn|
vavg

vavg > vε

rgyr |ωn|
vε

vavg ≤ vε

. (4.236)

For the sliding friction sub-model Equation (4.208) is expressed as follows

τsc = µC rgyr fn sgn(ωn)Cω,s , (4.237)

where the function sgn(ωn) returns the sign of ωn when ωn 6= 0 and zero when ωn = 0. Setting

Equation (4.233) equal to Equation (4.237) and solving for ωn yields

θ̇sl =
µC Cω,s

σ1 rgyr

sgn(ωn) −
σo

σ1
θn . (4.238)

The bristle deformation rate for the spinning torque friction is thus given as

θ̇n = s ωn + (1 − s)

(

µC Cω,s

σ1 rgyr

sgn(ωn) −
σo

σ1
θn

)

. (4.239)

The maximum torque the friction model can apply is found using µmax and including the dimen-



Chapter 4: Volumetric Contact Model 111

sionless Contensou effect factor Cω,s as

τmax = µmax rgyr fn Cω,s . (4.240)

The spinning friction torque is saturated whenever the bristle torque exceeds the maximum spinning

friction torque τmax. Thus, whenever |τbr| exceeds τmax it is scaled to ±τmax, namely,

sat(τbr, τmax) = r2
gyr fn sat

(

σo θn + σ1 θ̇n,
µmax Cω,s

rgyr

)

, (4.241)

where the sat() function is interpreted here as the scalar equivalent of Equation (3.39). When the

scaling is needed, the angular deformation rate must be re-computed as

θ̇n =
1

σ1
sat

(

σo θn + σ1 θ̇n,
µmax Cω,s

rgyr

)

− σo

σ1
θn . (4.242)

The spinning friction force τ s opposing the angular velocity ωn can now be computed. A term

proportional to the relative angular velocity is added to account for viscous friction such that

τ s = −r2
gyr fn

(

sat

(

σo θn + σ1 θ̇n,
µmax Cω,s

rgyr

)

+ σ2 ωn

)

n , (4.243)

where σ2 is the viscous damping coefficient. Note that rgyr should not be zero unless the volume of

interference itself is zero. When V = 0, the total contact force and moments should be zero in any

case and therefore the condition for rgyr = 0 can be avoided easily in the implementation. Hence,

the proposed friction model is again a seven parameter model, with exactly the same parameters as

for the friction model presented in Section 3.2.2.

4.5 Volumetric Contact Model Parameters

The parameters for the volumetric contact model are almost identical to the parameters for the

point contact model presented in Chapter 3. For example, the point contact normal force model

in Equation (3.19) has exactly the same form as the volumetric normal force models for the one

deformable body model (Equation (4.62)) and the two deformable body model (Equation (4.178)).

The only difference here is the stiffness term, which is k xp for the point contact model and kv V

for the volumetric models. Here, kv must be found experimentally.

The parameter for hysteretic damping factor is the same in all normal contact force models

and can be selected using the same process as explained in Section 3.3.1. A numerical constraint

relaxation is also included in the model implementation to avoid the artificial energy increase re-

sulting from the error in contact time detection obtained with the Simulink fixed-step solvers. This

constraint relaxation is implemented in exactly the same way as in Section 3.3.1, except that the

inter-penetration depth x is replaced by the volume V of the volume of interference.
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The rolling resistance torque of the volumetric contact model is proportional to the hysteretic

damping term and, hence, no additional work is needed to select or identify parameters for this ad-

ditional component of the contact model: its parameters are derived from the same basic parameter

set as for the point contact model.

In the numerical implementation, the volume of interference is approximated by dividing the

region where the two bodies collide into small cubes of known volume and counting the ones

inside the volume of interference. The small cubes are called voxels. This implementation requires

therefore that a voxel size threshold be specified. It is suggested to do the selection of the voxel

size based on an estimate of a “small” force δf acting on the system. For example, in a simulation

where a body falls on top of another, this small force could be selected in the range 10−3 m g to

10−6 m g, where m is the mass of the falling body and g is the gravitational constant. Alternatively,

for a robotic task requiring the application of forces of 50 N, the small force δf could be selected

in the range 50 · 10−3 N to 50 · 10−6 N. In essence, δf should correspond to a non-zero force that

has negligible effect on the dynamics of the system. Once the small force has been determined, the

voxel size is selected as (δf/kv)
1

3 .

The contact normal n is obtained by finding an eigenvector of Jv closest to a geometric estimate

provided by an LLG geometric function; see Section 2.3.2. The algorithm generating this geometric

estimate guarantees the vector will always point from Bj toward Bi. The geometric estimate is then

fed to an implementation of the inverse iteration method which requires three numerical parameters

to be specified; see Appendix A. These parameters are: an angular convergence threshold θε, an

eigenvector estimate ratio rn and a maximum number of iterations ni. Values of 1 deg, 0.95 and 15

are suggested for θε, rn and ni, respectively.

The volumetric friction model parameters correspond exactly to the parameters of the model

presented in Section 3.2.2. Hence, they can be selected using the process presented in Section 3.3.2.

Interestingly, the spinning friction model component requires no additional parameters to be speci-

fied and, hence, no additional parameters to be selected or identified. This feature greatly simplifies

the use of the volumetric contact model, because it is based on a relatively limited parameter set

which can be found through experimentation or selected based on simple guidelines.
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Numerical Simulation Results

An object-oriented framework written in C++ was created to support the implementation of the

contact models presented in Chapters 3 and 4. Appendix A provides more details on this framework

and explains how it is used to implement the proposed contact models. The C++ classes provide a

single point interface to numerical simulation environments.

In this work, the contact models were used to create multibody simulations implemented in

Simulink, a graphical simulation environment for systems where the dynamics equations are ex-

pressed in state-space form. The simulations, therefore, rely on the solvers available in this envi-

ronment. The multibody dynamics are modelled using the Multibody Toolbox (MuT), an object-

oriented multibody modelling software developed at the CSA that allows deriving the model prop-

erties symbolically and then exporting then into Matlab and Simulink; see Appendix B. The MuT

was co-developed by the author and builds on the Symofros project (L’Archevêque et al., 2000).

This chapter presents the numerical simulation results of various multibody systems in contact,

and illustrates the features and behaviour of the proposed contact models. The results for the point

contact model from Chapter 3 are presented first and then those using the volumetric contact model

from Chapter 4.

5.1 Point Contact Model

This section presents simulations involving bodies with non-conformal geometries. First, the be-

haviour of the normal contact sub-model is examined followed by simulation using the tangential

friction sub-model. This section is concluded with a multibody simulation involving oblique fric-

tional impact, thereby testing the combined behaviour of both sub-models.

5.1.1 Normal Contact Model

The behaviour of the hysteretic damping term for the normal force model presented in Chapter 3

was investigated. More specifically, a normal force model calculating the damping factor as a func-

113
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tion of eeff was implemented (Equation (3.23)), where eeff is obtained using Equation (3.12). The

ODE given in Equation (3.18) was solved over a single impact cycle. The results were generated in

Simulink with the ode23s solver with relative and absolute error tolerances of 10−6. This variable-

step solver was chosen because it is designed to handle numerically stiff systems and the relatively

stringent error tolerances ensure the results are very accurate. Identical results were also obtained

using fixed-step solvers.

Figure 5.1 shows the ratio of eeff to eemp obtained using the model proposed by Hunt and Crossley

(1975) for the impact of a sphere on a plane, and the model proposed in Section 3.2.1 based on

the solution of the closed-form expression (Equation (3.23)). The figure shows the value of the

ratio as a function of impact velocity, with α = 0.2 s/m. Clearly, the damping model proposed

in Section 3.2.1 yields a dynamic behaviour that is consistent with any given value of the coeffi-

cient of restitution, i.e., eeff/eemp always equals 1. Hence, the model can also be used for plastic

impacts, given that a function for the coefficient of restitution is provided. The model proposed by

Hunt and Crossley (1975) is consistent with the given coefficient of restitution only when vi
n = 0

(and e = 1 from Equation (3.12)), i.e., for perfectly elastic impacts.

Stoianovici and Hurmuzlu (1996) tuned the damping factor to obtain a good match between

experimental and simulated results of a beam impacting a hard surface, without formal knowledge

of the exact relationship between λ and eeff. Instead, they varied λ to get the best possible match.

The damping factor thus identified approximates the experimental behaviour only in the range of

normal impact velocities used in the experiment. The damping factor model presented in Sec-

tion 3.2.1 is not subject to this limitation since vi
n can be varied over a wide range without reducing

the accuracy of the approximation.

Figure 5.2 illustrates the contact force profile obtained using Equation (3.19) as a function

of indentation depth for the same sphere-plane impact, for various restitution coefficients ranging

from 0.1 to 1. The same solver and error tolerances were used. Notice that at large values of the

restitution coefficient the damping in the compression and restitution phase is essentially symmet-

ric. On the other hand, for low values of eeff most of the energy (area inside the curve) is dissipated

in the compression phase and the hysteretic damping becomes asymmetric.

5.1.2 Tangential Friction Model

Using the parameters given in Table 5.1, the friction model was used to simulate the response of a

spring-mounted block sitting on a plate that is moved at a constant speed as shown in Figure 5.3.

This experiment was first proposed by F.P. Bowden and L.L. Leben who built an apparatus to study

the stick-slip process (Rabinowicz, 1956). To test the vectorized friction force model giving f t

(Equation (3.42)), the motion direction is at 45 deg from the x-axis in the x-y plane, moving away

from the origin, the spring constant is k = 2 N/m, the mass m = 1 kg and the gravitational constant

g = 10 m/s2. The numerical tolerance on velocity of the friction model was set to vε = vS/100 =

10−5 m/s.
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Figure 5.1: Effective coefficient of restitution for two models of d (mass: 0.454 kg; k = 3.4 ·
1010 N/m3/2; α = 0.2 s/m).
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Figure 5.2: Contact force vs. indentation for various values of eeff (mass: 0.454 kg; k = 3.4 ·
1010 N/m3/2).
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µS µC m g σo m g σ1 m g σ2 vS τdw

0.15 0.1 105 N/m
√

105 Ns/m 0.1 Ns/m 0.001 m/s 2 s

Table 5.1: Friction model parameter values for Bowden and Leben stick-slip simulations.

vt

Figure 5.3: The Bowden and Leben stick-slip experimental apparatus.

The resulting ODE is m r̈ = −f t, where r is the position of the block with respect to the wall

and ṙ = vt. This time, the results were generated with the ode23t solver using the same error

tolerances as before. There was no noticeable gain in performance between this solver and the

ode23s; both appear to work well and produce the same results.

The simulation results show that the block sticks to the plate until the spring force is high

enough to overcome the friction force, at which point the block slides in the opposite direction to

the plate. The results were generated in Simulink using the ode23t solver using the same error

tolerances as before and are plotted in Figures 5.4–5.6 for three different speeds of the plate. The

position axes show the distance from the origin |r| and the force axes correspond to the magnitude

of the friction force |f t|.
Note the sharp spikes in the friction curves corresponding to transitions between forward and

reverse velocities of the block. When the plate is moving slowly, the position curve drops almost

vertically as soon as the block starts sliding. Then, as the plate moves faster the amplitude of the

oscillations decreases and the profile becomes similar to a sinusoidal wave. However, in all cases,

the first peak of the friction profiles always extends up to the maximum stiction limit, a consequence

of the dwell-time dynamics (the friction model is initialized in the “sticking” state). Subsequent

peaks are of lesser magnitude for higher speeds of the plate, because there is not enough time for

the stiction force to reach its maximum value of µSfn. This dynamic behaviour corresponds to

the observations by Rabinowicz (1956). Also, the sudden drops in friction force indicate when a

stick-slip transition occurred. The small “bump” in force thereafter is the caused by the viscous

damping term. It can be seen to peak when the position changes at the fastest rate.
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Figure 5.4: Bowden and Leben stick-slip experiment for |vt| = 0.05 m/s.
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Figure 5.5: Bowden and Leben stick-slip experiment for |vt| = 0.1 m/s.
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Figure 5.6: Bowden and Leben stick-slip experiment for |vt| = 0.15 m/s.

5.1.3 Multibody Dynamics Simulations

This section presents the numerical results for multibody dynamics simulations involving oblique

impacts.

A Ball Falling on a Plane

A simulation model was implemented for a 2 kg ball, with 0.1 m radius colliding with an inclined

plane. From the horizontal position, the plane is rotated 20 deg about the +Y axis and its height hj

is set to 0.4 m; see Figure 3.1. The ball centre will therefore be around 0.5 m from the plane once it

stops bouncing. Gravity g = 9.81 m/s2 acts in the −Z direction. The ball is dropped from a height

of 2 m and is given an initial velocity of -1 m/s in the X direction and 0.5 m/s in the Y direction.

The normal impact model with k = 106 N/m3/2 was set to have a constant coefficient of restitution

of 0.5. The small velocity tolerance vsmall was set to 0.001 m/s. The friction model parameters are

shown in Table 5.2, and the numerical tolerance on velocity was set to vε = vS/100 = 0.001 m/s.

µS µC σo σ1 σ2 vS τdw

0.45 0.4 105 1/m 104 s/m 0 s/m 0.1 m/s 0.01 s

Table 5.2: Friction model parameter values for the bouncing ball simulations.

The resulting motion is found by solving Euler’s equation of motion for a free-floating rigid
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body upon which the contact force f c is applied; see Equation (3.9). The simulation used the

ode23s solver with error tolerances of 10−3. It was observed that the solution obtained with these

lower error tolerance settings were still very accurate when compared at the position level to results

generated with the higher tolerance setting, i.e., 10−6.

Figure 5.7 shows the three-dimensional trajectory of the ball centre, plotted in an xyz frame

that is rotated with the plane. Thus, once the state of pure rolling has been reached, the only

acceleration is g sin(20 deg) in the local x direction. The x and y components of the path are

projected onto the z = 0 plane. Figure 5.8 gives the corresponding velocity profiles. The legend

definition is the same for both sub-plots. Note that when pure rolling occurs (zero z velocity), the

velocity in the y direction remains constant while the x component increases linearly, as expected.

Note also that the angular velocities remain constant, except for the component in the y direction,

which also increases linearly in agreement with v = R ω. It can be seen that the two motions are

coupled by the friction force that imposes a no-slip condition.
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Figure 5.7: Trajectory of the ball impacting an inclined plane.

A Ball Falling in a Cylinder

The same ball was then dropped from a height of 0.5 m in Z on the inside surface of a 1 m radius

cylinder aligned in the Y direction. All contact model parameters are identical as in the previous

simulation. The ball was given an initial offset from the cylinder axis of 0.3 m in the X direction so

that the first impact will cause motion in the X–Z plane only. The simulation results were obtained

in Simulink using the ode23s solver with error tolerances of 10−6.

Figure 5.9 shows the resulting three-dimensional trajectory of the ball centre . The X and
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Figure 5.8: Ball impacting an inclined plane: velocity components vs. time.

Y components of the trajectory are shown below in the Z = 0 plane. Note the ball oscillations

inside the cylinder, and the small penetration visible on the first impact. Figure 5.10 shows the

velocity profiles. The angular velocity in the Y direction oscillates, while the other angular velocity

components are zero. Again, there is coupling between the translational and rotational motions

through the effect of the friction. It is seen that the model changes the orientation of the friction

force to correctly impose the no-slip condition. Clearly, v = R ω holds during the rolling motion,

e.g., v = 1 m/s when ω peaks at 10 rad/s.

The same simulation was then conducted with initial ball velocity of 0.3 m/s in the Y direc-

tion. Figure 5.11 plots the trajectory of the ball centre, with the X and Y components projected

onto the Z = 0 plane. The ball oscillates as it rolls along the cylinder. Figure 5.12 presents the

corresponding velocity profiles. As expected, a non-zero angular velocity in the Z direction results

from the first impact, while the X component of angular velocity is no longer constant. Note also

that the amplitude of the oscillation does not decay with time. This is to be expected since there are

no spinning or rolling frictional effects included in the proposed contact model, and the tangential

friction force does no work. Figure 5.13 shows the total energy of the sphere (kinetic and potential)

and the contact model spring as a function of time. Clearly, energy is dissipated during the impact

phase, but as soon as the sphere settles into pure rolling motion the energy is constant.
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Figure 5.9: Trajectory of the ball impacting a cylinder (2D motion).
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Figure 5.10: Ball impacting a cylinder: velocity components vs. time (2D motion).
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Figure 5.11: Trajectory of the ball impacting a cylinder (3D motion).
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Figure 5.12: Ball impacting a cylinder: velocity components vs. time (3D motion).



Chapter 5: Numerical Simulation Results 123

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

E
n
er

g
y

[J
]

Time [s]

Figure 5.13: Ball impacting a cylinder: total system energy for 3D motion.

A Double Pendulum

Figure 5.14 presents the schematic diagram of a double pendulum, with a spring placed at the

bottom to represent the surface compliance. The tip of the pendulum is allowed to hit the surface

located 0.61 m below the first joint axis. The governing equations of motion were obtained us-

ing the MuT. The two coupled ODEs and the contact force model are then evaluated and solved

numerically using the ode23s solver with error tolerances of 10−6.

g

ϕ1

ϕ2

`1

`2

m1

m2

X

Y

h

Figure 5.14: Double pendulum: schematic diagram (ϕo1
= 45 deg, ϕo2

= 0 deg, ϕ̇o1
=

−120 deg/s, ϕ̇o2
= 130 deg/s, `1 = 0.5 m, m1 = 5.0 kg, `2 = 0.25 m, m2 = 2.0 kg,

g = 9.81 m/s2, h = 0.61 m).
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The initial conditions listed in Figure 5.14 were selected to give the system a high kinetic

energy with the tip of the pendulum moving toward the plane. To better illustrate the effects of the

contact model on the system’s response, the joints are modelled as frictionless. The normal impact

model with k = 109 N/m3/2 was set to have a constant coefficient of restitution of 0.9. The small

velocity tolerance vsmall was set to 0.001 m/s. The friction model parameters are shown in Table 5.3

and the numerical tolerance on velocity was set to vε = vS/100 = 0.001 m/s.

µS µC σo σ1 σ2 vS τdw

0.15 0.12 105 1/m
√

105 s/m 0 s/m 0.1 m/s 0.75 s

Table 5.3: Friction model parameter values for double pendulum simulation.

The resulting joint motion is plotted in Figures 5.15 and 5.16. The second joint motion first

moves into the positive angles region, and finally settles at a negative angle around -65 deg. Fig-

ure 5.17 gives the corresponding tip motion in the X–Y plane as it moves from the initial position

(marked by a circle) into the bouncing motion. It can be seen that after bouncing several times, the

tip settles into a slowly decaying oscillatory motion in X.
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Figure 5.15: Double pendulum: joint positions.

Note that if the stick-slip effect was not included in the friction model, and if σ2 was not zero,

then the viscous damping term would have slowly dissipated the kinetic energy in the system. The

final resting position would then be at the equilibrium where ϕ1 = 0 deg since the surface is

modelled as being perfectly horizontal, and therefore, cannot apply reaction forces perpendicular

to gravity when it is frictionless. Instead, the stick-slip effect of the tangential friction model causes
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Figure 5.16: Double pendulum: joint velocities.
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Figure 5.17: Double pendulum: X–Y plot of end-effector positions.

the final resting position of the first joint to be off-centre by 2.2 deg. Figure 5.18 shows that the

friction model switches into the “sticking mode” after 6.5 s, as sdw goes to 1. Figure 5.19 gives the

time history of total system energy: it is constant in between collisions, drops rapidly when the tip

bounces on the surface and then slowly decays down to a constant value.



126 Contact Dynamics Modelling for Robotic Task Simulation

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

s d
w

Time [s]

Figure 5.18: Double pendulum: dwell state sdw of friction model.
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Figure 5.19: Double pendulum: total system energy.

The double pendulum model was then modified to match the benchmark simulation model from

Ahmed et al. (1999) where l1 = l2 = 1 m, m1 = m2 = 2 kg and the link inertia are J1 = J2 =

1/6 kg m2 about the centre of mass located in the middle of each link. The energy dissipation

occurring over a single impact is studied at two pendulum configurations (a) at ϕo1
= 18 deg,
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ϕo2
= 12 deg, and (b) at ϕo1

= 0 deg, ϕo2
= 20.7 deg. The initial velocities in both cases are

ϕ̇o1
= ϕ̇o2

= −1 rad/s. The percentage of energy loss is computed for three different values of the

coefficient of restitution, as a function of friction coefficient values. In the simulations, the values

for µS and µC were set equal so that µS = µC = µ, and vary from 0 to 1. The other contact model

parameters are the same as before.

The results are given in Figures 5.20 and 5.21. The energy losses match perfectly the bench-

mark results, except for the e = 0 case, which cannot be implemented with the proposed contact

model, as this results in a division by 0. Here, a value of e = 0.01 was used instead, and the

resulting energy dissipation is very similar to the results for e = 0 of the benchmark simulation.

Figure 5.21 indicates that for some values of µ the energy loss can be greater for higher values of

eeff, as in the benchmark simulation results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

 

 

Friction Coefficient

E
n
er

g
y

L
o
ss

[%
]

e = 0.01

e = 0.5

e = 1

Figure 5.20: Benchmark double pendulum: energy loss vs. friction coefficient – case (a).
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Figure 5.21: Benchmark double pendulum: energy loss vs. friction coefficient – case (b).

5.1.4 Experimental validation

This section1 presents a comparison between experiments performed using the SMT manipulator

introduced in Section 1.1.1 and a simulation of the SMT using the point contact model. The

contact experiments involved a half-sphere object coming into contact with a flat plate. The plate

is mounted on a 6-axis force-moment sensor and will be referred hereafter as the worksite force-

plate. The selected geometric-pair satisfies the conditions for using a Hertz-based stiffness model,

and hence the contact interaction can suitably be modelled using the point contact model. The half-

sphere is made of aluminium and is mounted on top of a micro-fixture specifically designed for the

SMT gripper. The flat plate is also made of aluminium. Figure 5.22 show the key dimensions of

the half-sphere payload, along with the geometric information of the worksite.

For the simulation, the normal impact model with k = 2.5413 · 108 N/m3/2 was set to have a

constant coefficient of restitution of 0.85. The small velocity tolerance vsmall was set to 0.001 m/s.

The version of the normal contact model used for the simulations in this section did not include the

numerical relaxation feature discussed in Section 3.3.1. Since the impact velocities are very low in

the experiments, this change has negligible effect, i.e., xr,o will be very small.

The friction model parameters are shown in Table 5.4 and the numerical tolerance on velocity

was set to vε = vS/100 = 0.001 m/s. The friction model used for the simulations in this section

was based on a bristle model where the bristle stiffness and damping terms were not proportional

1The work presented in this section was done in collaboration with Dr. Christian Lange at the CSA.
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Figure 5.22: Dimensions and coordinate frame definition of the half-sphere and the worksite force-

plate.

to the normal load. However, since the relative tangential motion is done under a constant normal

load in the experiments, this has no significant impact on the simulation results, i.e., the effective

bristle stiffness σ∗

o = fn σo and damping σ∗

1 = fn σ1 are constant in this case.

µS µC σ∗

o σ∗

1 σ∗

2 vS τdw

0.16 0.1 105 N/m 104 Ns/m 0 Ns/m 0.1 m/s 0.01 s

Table 5.4: Friction model parameter values for the contact experiment.

Description of experimental facility

To facilitate the planning and to ensure smooth operation of Dextre during contact related tasks,

e.g., the insertion and extraction of Orbital Replacement Units (ORUs), the CSA has designed and

built the on-ground SPDM Task Verification Facility (STVF). A description of STVF can be found

in (Piedbœuf et al., 2000; Dupuis et al., 1998). Using a hardware-in-the-loop simulation (HLS)

technique, the STVF Manipulator Test-bed (SMT) robot emulates the dynamics of the end-effector

of the SPDM; see Figure 5.23.
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Figure 5.23: The SMT and the worksite force-plate.

The SMT-robot is a highly rigid six degrees-of-freedom serial robot. The robot design is a

typical backhoe configuration. The base shaft, upper arm and forearm segments are made of steel.

The wrist members are made of aluminium. All manipulator joints include hydraulic actuators and

position, load sensors and a torque sensor. The optical joint encoders (absolute position: 23 bit,

incremental position: 23.5 bit after interpolation) have been selected such that they meet the end-

effector resolution requirement of 0.5 mm and 0.05 degrees at the outside edge of the workspace

together with the velocity sensing requirement of 1 mm/s and 0.1 deg/s. Since all joints except for

the wrist rotate use cylinders, torque sensing is provided with load cells that attach to either the
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cylinder clevises or cylinder bases. Where there are two cylinders on a joint, both are instrumented

with load cells. On the wrist rotate joint, a 6-axis force-moment sensor measures the rotational

moment directly.

The hydraulic actuators are controlled with servo-valves and the actuation pressure is provided

by a constant-pressure pump. All of the hydraulic actuators on the SMT-robot are hydraulic cylin-

ders, except for the wrist rotate. Shoulder and elbow joints use single cylinders. The swing, wrist

pitch and wrist yaw joints each use dual cylinder arrangements. For the swing and wrist pitch

joints, two hydraulic cylinders are connected via a linkage to drive the joint (a chain that straddles

a sprocket under high pre-tension creating significant friction effects). For the wrist rotate joint, a

direct drive hydraulic motor with good stall-torque characteristics is used. The robot was designed

to handle payloads up to 100 kg.

The controller of the SMT-robot including the FMA scheme has been developed over many

years to achieve a stable responds with high position accuracy when it is in both in unconstrained

and constrained motion. Further details of the STVF facility, which was utilized for this work, can

be found in (Piedbœuf, 1996; Dupuis et al., 1998; Piedbœuf et al., 1998, 2000). It is also important

to note that the SMT-robot has been designed to fulfil the requirements of the hardware-in-the-loop

simulation. For this concept, the knowledge of the payload geometry and the compliance of the

force-plates are not necessary. Furthermore, the adaptive controller itself compensates simplifica-

tions of the robot model utilized for the model-based control.

In general, the use of the SMT-robot to identify contact parameters seems a very good choice

due to its high rigidity and precise joint encoders and load/force sensors and, most notably, its FMA

motion control. This control allows insertion tasks in Cartesian velocity control mode without the

risk of damaging the worksite, since the maximal applied force is bounded by the FMA and is

proportional to the desired velocity. Nevertheless, as it turns out, besides the advantages of this

system for safe contact experiments within a very controlled environment, certain properties of the

robot hardware pose limits for the contact parameter identification for highly rigid contact pairs.

Identifiable hardware restrictions are:

1. “Only” 23 bit joint encoders; these correspond to a maximal identifiable stiffness in the order

of 107 N/m (assuming a maximum force-plate force of 400 N). Measured joint encoder noise

translates into 2e-6 m position noise;

2. Force plate sensor noise translates into 1 N force noise;

3. The force plate is not fully rigid and its compliance is difficult to model, which is necessary

for comparison purposes with simulation results.

4. Joint load-cell sensors have experimentally determined DC offset and proportional gain. This

is not a problem for the SMT-robot controller, but the measured signal is used later on to

determine the applied joint torque and is one bench mark quantity for robot simulator per-

formance.
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Furthermore, the current SMT-robot control scheme guarantees a very good relative position accu-

racy of 0.2 mm. However, in terms of contact dynamics this poses certainly a limit when dealing

with stiffness in the order of or above 106 N/m. Since the absolute position accuracy is by a fac-

tor of 10 less accurate, all experiments start from an inserted configuration and the motion is then

defined relative to that one.

The controller implementation includes a low-level torque control loop at the joint level. The

high-level motion control is realized using an acceleration-based control-law and guarantees a set

point tracking up to 2 Hz. Furthermore, the adaptive torque control scheme yields a slightly dif-

ferent behaviour each time due to uncertainties in the initial pose. Therefore, it cannot be expected

that the robot will be able to track steps or sharp transitions as they occur at initial impact of the

contact pair. Finally, random processes and disturbances, e.g., numerical noise and uncertainties in

the initial pose, yield for open but especially for closed-loop systems a slightly different behaviour

each time as it will be shown for this test-bed in the results subsection.

Description of simulation environment

The SMT-robot simulator infrastructure is almost identical to the hardware-in-the-loop control soft-

ware used for STVF, except that the hardware components, i.e., the SMT-robot itself, the contact

pair (payload) interaction, and the force plate, are modelled as well. The space robot emulation

part, i.e., the SPDM simulation, is disabled since it is not necessary.

The SMT is modelled as a serial chain of rigid links connected by ideal joints and with lumped

masses. The multibody model is generated using Symofros (L’Archevêque et al., 2000; Piedbœuf,

1995). To reproduce the friction effects of the joints a friction model as described in Gonthier et al.

(Gonthier et al., 2002, 2004) was used. The contact pair interaction was modelled using the point

contact model with local compliance.

While the high-level model-based motion control is identical to the one of the SMT-robot, the

low-level torque control does not exist. Assuming the latter to be perfect in simulation, the applied

torque is set identical to the desired one computed by the high-level motion controller.

Based on this modelling approach, the following simplifications can be identified:

1. Link flexibility is not included;

2. Joint flexibility is not included;

3. Actuator dynamics (hydraulic fluid, valves, pipes) is not modelled;

4. No accurate identification of joint friction characteristics; simulation model parameters for

the joint damping and joint friction were based on empirical values and subsequently tuned

such that a stable simulation was obtained, while matching the free-space motion character-

istics;
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5. Uncertainties in robot kinematics and dynamics parameter identification; the kinematics and

inertia parameters of the robot are initially derived from CAD drawings and then adjusted

using kinematic and dynamic identification;

6. Force plate compliance is not modelled;

7. Joint load cells are not modelled; applied joint torque of SMT-robot is determined based

on axial load sensors, then converted into the corresponding joint torque, if the load-cell

offsets and gains are not accurately determined the nonlinear conversion function leads to

non-constant torque difference.

The use of rigid body models for the robot, the contact pair and the force plate makes it nec-

essary to lump all compliance into the local compliance of the contact model. This fact indicates

that the contact model with its parameter set represents not only the physics of the local contact

phenomena but is bound to comprise the compliance and dynamics of the overall structure of the

test-bed. Therefore, the identified contact model and its parameters are inherently related to the

facility used to identify them. Furthermore, the model is used (abused) to represent something it

is not made for. Since the payload can be regarded as a compliance element (spring) connected in

series to the test-bed compliance, this effect becomes significantly important if the stiffness of the

payload is close to the one of the test-bed. As a result, the model cannot be expected to represent

the transition phases (no-contact to contact) with a high fidelity due to this lumped-compliance

approach.

Furthermore, it is important to note that the end-effector position of the robot, and therefore

the payload position, is based on the joint encoder reading and the rigid-body forward kinematics.

Hence, even if the robot end-effector does not move, since it is in rigid contact with a surface, the

computed end-effector position will indicated a motion as a function of the link and joint flexibil-

ity. However, it was experimentally verified that this approach still leads to more accurate results

than the available external camera system, i.e., OptoTrack made by Northern Digital Inc.2 with

calibration software made by Krypton 3.

Experiments, simulation and results

In this section, the experiments and simulations with gradually increasing complexity are described.

They were carried out to eventually accomplish a representative simulation of a contact task. To

this end, free motion experiments, studies of the static stiffness of the test-bed and the payloads,

single-point normal as well as single-point normal and tangential contact experiments were con-

ducted before complex spatial contact scenarios were investigated. For each step, the objective, the

approach taken as well as the results are presented below.

2
www.northerndigital.ca

3
www.krypton.be

www.northerndigital.ca
www.krypton.be
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Figure 5.24: SMT-robot: frame definitions.
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A. Unconstrained motion in joint position control mode

Objective: For the envisioned parameter estimation approach an identical — or more real-

istically, a similar — kinematics and dynamics response of the SMT-robot and the SMT-robot

simulator is crucial. Therefore, this task is defined in order to verify the kinematics and dynamics

response of the SMT-robot simulator in free motion. Benchmark criteria are: (a) primarily, agree-

ment of motion (position, velocity) of the end-effector and (b) secondarily, agreement of the joint

torques of the simulation versus the experimental data.

Approach: In order to obtain experimental results, the SMT-robot is driven along a pre-defined

joint-position trajectory, whereby each joint position is commanded to move starting from the initial

orientation by 10 degrees and then back to the initial configuration. Beginning with the first joint,

each joint was rotated sequentially.

The same trajectory is then used to drive the SMT-robot simulator. Even though the SMT-robot

simulator (including its controller) contains approximately 200 parameters, “only” an adjustment

of the 6× 6 = 36 joint friction parameters was considered to get a good match between the motion

and torque signals of the SMT-robot and its simulator. The reason for this is the fact that all other

model parameters are also used by the model-based controller of the SMT-robot itself, while the

joint friction parameter are not. Hence, the controller related parameters were kept unchanged in

order to not deteriorate the behaviour of the robot optimized for hardware-in-the-loop operations.

However, one has to note that this set of controller related parameters is not necessarily the best

possible choice in terms of model equivalence between SMT-robot and its simulator.

Results: The chosen joint friction parameters result into a SMT-robot simulator response very

close to the one of the SMT-robot. The robot joints are labelled from base to tip as follows: swing

(SW), shoulder (SH), elbow (EL), pitch (PI), yaw (YA) and roll (RO).

The time history of the joint positions and velocities, and the joint torques of the experiment

and the simulation are shown in Figure 5.25 – 5.28, where fb, sim and sp indicate the feedback from

the SMT-robot, the SMT-robot simulator and the controller set-point signals, respectively. From

Figure 5.25 – 5.26 it is clearly apparent that both systems, i.e., the SMT-robot and the SMT-robot

simulator, behave very similar in terms of motion signals. However, Figure 5.27 and Figure 5.28

(same signal but with adjusted DC offset) show that to generate with the robot-simulator the same

motion pattern as with the SMT-robot slightly different joint torques have to be applied. The

simplifications of the robot simulator mentioned previously and imperfections in the joint-friction

model are responsible for this discrepancy. It should also be noted that the last joint (number 6)

is particularly difficult to control in general and, hence, also to model due to its very small inertia,

especially if no payload is attached.
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Figure 5.25: SMT joint positions (unconstrained motion).
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Figure 5.26: SMT joint velocities (unconstrained motion).
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Figure 5.27: SMT joint moments (unconstrained motion).
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Figure 5.28: SMT joint moments (corrected) (unconstrained motion).
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B. Single-point contact with only normal commanded motion

Objectives: The objective of this (and the next) task is to get more knowledge about the SMT-

robot simulator with its contact model and its sensitivity to a change in contact model parameters.

To make this as easy as possible the single-point contact with only normal commanded motion is

investigated in a first step.

Approach: To obtain the experimental data, the SMT-robot was driven along a pre-defined Carte-

sian velocity trajectory under FMA control. The SMT-robot was put into a configuration such that

the half-sphere was place directly above the aluminium plate. Then it was repeatedly moved down

with a velocity of vz = −2 mm/s and up with vz = 1 mm/s. On the simulation side, two different

approaches were taken:

1. A kinematics simulation, i.e., the motion signals were directly fed into the contact model

without any robot in the loop;

2. The pre-defined trajectory was run with the SMT-robot simulator;

Results: In case (1) it was possible to adjust the stiffness parameters of the nonlinear force model

to get a match of the normal contact forces (z-direction). Although the commanded motion was

only in the normal direction, tangential forces appear. This is caused by the fact that the performed

motion is not perfectly normal and also that the robot end-effector and the force-plate orientation

is not perfectly known in order to compensate for the tilting. After adjusting the z-position of the

force-plate (and therewith the position of the fixed contact body) based on the contact period a

stiffness value of k = 2.5413 · 108 N/m3/2 was identified. Here one has to keep in mind that this

number does not correspond to the physical value of the half-sphere but of the overall stiffness of

the test-bed with the half-sphere.

Using these values case (2) was simulated, whereby the damping parameters were adjusted to

get similar results compared to the experiment and a numerically stable simulation. Because of

the complexity of the Simulink diagram implementing the simulation model of the SMT (recall

that the same diagram is used to generate the control software for the real SMT), the simple ode1

solver (Euler) was used with a fixed-step size of 1 ms. A value of eeff = 0.85 gives the best match

between simulation and experiment. The resulting motion, torque and force-plate signals are given

in Figure 5.29 – 5.30. Motion signals are given in the “SMT world frame” and forces are given

in the “Worksite Force Plate Frame” (Figure 5.24). A very good match can be observed, even for

the small contact forces in the contact plane, i.e., Fx and Fy and the moments. However, it is not

possible to simulate the transition phase exactly. The actuator dynamics have a significant effect on

the contact force during the impact phase but they have not been included in the simulation model

of the SMT.
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Figure 5.29: Cartesian position of SMT end-effector (normal motion only).
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Figure 5.30: Worksite force-plate measurements (normal motion only).
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C. Single-point contact with normal and tangential commanded motion

Objective: This task is defined in order to identify the static and kinetic friction coefficient to be

used in the friction model for the half-sphere–plane contact.

Approach: For this task a similar approach was taken as for experiment B but this time two hor-

izontal motion components (y and x direction) were additionally commanded. On the simulation

side, an approach similar to experiment B(1) was tried, but failed since it turned out to be too

complicated to find the proper orientation matrix for the force-plate with respect to the robot. In

particular, it was found that this matrix as well as the force-plate position were time dependent.

Hence, simulations similar to experiment B(2) were carried out. This approach (Cartesian velocity

controlled motion with FMA) is a lot less stringent in terms of payload and worksite geometric

uncertainties due to its compensating effects. The controller always tries to keep the reaction force

constant and not the end-effector position. Regarding the FMA functionality, the critical matching

criterion becomes slope of the contact force at impact rather than the contact force at steady state,

since the later is controlled by the FMA. A steep slope corresponds to a large stiffness and a gentle

slope to a small stiffness. The maximal force amplitude is always given by a FMA gain relating

the desired velocity and the maximal force, i.e., in this case approximately 10 N per 1 mm/s, plus

a 10 N dead-band.

Results: Figure 5.31–5.32 show the results of the single-point contact with normal and tangential

commanded motion. Note that because it was not possible to determine the force-plate position

and orientation with high accuracy, the time at which the contact phase starts and ends in the simu-

lation cannot cannot be synchronized with the experimental data for a single surface height/normal

selection. Instead, the surface height was tuned so that the results are synchronized at the time

contact is lost, for a given (assumed) surface normal direction.

Similar to the results obtained for the previously, a good match between simulated and ex-

perimental results can be observed for the motion signal. Values for µS and µC of 0.16 and 0.1

was found to give the best match. The other friction model parameters have little influence on

the macro-level dynamics of the system, and were selected using the heuristic rules provided in

Section 3.3.2.
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Figure 5.31: Cartesian position of SMT end-effector (normal and tangential motion).
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Figure 5.32: Worksite force-plate measurements (normal and tangential motion).
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5.2 Volumetric Contact Model

The simulations presented in the previous section are considered again, but this time using the

volumetric contact model presented in Chapter 4. The generality of the new contact model will

first be illustrated using simple geometries and then with more complex ones. The implementation

of the contact normal determination algorithm requires that the numerical parameters θε, rn and ni

be specified. The values of 1 deg, 0.95 and 15 for θε, rn and ni respectively, were used for all the

results presented in this section. These settings result in a very robust contact normal estimation

and never required tweaking.

5.2.1 Simple Geometry Contacts

This subsection presents numerical results for simulations scenarios involving objects with fairly

simple geometries. The selected scenarios are such that the contact forces and moments acting on

the colliding bodies can be modelled using only one volumetric contact model. In other words,

only a single contact plate needs to be inserted between the colliding objects to obtain an accurate

representation of the contact interaction.

A Ball Falling in a Cylinder

The same simulation as in Section 5.1.3 for a ball bouncing inside a cylinder was implemented,

but here the contributions from the normal force, rolling resistance torque, tangential friction force,

and spinning friction torque sub-models were all included; see Equations (4.62), (4.67), (4.75)

and (4.82). All the contact model parameters are the same except that the numerical value of the

stiffness was increased by a factor of five to kv = 5 · 106 N/m3 to reduce the amount of rolling

resistance torque. This torque increases with the size of the area of contact, and thus increases

when the materials are less stiff. The numerical relaxation time constant τr was set to 1. A voxel

size of 0.001 m was used. The fixed-step ode5 solver was used with a time-step size of 1 ms.

This fixed-step solver was preferred over the variable-step solvers used previously in this chapter

because reasonably accurate results could be obtained more quickly. A more detailed discussion

that includes a comparison of the performance of fixed-step and variable-step solvers is presented

later in this section.

An interesting feature of this simulation scenario is that the contact occurs between a convex

shape —the ball— and a concave shape —the inside surface of the cylinder. In general, a single

contact model should not be sufficient to accurately simulate the ball-cylinder interaction; see the

discussion on modelling concave shapes in Section 4.1.2. However, the difference in radius is large

—1 m vs. 0.1 m, and the cylinder surface “appears” almost flat in relation to the size of the ball;

see Figure 5.33. As a result, using a single contact model is sufficient here, since the shape of the

cylinder does not “wrap around” the ball sufficiently to cause significant interaction between the
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normal and tangential forces. In other words, the flat-contact-surface assumption of the contact

model can be transgressed up to a certain point, thereby allowing more modelling possibilities.

Figure 5.33: LLG model of the ball rolling in the cylinder.

This scenario also demonstrates a neat feature of the LLG technology: its natural capability to

handle concave shapes indiscriminately from convex ones. Most contact dynamics modelling sys-

tems require concave shapes to be split up into convex ones. There are software packages available

today that can automatically split a concave geometry into convex hulls. However, because it is

based on projective primitives, the LLG technology does not need to distinguish between concave

and convex. It only processes cells, which correspond to an intersection of projective primitives or

simply a single projective primitive. The latter can be concave or convex. For example, a cylinder

corresponds to the intersection of an infinite cylinder primitive with a biplane primitive. On the

other hand, the cube-with-cylindrical-groove geometry shown in Figure 5.33 corresponds to the

intersection of a box and the dual of a cylinder, i.e., a cylindrical hole in an infinite volume-space.

The box is itself the intersection of three biplanes. The resulting geometry is still a single-cell

shape, but is concave.

The results from the simulation are given in Figures 5.34 and 5.35. Note that no additional

parameters were required to set up this simulation. In other words, the rolling resistance and spin-

ning friction torque parameters are directly inferred from the parameters of the translational friction

model, the normal damping coefficients and from the geometry of the colliding bodies. The results

show the decays in both of the angular and translational velocities over time. Observe that the ball
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eventually stops moving in the Y direction. Clearly, the rolling resistance and spinning friction

torques act to prevent rotational motion, as expected. When, compared to the results obtained in

Section 5.1.3 using the point contact model, it is clear that the torques produced by the volumetric

contact model have a significant impact on the simulation results. These torques are not present in

the point contact model and the ball never stopped rolling. Figure 5.36 shows the total system en-

ergy decaying over time, while the plot for the point contact model (Figure 5.13) shows the energy

to be constant once the motion reach the pure rolling stage.
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Figure 5.34: Trajectory of the ball impacting a cylinder (volumetric).
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A Ball Falling on a Table

The simulation of the 2 kg spinning ball bouncing on and rolling off a flat table is then con-

sidered. In particular, the contact interaction as the ball rolls off the edge of the table is ana-

lyzed; see Fig. 5.37. The ball is dropped from a height of 0.2 m in Z and is initially moving at

0.3 m/s in Y . It is also spinning at 3 rad/s around Z . Gravity acts in the −Z direction and has

a magnitude of 9.81 m/s2. The parameters for the normal contact model and friction model are

given in Table 5.5 and Table 5.6, respectively. The numerical tolerance on velocity was set to

vε = vS/100 = 10−5 m/s.

The simulation is implemented in Simulink using the ode3 solver with a fixed step size of

5 · 10−5 s. This step size is very small and was selected to obtain accurate results. A more detailed

discussion investigating the performance of fixed-step and variable-step solvers using this simula-

tion scenario is given in the next section. A smaller voxel size of 2 · 10−4 m was used to minimize

the numerical noise associated with the voxel-discretization process used by the LLG geometric

function to obtain the metrics of the volume of interference.

X

YZ

Figure 5.37: Trajectory of the ball impacting a table.

kv eeff vsmall τr

107 N/m3 0.5 0.001 m/s 1 s

Table 5.5: Normal contact model parameter values for the ball impacting a table simulation.

µS µC σo σ1 σ2 vS τdw

0.08 0.05 105 N/m
√

105 Ns/m 0 Ns/m 0.001 m/s 0.3 s

Table 5.6: Friction model parameter values for the ball impacting a table simulation.
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The time histories of the ball centre point velocities are given in Figure 5.38. The Z-velocity

plot shows the ball bouncing two times, then settling into a rolling motion around 0.4 s and finally

rolling off the table at 4 s. When in contact, the ball is observed to undergo a pure rolling motion.

For example, during the first bounce, the X-angular velocity goes to from zero to −2 rad/s, while

the Y -velocity changes from 0.3 m/s to 0.2 m/s. It is seen that the no-slip condition is enforced by

the tangential friction such that |v| = R|ω|, where v is the translational velocity and ω the angular

velocity. There is no motion in the X-direction, and therefore the Y -angular velocity remains zero.
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Figure 5.38: Ball impacting a table: ball centre motion.

The Z-angular velocity shows the effect of the spinning friction torque, as it reduces the angular

velocity on each bounce, and then reduces it even further during the pure rolling motion until the

ball stops spinning at 1.9 s. The spinning velocity decreases linearly under the influence of a

constant spinning torque; see Equation (4.208). The contact model rolling resistance torque acts to

reduce the −X-angular velocity before the ball starts reaching the edge of the table at 3.5 s. During

this phase, the rolling angular velocity decreases exponentially, indicating a first order ODE decay

as is expected since the rolling resistance torque is in fact a damping torque; see Equation (4.67).

Since the ball is in pure rolling during this part of the simulation, the Y -translational velocity also

features the exponential decay behaviour. Then, as the ball rolls over the edge, the −X-angular

velocity increases significantly.

Figures 5.39 and 5.40 show the resulting forces and moments acting at the ball centre. The

force fx in the X-direction and moment τy in the Y -direction are not shown because they are zero.

The fz force history in the Z-direction clearly show the three impacts when the ball hits the table

surface, then the force becomes constant as the ball rolls along the table. When the ball reaches
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the edge of the table, the force “turns down” to zero as the ball rolls over the edge. The fy force

history in the Y -direction shows two negative “spikes” when the ball bounces initially. These force

impulses get the ball rotating about the X-axis. As the ball settles into the rolling motion fy is

almost zero. It has a small non-zero value caused by the rolling resistance torque. When the ball

rolls over the edge, fy becomes positive as it pushes the ball away from the table edge.
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Figure 5.39: Ball impacting a table: forces acting at the ball centre.

The τx moment history in the X-direction show two moment spikes corresponding to the fy

spikes, and which initiate the rolling motion of the ball. τx then has a small positive value acting to

slow down the rotational motion of the ball, i.e., the rolling resistance torque. A negative x-moment

is applied as the ball rolls over the edge. The Z-moment τz acts to reduces the Z-angular velocity

upon the impacts, and then with a constant negative torque value once the ball settles in the rolling

motion. Once it stops spinning about the z-axis at 2 s, τz goes to zero. The oscillations visible

thereafter illustrate the effect of the bristle dynamics of the the friction model.

The time history of the angle θy of the contact normal as defined by Equation (4.199) with

respect to the Y -axis is given in Figure 5.41. It is observed that the contact normal smoothly

transitions from a vertical direction and tilts toward the +Y axis as the ball rolls over the edge.

As small numerical glitch can be seen at the end of the contact phase at around 4.3 s. Since the

contact volume is extremely small at that point in time, i.e., the ball is about to lift off the surface,

the geometric estimate algorithm is less accurate.

Figure 5.42 shows the time history of the dwell-stick state sdw. The ball appears to undergo

pure rolling motion as soon as it lands after the second bounce at 0.4 s but it is is still spinning

about the Z-axis until 2 s. The dwell state sdw only starts increasing after 1.8 s, when the spinning
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Figure 5.40: Ball impacting a table: moments acting at the ball centre.

angular velocity is almost zero. Here, the contribution of the angular velocity of the ball in vavg

keeps the average velocity value above that of the Stribeck velocity vS even though the relative

translational velocity is zero due to the pure rolling motion. Then, once the relative velocity is

small both in translation and rotation, the dwell-stick state increases gradually up to 1, the “stick”

mode. The rise of sdw is driven by the time constant τdw of 0.3 s. As the ball rolls off the edge of

the table, it starts slipping at 4.3 s and the dwell-stick state immediately comes back to zero.

The total energy of the system is shown in Figure 5.43. The energy is dissipating quickly

during the impact phases due to the normal damping term. After 0.4 s the energy loss comes from

the rolling resistance torque. The total energy of the system remains constant after the ball falls.

Numerical Solver Performance

Simulink offers two categories of solvers to compute simulations results: fixed-step and variable-

step solvers. The ode15s, ode23s, ode23t, and ode23tb variable-step solvers are designed to handle

numerically stiff problems and must rely on a numerically generated Jacobian matrix to obtain the

solution at each time-step; the state-space formulation imposed by Simulink precludes obtaining

the Jacobian matrix symbolically.

The advantage of using variable-step solvers is that in theory, these solvers allow the accuracy

of the solution to be controlled via the error tolerances setting. Therefore, in this discussion, it

will be assumed that the most accurate result is obtained using a variable-step solver with the

most stringent specification for the error tolerances, and when the increase in numerical precision

requirement produces no significant change in the dynamic behaviour. It is expected that a variable-
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Figure 5.41: Ball impacting a table: contact normal angle relative to the Y -axis.
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Figure 5.42: Ball impacting a table: dwell state sdw of the friction model.

step solver with high error tolerances will yield the same results as a fixed-step solver with a very

small time-step.

For the results previously presented in this chapter, the relative and absolute error tolerances

were set very strictly, i.e., 10−6, to ensure the provided results are accurate. Relaxing these error
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Figure 5.43: Ball impacting a table: total system energy.

tolerances allow the solvers to take larger time-steps, thereby reducing the total time required to run

the simulation. There results a trade-off between the simulation run-time and its accuracy. On the

other hand, fixed-step solvers only allow the size of the time step to be selected and offer no other

way to control the simulation accuracy. Consequently, a very small time-step size must be selected

to obtain very accurate results, as was done for the ball-table simulation in the previous section.

Hence, a priori, the variable-step solvers appear to be more effective to obtain fast and accurate

results, since it takes small time-steps only when needed. However, in practise it was found that

the fixed-step solvers are more reliable in obtaining an accurate simulation with a reasonable run-

time. This indicates an apparent weakness of the Simulink variable-step solvers to tackle this kind

of system dynamics.

The simulation of the ball falling on the table presented in the previous section is considered

again, but this time using different solvers and solver settings. When the simulation was set up,

various solver settings were tried. In all cases, the generated results were very similar for the initial

part of the simulation from 0 to 3.5 s when the ball bounces on the surface of the table and then

settles into the pure rolling motion. However, the part of the simulation where the balls rolls over

the edge of the table yielded clearly different simulation results for different solver settings. Hence,

the period of the simulation from 3 .5 to 4.5 s is investigated in more detail.

As the ball rolls over the edge of the table, the direction of the contact normal changes: it starts

off being vertical and gradually tilts down. Figure 5.41 indicates that the change in direction occurs

smoothly and without any discontinuity. As this happens, the bristle deformation dynamics must

also “track” this change of direction, such that the direction of the deformation z is maintained



156 Contact Dynamics Modelling for Robotic Task Simulation

tangential to the normal; see Equation (4.227). This ensures that the friction force always acts tan-

gentially to the contact normal direction. If the numerical solvers obtain an incorrect or inaccurate

solution for the bristle deformation, this may introduce an artificial coupling between the normal

and tangential force.

Figure 5.44 plots the time history of fz obtained using the solver ode23tb with error tolerances

of 10−5, 10−6 and 10−7. Figure 5.45 gives the corresponding total system energy, which includes

both the kinetic and potential energies. When the error tolerances are set to 10−5 a deviation in

generated force can be observed at 4.2 s and a large increase in system energy. Since no external

non-conservative force is acting on the system, the energy should never increase. Hence, the solver

returns incorrect results for these settings.

The case when the error tolerances are set to 10−6 is significantly better and the resulting energy

profile shows no large increase in energy. However, when looking more closely at the generated

force profile (see Figure 5.46) it can be seen that there are oscillations in the force that are much

less present in the case when the error tolerances are set to 10−7. The energy profile also exhibits

an increase in total system energy around 4.25 s; see Figure 5.47. Hence, the results using ode23tb

with error tolerances of 10−6 are better but are still incorrect.
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Figure 5.44: Simulation results using ode23tb: force in Z .
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Figure 5.45: Simulation results using ode23tb: total system energy.
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Figure 5.47: Simulation results using ode23tb: total system energy – zoomed.
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Figure 5.48: Simulation results using ode3: force in Z .

Next, a similar investigation was performed using the ode3 fixed-step solver using time-step

sizes of 50 µs, 250 µs and 1000 µs. The results are given in Figures 5.48 and 5.49. All curves

appear very similar even though the time-step size changes by a factor of 20. Most importantly,

even with a time step size of 1 ms, there is no increase in total system energy. On the other hand,
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Figure 5.49: Simulation results using ode3: total system energy.

large time offsets separate the curves; the curves have nearly identical shapes, but do not occur at

the same point in time.

The time offsets are cause by the accumulation of small errors in the predicted positions, and

this has a significant impact on the moment at which the ball starts tilting over the edge of the table.

This latter motion corresponds to the part in the force and energy curves where the slope changes

from horizontal down to nearly vertical. The simulation results for all three simulations give a

Y -translational velocity of 0.197 m/s at 0.35 s, i.e., the moment just after that last impact when the

lasting contact is initiated. Hence, at that point in time, the simulation results are nearly identical.

However, as the ball moves toward the edge, the simulation results from the three simulation start

diverging slightly.

Figure 5.50 presents the motion of the centre of ball toward the edge in the Y -direction obtained

using the three solver time-step sizes. The edge is located at Y = 0.3 m, and is indicated in the

figure by a solid horizontal line. It can be seen that the Y -position curve obtained using a time

step of 1000 µs is slightly above the other two, thereby indicating the velocity obtained using this

time-step size is slightly higher than the one obtained in the other two simulation. Similarly, the

Y -position predictions obtained using a time-step size of 250 µs are also slightly higher then those

obtained using the time-step size of 50 µs. The small position differences can be better seen in

Figure 5.51, where a magnified view of Figure 5.50 for the portion of the curves where the ball

rolls over the edge is given.

The point where the ball starts tilting down corresponds to the point of inflection of the curves

at around Y = 0.28 m. Figure 5.51 shows that the ball starts tilting down at exactly the same
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Figure 5.50: Y -position of the ball centre over time.
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Figure 5.51: Y -position of the ball centre over time – zoomed.

point in space in all three curves, but it reaches that point at a significantly different times. In the

simulation scenario, the location of the edge was selected such that the ball has nearly lost all of

its Y -velocity before it rolls off the edge of the table. That particular choice of scenario therefore



Chapter 5: Numerical Simulation Results 161

amplifies the difference in the curves; since the velocity is very small at the time the ball reaches

the edge, a small difference position results a large difference in time for the onset of the ball tilting

motion. Hence, the large time offset between the curves can be explained by the accumulation of

numerical errors and the selection of the particular simulation scenario.

The phenomenon observed here is that large changes in simulation results can be caused by

seemingly minute changes in parameter or simulation settings. This phenomenon is characteristic

of multibody simulation involving contact dynamics. Here, a small change in the solver time-step

size causes a big time difference between the curves, e.g., the difference between the 250 µs time-

step and the 50 µs times-step is only 200 µs, but the offset of the curves is about 0.2 s, or 1000

times larger.

Figures 5.52 and 5.53 present a comparison of fz and the total energy results obtained using

the ode23tb variable-step solver with error tolerances of 10−7 and the ode3 fixed-step solver with

a time-step of 50 µs. The results have a very similar shape, but have a time offset which can be

explained as before. As expected, the plots indicate the fixed-step solver results obtained using

smallest time step are closest to the results from the variable step solver.
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Figure 5.52: Simulation results comparison: force in Z .
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Figure 5.53: Simulation results comparison: total system energy.

5.2.2 Complex Geometry Contacts

The simulation results presented so far have only included objects with simple geometries. How-

ever, the volumetric modelling approach makes no assumption on the actual shape of the objects

and hence it can be used to model contact for a wide range of object shapes. The model how-

ever imposes that the contact plate is flat, thereby requiring the contact geometries to be “cut” into

smaller segments to ensure the overall contact model is accurate; see Section 4.1.2. This restriction

can be somewhat “transgressed”, as shown in Section 5.2.1. However, there are cases where the

model must be segmented into smaller sub-components. This section presents the results for such

models.

The object-oriented framework created to support the implementation of the contact models

also includes a mechanism to process these segmented geometric models automatically. Because

the parts of the segmented objects do not move with respect to each other, the implementation can

therefore be optimized by processing all the segmented parts as a whole, and only process the sub-

parts that are effectively in contact. These segmented models are referred to as cellular models;

their sub-components are cells. The LLG volumetric processing routines have been optimized to

operate on pairs of cells. A cell is defined as being a single projective primitive, or the intersection

of a number of such primitives. A cell can never be the union of projective primitives.

A cellular contact model was therefore implemented to support the modelling of contact be-

tween multi-cell objects. This contact model acts as a container for an array of internal volumetric

contact models, referred hereafter as contact sub-models. However, each of these sub-models is a
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full-fledged volumetric contact model with its own states and properties. The contact sub-models

only share the constant contact model parameters, e.g., the volumetric stiffness. The implementa-

tion of the cellular contact model includes a mechanism that tracks which cell pairs are in contact

and assigns them to a specific contact sub-model. It also detects when new cell-pairs come into

contact or when contact is lost, and activates or de-activates the contact sub-models accordingly. A

more detailed discussion of the cellular contact model implementation is given in Appendix A.

This section presents the simulation results for two cellular objects. This first object is a Tippe-

Top. It is fairly simple object and could have been implemented by simply using two separate

contact models for the two spherical parts. Its contact model was nonetheless implemented using

the cellular infrastructure and the simulation results are compared to results from the literature. The

second object is a truly complicated geometry and makes full use of the cellular model optimiza-

tions.

A Tippe-Top Simulation

The Tippe-Top model used by Friedl (1997) and Leine and Glocker (2003) was implemented using

a free-floating body model to which the contact force and torque from the proposed model are

applied. The dimensions are r1 = 15 mm, r2 = 5 mm, a1 = 3 mm and a2 = 16 mm; see

Figure 5.54. The Tippe-Top has a mass of 6 · 10−3 kg. Gravity acts in the negative Z-direction

with a magnitude of 9.81 m/s2.

(a) LLG model.

r1

r2

ωz

θ

g

a1

a2

X Y

Z

(b) Schematic diagram.

Figure 5.54: The Tippe-Top geometry.

The parameters for the contact model are given in Table 5.7. The stiffness was selected to

obtain a circular contact surface with a radius of 0.5 mm when the sphere of radius r1 is resting

on the ground, as in Leine and Glocker (2003). The damping factor value was chosen close to

1 to minimize the amount of energy dissipated during contact by the normal damping force and

the rolling resistance torque. These modes of energy dissipation are not included in the reference
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Figure 5.55: Time-history of the inclination of the Tippe-Top (original).

simulation models. The parameters for the friction model are summarized Table 5.8. The numerical

tolerance on velocity was set to vε = vS/100 = 10−5 m/s. The voxel size was set to 2 · 10−5 m.

kv eeff vsmall τr

1.798 · 1010 N/m3 0.975 10−4 m/s 1 s

Table 5.7: Normal contact model parameter values for the Tippe-Top simulations.

µS µC σo σ1 σ2 vS τdw

0.3 0.3 105 1/m
√

105 s/m 0 s/m 0.001 m/s 0.01 s

Table 5.8: Friction model parameter values for the Tippe-Top simulations.

Figure 5.55 presents the resulting Tippe-Top orientation time-history using the contact model

proposed in this work and referred hereafter as the ‘original’ model. The Tippe-Top is given an

initial angle offset of 0.1 rad from the vertical. The initial z-angular velocity ωz about the spin axis

of the Tippe-Top which was 180 rad/s in the reference simulation was increased to 200 rad/s. The

plot shows the angle θ varying from 0.1 down to 0 rad (straight up position) at 0.15 s. Then the

Tippe-Top gradually start tilting and eventually flips over at 1.6 s. It stays upside down until 4 s, at

which point it falls and starts to tilt back up as it gradually loses its angular momentum.

Figure 5.56 shows the results for the same simulation but with a reduced initial angular ve-

locity ωz of 185 rad/s, and where the contact model spinning friction torque has been scaled by a
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Figure 5.56: Time-history of the inclination of the Tippe-Top (modified).

factor of 0.65. The results for this ‘modified’ contact model are now very close to the results from

Leine and Glocker (2003). This indicates that the proposed contact model has a spinning friction

torque about 35% greater than the reference simulation, which was using a set-valued force law of

the Coulomb-Contensou friction. Experimental investigation will be required to determine which

model yields the more accurate results. Also, the initial ωz is still 5 rad/s greater than in the ref-

erence simulation scenario. The extra momentum is required to overcome the additional energy

dissipation effects present in the proposed contact model and not in the reference simulation. Fig-

ure 5.57 gives the time histories of the global Z-angular velocity Ωz for the original and modified

simulation models. Clearly, the original model angular velocity decreases more quickly over time.

The modified model initial angular velocity velocity was tuned such that the Tippe-Top angular

velocity, right after it flips over, is an approximate match to that of the reference simulation.

The overall behaviour of the Tippe-Top simulation implemented using the proposed contact

model is consistent with the reference simulations and with observed physical behaviour. It remains

to be determined which model has the more accurate estimate for the spinning friction torque. It

should be noted that the proposed contact model was not specifically designed to simulate a Tippe-

Top. Rather, it is a general purpose contact model that is able to reproduce with reasonable fidelity

the dynamic behaviour obtained with dedicated and specialized Tippe-Top simulation models.
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Figure 5.57: Time-history of the global Z-angular velocity Ωz.

A Falling Battery Box

A simulation model using an approximate model of the battery box shown in Figure 4.1 was im-

plemented. The LLG models for battery box and its worksite seen in Figure 2.3 were used to

implement the simulation of a free-floating battery box falling into its worksite under the action

of a 1 m/s2 gravity in the X-direction. The LLG models are presented in Figure 5.58 along with

their corresponding axis definitions. These were selected such that they overlap perfectly when the

battery box is fully inserted into the worksite frame. The world frame reference axes X, Y , and Z

are aligned with the worksite frame.

The battery box was assumed to have a mass of 100 kg and was dropped from the initial position

ro = [-0.35 0 -0.095]
T

m. The box was also rotated by 2 deg about the Y -direction and then 2 deg

about the rotated x-direction. The parameters for the normal contact model and friction model are

given in Table 5.9 and Table 5.10, respectively. The simulation was run using the ode3 fixed-step

solver with a step-size of 250 µs. The translational and angular velocities at the battery box frame

origin are given in Figures 5.59 and 5.60. The corresponding forces and moments, acting at the

battery box frame and resolved in the worksite frame, are shown in Figures 5.61 and 5.62.

kv eeff vsmall τr

109 N/m3 0.6 10−4 m/s 1 s

Table 5.9: Normal contact model parameter values for the falling battery box simulation.
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(a) Battery box. (b) Worksite.

Figure 5.58: Cellular LLG models for a battery box and its worksite.

µS µC σo σ1 σ2 vS τdw

0.3 0.3 105 1/m
√

105 s/m 0 s/m 0.1 m/s 0.001 s

Table 5.10: Friction model parameter values for the falling battery box simulation.

Because of the complexity of the interaction, it is not possible to explain in detail the nature

of the variations in velocities and forces. It can be observed from the velocity plots that the initial

velocity is zero and increases in the +X-direction under the action of gravity. Once the contacts

occur, both the translational and angular velocities fluctuate back and forth around zero and even-

tually go to zero as the battery box comes to rest inside the worksite after 2 s.

The force and moment plots indicates that many impacts occur with the largest one being in

the X-direction. Figure 5.63 shows that fx eventually settles at -100 N, as expected since gravity

acts in the +X-direction and has a magnitude of 1 m/s2. The high frequency oscillations apparent

in the latter figure are the result of the high contact stiffness. Here, the battery box is lying flat

on the bottom surface of the worksite. The resulting contact area is therefore large, and since the

contact stiffness of the volumetric model is proportional to the contact surface, the resulting contact

stiffness becomes large as well.

Figure 5.64 presents LLG-rendered images of the battery box as it falls into the worksite. The

images are ordered from left to right and from top to bottom. The images correspond to time

increments of 0.2 s.



168 Contact Dynamics Modelling for Robotic Task Simulation

0 0.5 1 1.5 2
−0.5

0

0.5

1

0 0.5 1 1.5 2
−0.5

0

0.5

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

v x
[m

/s
]

v y
[m

/s
]

v z
[m

/s
]

Time [s]

Figure 5.59: The battery box translational velocities.
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Figure 5.60: The battery box angular velocities.
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Figure 5.61: The battery box forces at the micro-fixture.
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Figure 5.62: The battery box moments at the micro-fixture.
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Chapter 6

Conclusions

This thesis presented a general contact dynamics modelling system. This system could be used to

support the task planning process for space-based manipulator systems. It is able to generate accu-

rate and reliable simulation results quickly, such that an operation engineer can investigate multiple

contact dynamics simulation scenarios within a few hours. The contact models used in this system

are chosen such that the parameters related to physical quantities can be identified experimentally,

or through analysis based on the material properties. Similarly, the numerical parameters can be

either selected automatically, or by using the provided heuristic rules that indicate the range of

appropriate values ensuring the simulations results will be qualitatively correct.

The literature survey showed that contact models based on the material compliance were the

most suitable for the intended use of the contact models. However, it was demonstrated that the

current state-of-the-art compliant contact dynamics modelling systems failed to reproduce rudi-

mentary contact behaviour as soon as the colliding body geometries were no longer simple, and

in particular whenever the resulting contact surface became large. Additionally, it was shown that

the contact model parameters could not always be related to a physical property. Finally, it was

observed that many contact dynamics modelling systems relied on geometric description systems

based on polygons and that the simulated contact behaviour was affected by this geometric approx-

imation.

This thesis introduced a flexible contact dynamics modelling framework. A contact dynamics

modelling system compatible with the Simulink simulation environment from The MathWorks

Inc. was developed under this framework. Two types of contact models were implemented in the

system, and the detailed derivations for these models were presented in the thesis. First, a contact

model based on Hertz theory was proposed to tackle simulations involving bodies with smooth non-

conformal surfaces. The proposed point contact model includes normal damping and tangential

friction. It also assumes the contact surface is small, such that the contact force is assumed to be

acting through a point, i.e., the moments generated across the contact surface are neglected. A

second contact model based on the Winkler elastic foundation model was then proposed to deal

with a larger class of geometries. This so-called volumetric contact model is suitable for a broad

173
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range of contact geometries, as long as the contact surface can be approximated as being flat. A

method to deal with objects where this latter approximation is not reasonable was also presented.

In the volumetric contact model, the effect of the contact pressure distribution across the contact

surface is accounted for in the form of the rolling resistance torque and spinning friction torque.

In both cases, the contact model equations were derived from first principles, and the behaviour

of each contact model characteristic was studied and simulated. When available, the simulation

results were compared with benchmark results from the literature. Experimental validation of the

point contact model was performed using the STVF at the CSA. The details of the contributions

from this thesis are given next.

6.1 Review of the Contributions

The contributions from this work fall in three categories: the theory and simulation results for the

point contact model, the theory and simulation results for the volumetric contact model, and the

novel software architecture used to seamlessly integrate these models under a common framework.

6.1.1 Point Contact Model

Chapter 3 introduced a contact model suitable for modelling collisions between objects with non-

conformal geometries. Since it is based on Hertz theory, the contacting surfaces must be smooth

and without discontinuity, i.e., no corners or sharp edges. The contact model is composed of two

sub-models: one for the normal contact force and one for the tangential friction force.

The normal contact force model takes the form of a non-linear spring with a hysteretic damp-

ing term. This type of non-linear spring-damper model has been shown to agree with experimental

data (Hunt and Crossley, 1975; Stoianovici and Hurmuzlu, 1996). The derivations demonstrated

that the damping factor could be defined in such a way that the normal energy dissipation could

be controlled via a single parameter. It was shown that this parameter value could be determined

as a function of the coefficient of restitution. The so-called dimensionless damping factor equation

can be solved off-line since it describes a constant one-to-one mapping between the coefficient of

restitution eeff and the dimensionless damping factor d. Section 5.1.1 showed that the impact re-

sponse obtained using the proposed damping factor definition gives exactly the expected coefficient

of restitution. As a result, the model can be used to match any experimentally observed behaviour

of the coefficient of restitution (Goldsmith, 1960). Finally, the proposed method of defining the

damping factor makes it easy to obtain this parameter experimentally by simply measuring the

coefficient of restitution.

A seven-parameter bristle friction model was proposed in Section 3.2.2. The model is a general-

ization of the bristle friction models proposed by Canudas de Wit et al. (1995) and de Carufel et al.

(2000). In particular, it was adapted to the context of 3-dimensional frictional impact modelling

with introduction of load-dependent bristle stiffness and damping terms, and with the expression
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of the bristle deformation in vectorial form. The model features a dwell-time stiction force de-

pendency and was shown to be able to reproduce the dynamic nature of the friction phenomenon

(Section 5.1.2). Section 3.3.2 proposed methods to identify the friction model parameters, and also

showed how to simplify the selection process depending on the required level of modelling fidelity.

The model behaviour was then investigated for oblique impacts. Numerical simulation exam-

ples of a ball impacting a plane and the interior surface of a cylinder under the action of gravity

were provided in Section 5.1.3. The resulting dynamic behaviour is physically realistic and sat-

isfies the no-slip condition once the state of pure rolling is reached. The resulting total energy

of the simulated systems was analyzed and the results show the energy decaying until a steady-

state and constant energy motion is obtained. These results were expected results since no external

non-conservative force was acting on the systems.

The model was also used to simulate the collision of the tip of a double pendulum on a plane.

The results showed the dynamic characteristic of the friction model and the total system energy

behaving as expected. The double pendulum model was then modified to match a benchmark

model in the literature (Ahmed et al., 1999) and the simulation results were found to be in good

agreement.

Finally, the results from a simulation of the six degrees-of-freedom STVF manipulator holding

a half-spherical payload and coming into contact with a flat plate were compared with experimen-

tally obtained data using the STVF at the CSA. Even though the experimental facility features

some significant limitations regarding the identification of contact model parameters, it was pos-

sible to obtain a very good correspondence between the simulated and experimental results. The

performed experiments allowed the identification of the normal contact stiffness and damping as

well the stiction and Coulomb friction coefficients.

6.1.2 Volumetric Contact Model

In Chapter 4, a contact model based on volumetric properties was presented. The model properties

were derived assuming the elastic behaviour of the contacting objects can be approximated using

a modified Winkler elastic foundation model, and that the contact surface is approximately flat.

A method was proposed to deal with concave geometries when the latter approximation is not

necessarily valid.

The proposed contact model was derived from first principles. The concept of a contact plate

was introduced as a mechanism to “measure” the contact forces and torques acting between the

bodies. The case where one body is deformable and the other has a rigid and flat contact surface

was first investigated. An expression defining the contact pressure as a function of the shape of

the colliding surfaces was defined. It was then analytically integrated over the contact area, such

that the overall body-to-body contact force was obtained. It was shown that this contact force can

be expressed in terms of the volumetric properties of the volume of interference between the two

bodies, defined as the volume spanned by the intersection of the two undeformed geometries of
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the colliding bodies. The properties of interest are: the volume of the volume of interference, the

position of its centroid, and its inertia tensor taken about the centroid.

The analysis provided additional insight into two separate components of the contact force.

First, the pressure acting on the contact surface between the two bodies produces a normal contact

force and a rolling resistance torque. Second, the friction acting across the contact surface causes a

tangential friction force and a spinning friction torque. Hence, the proposed model includes normal

contact force and damping, rolling resistance torque and tangential and spinning friction force and

torque. It features a contact stiffness proportional to the contact area and leads automatically to the

correct selection of the point of action of the force.

The collision between two deformable bodies was then investigated. The contact model equa-

tions were shown to be nearly identical to the case where only one body is deformable, with the

exception that the contact stiffness corresponds to an equivalent stiffness. The latter is computed

as a function of the two body stiffnesses. Hence, the two deformable body contact model is also

based on the same volumetric properties as the model for the one deformable body. The contact

plate was also used to obtain the direction of the contact surface normal. It was shown that the

contact normal corresponds to one of the eigenvectors of the volume of interference inertia tensor.

This definition is not arbitrary and is based on the mechanical analysis of the action of the contact

pressure across the contact surface.

The investigation also examined how the Coulomb friction is affected by the relative motion

of the objects. The concept of average surface velocity was introduced. It accounts for both the

relative translational and angular motions of the contacting surfaces. The average surface velocity

was then used to find dimensionless factors that relate friction force and spinning torque caused by

the Coulomb friction. These latter factors were labelled the Contensou factors in reference to the

work of P. Contensou (1963). Also, the radius of gyration of the inertia tensor of the volume of

interference about the contact normal was shown to correlate the spinning Coulomb friction torque

to the translational Coulomb friction force.

A volumetric version of the seven-parameter bristle friction model was then introduced. It

includes both the tangential friction force and spinning friction torque. The model is identical in

form to the friction model for the point contact models, but with a few modifications. Here, the

bristle force was obtained by analytical integration of the bristle deformations across the contact

surface and the stick-slip transitions are triggered by the average surface velocity. The model also

includes an extra state to account for the bristle deformation in torsion. Finally, the Contensou

factors switch between a “stick” mode where the maximum friction force and torque are applied

and a slip mode, where the relative motion of the contacting surfaces affects the magnitude of the

friction force and torque. This switch is also triggered by the average surface velocity.

The proposed model is not restricted to contact situations where the bodies have non-conformal

geometries, but can be used for any geometric pair with reasonably flat contact area. The behaviour

of volumetric contact model was first compared to the one obtained with the point contact model
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for simulation scenario of the ball was falling on the inside surface of a cylinder (Section 5.2.1).

The resulting dynamic behaviour is physically realistic and satisfies the no-slip condition. It was

observed that the effect of the rolling resistance torque is to dissipate rotational energy such that

the motion of the ball is eventually stopped. In contrast, the simulation results obtained with the

point contact model showed the ball rolling-on forever (Section 5.1.3).

The numerical simulation of a ball bouncing on a flat table surface and then rolling off the edge

of the table was then presented. The simulation results demonstrated the contact model features,

i.e., the normal contact force and damping, the rolling resistance torque, and the tangential friction

force and spinning friction torque. The simulation results also showed the total system energy

decaying in time until the ball fell over the edge of the table, as expected. However, the results

obtained with the variable-step solvers in Simulink were not always accurate, unless stringent error

tolerances were used. On the other hand, the simple explicit fixed-step solver yielded accurate

results with a correct energetic behaviour, even with a relatively large step size. However, the

selected simulation scenario was such that numerical error accumulated during the lasting contact

phase of the motion caused large time offset between the curves generated using different time-step

sizes.

The numerical simulation of a Tippe-Top was presented and the results were compared to a

specialized Tippe-Top simulation model from the literature. This simulation scenario was selected

because of the influence of the Contensou effect on the results. The results were shown to be con-

sistent with the reference simulations and with observed physical behaviour. The spinning friction

torque of the proposed contact model was about 35% greater than in the reference simulation. It re-

mains to be determined which model has the more accurate estimate for the spinning friction torque.

However, it was observed that even though the volumetric contact model is a general-purpose con-

tact model, it was still able to reproduce with reasonable fidelity the dynamic behaviour obtained

with dedicated and specialized Tippe-Top simulation models.

The contact model can be used as a general-purpose tool to model contact dynamics for a broad

range of object shapes because the volumetric quantities that serve as input to the contact model

can be determined for any object shape, and even when the contacting surfaces involve edges or

corners. To illustrate this capability, the simulation of a battery box falling into its worksite was

implemented. This simulation involves objects with very complex geometries and where the con-

tact normals cannot always be intuitively determined. The results were presented in Section 5.2.2

and were shown to be qualitatively correct.

6.1.3 Implementation Framework

Although not reported in detail in the present document, an important contribution of the work

accomplished in this research is the implementation of an open-architecture object-oriented frame-

work that facilitates the creation of contact models based on compliance and their integration into

a numerical simulation environment. Appendix A provides more details on the framework and
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explains how it is is used to implement a number of variations of the proposed contact models.

The novelty in the proposed approach is to segment the contact dynamics modelling process

into distinct model components, and design each such component as a stand-alone software object.

Then, various instances of the component can be easily combined into a contact model to create

completely new contact models. The user is not restricted to changing the contact model settings

or parameters; the contact model itself can be changed. In essence, the contact model object acts as

a container for the geometric pair, normal contact and friction model objects that can be mixed in

any combination to create new categories of contact models. The process of combining the contact

model components is straightforward and can be accomplished by writing a few simple lines of

code, a matter which takes at most a few minutes; see Section A.5.

6.2 General Comments

The goal of this work was to develop a robust, reliable, flexible and easy to use contact dynamics

modelling system. From the theoretical stand-point, the point contact model should be used when-

ever the simulation involves smooth and rounded objects. The volumetric model theory is based on

the Winkler elastic foundation model that gives only a rough approximation of the true deformation

behaviour of contacting elastic bodies. Hence, the Hertz theory model is more accurate, but is is

also much more restrictive in the type of geometries that are allowed.

On the other hand, the volumetric model can work with a much larger class of geometries. Be-

sides the fact that the point contact model does not include the modelling of the rolling resistance

and spinning friction torques, the main difference between the volumetric and the point contact

model is in the normal contact force model. More precisely, the difference resides in the formu-

lation of the stiffness equation, i.e., the force versus penetration relationship. In an operational

context, there are programmatic reasons which often prevent this relationship from being known

accurately, e.g., access to payloads, and the force versus penetration curve must be guessed in-

stead. As a result, the concern will shift from trying to obtain the accurate behaviour to trying to

determine bounds for these force-penetration curves. In this context, the approximate nature of

the foundation model is not a serious limitation after all since approximate scenarios will often be

used.

Moreover, significant benefits can be gained from using the volumetric contact model. This

model is much more detailed and includes the effects of many more phenomena occurring during

contact, and in particular when the contact surface area is significant. To the best knowledge of the

author, the model proposed here is the only model to have a sophisticated dynamic friction model

that includes the Contensou effect in translation and in rotation, and the only one that defines the

direction of the contact normal based on the mechanical analysis of the contact phenomena rather

then using some arbitrary definition or “rule”.

Furthermore, the choice of the LLG solid modelling technology has yielded significant benefits.
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First, because this is a volume-based geometric system, it was easily and naturally adapted to

generate the volume metrics required as input by the contact model. Secondly, because it uses an

exact representation of geometry, the modelling of rolling contact is accurate and not subject to the

artificial geometric “noise” incurred by geometric modelling systems based on polygons.

To obtain the volume metrics, the LLG function does need to do a discretization of the volume

of interference: it needs to split volume of interference into voxels to count them. Hence, the accu-

racy of the obtained volume metrics is always limited by the size of the voxels. Obviously, when

the requested voxel size is very small, the time to obtain the volume metrics will be unreasonable.

On the other hand, the returned value is volume, and hence it is proportional to the cube of the

voxel size; it quickly becomes accurate for not-so-small values of the voxel size, e.g., the volume

of a voxel of size 10−3 m is 10−9 m3, which gives a force of 1 N for a stiffness of 109 N/m3.

Another important point is that the LLG voxelization is always done on the exact geometries. It

is only a local discretization that always converges to the true shape. Polygonal models instead do

the discretization beforehand, e.g., the sphere is modelled with a set of triangular facets; hence is

is impossible to get back to the true shape.

Finally, the volumetric contact model is the only approach that yields a consistent contact force

evaluation that is independent of how the volume of a geometry is broken down into smaller pieces.

In other words, if a volume must be split into different cells to get an accurate contact model, its

total volume remains the same. This implies that when another object interacts with this broken-

down volume, the total contact force between the two objects will remain the same because the total

volume of interference between the two bodies remains the same, no matter how finely the broken-

down volume is cut. This observation holds true for the bristle stiffness and damping models as

well. Because they are both proportional to the normal contact force, and therefore to the volume,

the total bristle force and stiffness will remain the same for any resolution of volume discretization.

Hence, the total tangential friction force will also remain the same.

6.3 Future Work

The contact modelling approach proposed in this thesis lays solid foundations for building a com-

prehensive contact dynamics simulation system. However, one of the key difficulties in creating

accurate and reliable contact models is obtaining good values for the contact model parameters.

Sections 3.3 and 4.5 briefly discussed ways to obtain or estimate these parameters. The discussion

was limited to describing a general way of obtaining these values but obviously the work involved

is significant. One would need to design or find the appropriate experimental apparatus and define

a detailed experimental protocol to obtain each parameter. Moreover, obtaining the contact param-

eters for objects that are already built is an even more challenging task. In addition to the contact

stiffness and damping, one must factor-in the effects of structural stiffness and damping. Further

research is required to bring together a parametric identification facility that would allow fast and
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accurate parameter determination.

Furthermore, some features of the volumetric contact model must be validated experimentally.

In Section 5.2.2, it was observed that the contact model spinning friction torque was 35% higher

than in the reference simulation. The predicted spinning friction magnitude needs to be validated

experimentally. In particular, the model predicts that the Coulomb friction spinning torque can

be obtained by multiplying the Coulomb friction force by the radius of gyration of the volume of

interference inertia tensor. This relationship needs to be tested. The dynamic behaviour of the

Contensou effect, characterized in the contact model by the Contensou factors Cv and Cω also

needs to be verified.

Another area where significant improvements are achievable is in the LLG technology itself.

Fast, efficient and accurate collision detection systems have been the subject of extensive research

over the past two decades, but the work has mainly focused on obtaining the distance between

non-colliding objects. More recently, many fast methods have been proposed to measure the inter-

penetration distance between two colliding objects. However, little research has been performed

on finding methods to efficiently characterize the volume of interference. The LLG technology

uses the voxelization approach, but other methods may be faster or even more accurate, such as

analytic or semi-analytic methods. LLG is now focusing on parallelizing geometric algorithms to

target multi-CPU platforms. The currently used voxelization algorithms are based on a recursive-

tree decomposition of the volume and are therefore naturally suited for an adaption to a parallel

processing paradigm. LLG claims that huge gains in processing speed are already possible.

Alternatively, the volume accuracy could be generated with a fixed number of digits of precision

instead of a fixed voxel size, thereby lowering the accuracy requirements during the impact phase

of the contact where the inter-penetration volume is the largest. In other words, when the volume

of interference is large there is no need to go down to the smallest voxel size to obtain an accurate

estimate of the volume.

As was observed in Section 5.2.1, the performance of the numerical solvers can vary signifi-

cantly. It is recommended to investigate other numerical methods to find one that is well suited for

this type of system dynamics. In particular, the implicit methods such as Hilber-Hughes-Taylor de-

veloped initially for finite element problems might be very efficient at tackling the contact dynamics

simulations. The simulation results showed that some solvers were poorly tracking the solution and

that the corresponding system energy was becoming incorrect. The solver performance could also

be optimized by improving the numerical scaling of the states. Another alternative would be to

examine energy-preserving solvers, which can track the energy flow in and out of the system to

ensure the solution is energetically correct.

Finally, although the contact modelling approach presented in this work is targeted toward

the simulation of robotic tasks, it is clear the methodology is applicable for a much wider use.

Possible applications are the modelling of bio-mechanical systems, such as foot-ground interac-

tions (Millard et al., 2007). The contact model could be refined to include the skin visco-elastic
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behaviour and also to model bodies that are globally deforming, e.g., the toes of a foot bending.
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L’Archevêque, R., Doyon, M., Piedbœuf, J.-C. and Gonthier, Y.: 2000, SYMOFROS: Software

architecture and real time issues, DASIA 2000 - Data Systems in Aerospace, Vol. SP-457, ESA,

Montreal, Canada, pp. 41–46.

Laursen, T. A. and Simo, J. C.: 1993, A continuum-based finite element formulation for the implicit

solution of multibody, large deformation frictional contact problems, International Journal for

Numerical Methods in Engineering 36, 3451–3485.

Leine, R. I. and Glocker, C.: 2003, A set-valued force law for spatial Coulomb-Contensou friction,

European Journal of Mechanics 22(2), 193–216.

Lichtenberg, A. and Liebermann, M.: 1992, Regular and Chaotic Dynamics, Springer Verlag, New

York.



Chapter 6: Conclusions 187

Lin, M. and Gottschalk, S.: 1998, Collision detection between geometric models: A survey, in

R. Cripps (ed.), The Proceedings of IMA Conference on Mathematics of Surfaces, University of

Birmingham, pp. 37–56.
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Appendix A

Contact Model Implementation

Architecture

This section presents an object-oriented framework written in C++ that facilitates the creation of

contact models based on compliance. The framework was used to implement a contact dynamics

simulation toolbox and is part of the MuT software package described in Appendix B. The frame-

work provides a standardized structure to implement the components of a contact model, such

that they can be easily combined to create specialized contact models. The framework includes

interface utilities that facilitates the integration of the contact models into a numeric simulation

environment. In particular, a standard C-code interface function for the Simulink simulation en-

vironment from The MathWorks, Inc. was implemented. The framework also includes utilities to

automatically compute all model input quantities and map the model force outputs to the respective

body frames. This feature allows the user to focus on the specific details of the contact model being

implemented without having to consider how the contact model will be integrated in a numerical

multibody simulation environment.

A.1 Contact Model Components

In the proposed framework, the contact models are created by adding the contact model compo-

nents to a standard contact model container class. The components of the contact model are: the

geometric-pair component and the force model component(s). Each component is designed as a

stand-alone software object. The geometric-pair component holds all of the information regarding

the geometries of the simulated objects, and includes standard methods to query this information.

It also provides methods to apply the forces and torques computed by the force model components

to the objects. The force model components fall into two categories: the normal contact models

and the friction models. These latter components contain the implementation of the contact models

described in this thesis.

191
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All contact model component are defined with a standard interface and, hence, they can be

combined in different ways to create a variety of contact models. The user is not restricted to

changing the contact model settings or parameters; the contact model itself can be changed. Each

contact model includes one geometric-pair component and one or two force model components.

Any force model can be used in conjunction with any geometric pair, thus allowing a large va-

riety of contact models to be created. The process of combining the contact model components

is straightforward and can be accomplished by writing a few lines pre-processor instructions, as

shown in Section A.5.

Each contact model component includes a set of component-specific and user-selected constant

parameters, e.g., a sphere radius, a spring stiffness constant. Standardized methods are provided to

set and read these values. In addition the force model components can have the following attributes:

• States,

• Internal parameters.

The internal parameters are used to store contact model specific information, e.g., the velocity

at the time of impact. This basic set of attributes is sufficient to allow the implementation of a many

different contact model components. The model components are explained next.

A.1.1 Geometric-Pair Components

The force model components require specific kinematics information to compute the output of

their respective models, e.g., inter-penetration depth or volume, relative tangential velocity. This

kinematics information is provided by the geometric-pair components. However, depending on the

algorithms implemented by the force model components, the list of kinematics information needed

by the force components may change from one model to another. For example, a contact model that

includes a tangential friction model will need to have the relative tangential velocity evaluated at

each time step, whereas a model that has no friction will not. Hence, the geometric-pair component

has a built-in kinematics-task registration system that ensures that the geometric-pair object will

always compute the necessary kinematics information.

Upon instantiation of the geometric pair object, each force model registers the list of kinematics

tasks it needs. The kinematics task list is divided into two categories: the mandatory and the

optional kinematics information. The mandatory kinematics information must be provided by all

instances of the geometric-pair components. The list of mandatory kinematics tasks includes the

following elements:

• Boolean collision test: collision is happening or not.

• Minimal contact distance and penetration measure [x]: gives a positive value when the

colliding bodies are not touching and negative value when there is inter-penetration. This
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function is needed when using a solver that tries to detect the exact time at which the contact

is initiated (scalar).

• Contact normal [n]: normal of the contact plane pointing from body Bj toward body Bi

(vector).

• Point of action [pa]: the location of the point where the contact force-moment pair is applied

to each body. The position is given with respect to the inertial ‘world’ frame (vector).

• Compliance measure [|x|p or V ]: a value that is a function of the geometries and to which

the normal contact force is directly proportional (scalar).

• Compliance measure tolerance: needed if force model algorithm implementation requires

a test to zero (scalar: zero by default).

• Inter-penetration volume inertia tensor [Jv]: needed for volume-based contact models

only (matrix: zero by default).

All vectorial quantities should be resolved in the inertial ‘world’ frame. The optional kinematics

information list includes:

• Magnitude of the relative velocity in the direction of the contact plane normal (scalar).

• Relative velocity normal to contact plane (vector).

• Relative velocity tangential to the contact plane (vector).

• Magnitude of the relative angular velocity in the direction of the contact plane normal (scalar).

• Relative angular velocity normal to contact plane (vector).

• Relative angular velocity tangential to the contact plane (vector).

The force components use the kinematics information provided by the geometric-pair components

to calculate their respective force and/or moments contributions. However, the force models do not

have access to any other geometric information regarding the objects in contact. Hence, to apply

the resulting force and/or moments computed by the force model, the geometric-pair component

includes the applyForce() and applyMoment() utility functions that correctly apply a force

and moment of equal magnitude and opposite direction to the objects and maps these to their

respective body frames.

In the presented framework, the geometric-pair component itself can be composed of a combi-

nation of many sub-geometric-pairs, as long as all the required kinematics information are properly

computed. This will lead to situations where there are multiple contact sites for a same geometric-

pair component. However, separate contact models must be set up for each contact sites. Hence, the

total number of states and internal parameters will increase accordingly since each contact model
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must have its own states and internal parameters. To this end, the function call getNumPairs()

is provided to allow the contact model container class to properly set its total number of states and

internal parameters.

A.1.2 Force Components

The force model components contain the implementation of normal contact and friction models,

e.g., the models presented in Chapters 3 and 4. Each force model component has a utility function

setKinematicTasks() that returns the flags indicating the additional kinematics information

needed for the implemented model. The force components also provide additional information with

the getNumStates() and getNumInternalParam() functions that return the number of

states and number of internal parameters used by each model implementation, respectively. This

information is needed by the contact model container class to correctly initialize and assign the

parameters and states corresponding to each force model.

computeForce() is main function of the force model components. For the normal contact

models, this function returns the normal contact force magnitude. For the friction model compo-

nents, the normal contact force is provided as an additional parameter. A function to compute the

states derivative must be defined if the model has states. The force components also have methods

to reset the model states.

A.1.3 Contact Model Container

The contact model container classes serve as general-purpose utilities to “assemble” the contact

model components and provide a single-point interface to the numerical simulation environment.

There are two types of containers: the frictionless contact models and the frictional contact models.

The implementation of the two is identical, except that the frictional contact model implementation

includes additional steps to process the friction model.

The contact model container automatically manages the internal parameters of the contact

model and the state arrays from the simulation environment. The components are only given access

to their respective states and internal parameters. Hence, the implementation of the force models

is not affected by the number of states and parameters of the other force models in the contact

model. Consequently, the user does not need to worry about the other contact model components

when implementing a new contact model component, i.e., the components can be assembled in any

combination.

Furthermore, the framework allows for geometric-pair components to be composed of multi-

ple sub-geometric-pairs. This situation occurs when dealing with colliding bodies composed of

multiple sub-parts (as in complex LLG models). The contact model algorithms (with and without

friction) adapt themselves to the number of pairs involved and automatically update the number of

states and adapt the state-array indexing scheme to automatically assign the states to their corre-
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sponding contact model. As a result, the contact model is able to process the multiple contact site

interactions that may be occurring between two complexly-shaped bodies.

The implementation of the normal contact and friction models was covered in the main body

of the thesis. The next section presents the equations for a few simple geometric-pair models.

A.2 Geometric-Pair Models for the Point Contact Model

This section presents the equations for the implementation of geometric-pairs for simple geome-

tries. The equations assume a point contact scenario and are therefore suitable for the force models

presented in Chapter 3. The compliance measure of the four geometric-pair models presented in

this section is given as |x|3/2, and the boolean collision test simply verifies the condition x < 0 to

detect a collision. The minimal distance and penetration measure is also given by x. The sections

for the implementation of each geometric-pair will thus present how x, n and pa are calculated.

A.2.1 Sphere-Plane

The sphere-plane pair was used in Chapter 3 to introduce the notion of the point of action of the

contact force. The sphere-plane pair model assumes the sphere is attached to the frame Ki of body

Bi and the plane is attached to the frame Kj of body Bj . The geometric parameters are defined

as follows: the sphere radius R and its position psph relative to the origin of Ki, and the plane

normal n and its height hj along n with respect to Kj ; see Figure A.1. The one-dimensional vector

Psphere–plane specifying the constant geometric parameters of the sphere-plane geometric-pair is

ordered as follows:

Psphere–plane =
[

R , [psph]
T
i , [n]Tj , hj

]

, (A.1)

where the subscripts i and j indicate the frame in which the components of the vector are resolved

in. The point of action location with respect to Kw is given by pa as

pa = ri + psph − Rn . (A.2)

The height x of the point of action with respect to the plane is given by

x = (pa − rj) · n− hj , (A.3)

which is the expression for the penetration depth needed to evaluate the compliance measure given

in Equation (2.1). This same expression can be used to detect contact, i.e., when x ≤ 0, so a

separate collision detection algorithm is not needed for this case.
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Figure A.1: Schematic diagram for the sphere-plane pair.

A.2.2 Sphere-Edge

A geometric model for the sphere-edge pair was also implemented. The edge is defined as the

intersection of two infinite planes. Since this does not constitute a smooth surface, the Hertz theory

is not applicable. However, depending on the simulation fidelity requirements, this contact model

may be suitable as an approximation. The proposed implementation guarantees a smooth change in

contact normal direction as the sphere moves over the edge. Figure A.2 illustrates the sphere-edge

pair and a few vectors which will be defined next.

As in the preceding section, the sphere geometry is defined by its radius R and the location

of its centre psph relative to Ki. The edge is defined by a point located somewhere along the

intersection of the two planes. The position of this point is specified relative to Kj by pedge. The

planes are labelled 1 and 2, and their respective normals are n1 and n2. The one-dimensional

vector Psphere–edge specifying the constant geometric parameters of the sphere-edge geometric-pair

is ordered as follows:

Psphere–edge =
[

R , [psph]
T
i , [pedge]

T
j , [n1]

T
j , [n2]

T
j , ε

]

, (A.4)

where ε is a numerical tolerance. A typical value for ε is 10−6. To obtain the kinematics information

for the sphere-edge pair, the problem is divided into distinct cases. For each case a local normal

and plane height are computed. Once n and hj have been identified, the kinematics information

is computed as before using Equations (A.2) and (A.3). In other words, the sphere-edge model is
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Figure A.2: Schematic diagram for the sphere-edge pair.

“converted” into a local sphere-plane model. The plane heights h1 and h2 of the plane 1 and 2 are

computed as h1 = pedge · n1 and h2 = pedge ·n2 respectively. The criteria used to select each case

are based on certain quantities which are defined next.

First, the edge normal vector ne is defined as

ne =
n1 + n2

|n1 + n2|
. (A.5)

The direction of ne is halfway between the directions of n1 and n2; see Figure A.2. Next, the edge

direction vector e is defined as

e =
n1 × n2

|n1 × n2|
, (A.6)

where it is assumed that n1 and n2 are not parallel and, hence, the cross-product yields a non-zero
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vector. The parallel case can be avoided by checking if |n1 ×n2| > ε. If not, then this implies that

the two planes are essentially parallel, and the sphere-edge can be treated simply as a sphere-plane

pair with a contact normal ne and a plane height he = pedge · ne.

When the two planes are at an angle, the plane tangential vectors t1 and t2 can be defined as

t1 = n1 × e

t2 = e × n2

. (A.7)

Similarly, the direction vector te tangential to ne is given as

te = ne × e . (A.8)

The location of the sphere relative to the edge is given by pe–s as

pe–s = ri + psph − rj − pedge . (A.9)

Figure A.3(a) shows cross-section views of the edge with the new vector definitions for an arbitrary

position pe–s of the sphere relative to the edge.

The relative position vector pe–s is used to decide how the contact normal will be computed.

When pe–s · n1 < 0 and pe–s · n2 < 0, the centre of the sphere is located below the contact

surfaces of the edge. This case is illustrated in Figure A.3(b), with the grey area corresponding

to the possible locations of pe–s under the contact surfaces. Here, it is easy to distinguish which

contact normal to use: when the centre of the sphere is located to the left of the dashed line, n

should be set to n1 and hj to h1, and when the centre of the sphere is to the right of the line, n

should be set to n2 and hj to h2. Mathematically, this observation implies that when pe–s · te > 0,

n = n1 and hj = h1 or, otherwise, n = n2 and hj = h2.

When the centre of the sphere is above the contact surface, it can be either above one of the two

planes, or above the edge. If it is located above plane 1 then pe–s · t1 > 0, and n should be set to

n1 and hj = h1. If pe–s · t2 > 0, then n should be set to n2 and hj = h2. Theses cases are shown

in Figure A.3(c).

The case when the sphere is over the edge must be handled carefully. As the sphere moves from

being on-top of one plane, say plane 1, and then goes over the edge and finally moves over to plane

2, the contact normal direction must change smoothly from n1 to n2. Figure A.3(d) illustrates this

situation. To obtain a smooth transition of the contact normal when the sphere is located over the

edge, the normal is defined as

n = (I − E)
pe–s

|pe–s|
, (A.10)

where E = ee is the dyadic operator projecting any vector onto e. Hence, (I− E) finds the

projection perpendicular to e. When pe–s is directly above pedge in the direction of n1, the definition
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Figure A.3: Sphere-edge pair cross-section.

above yields n = n1. The plane height should be set to hj = pedge · n.

However, the proposed definition includes the condition when |pe–s| is very small or zero, and

hence may result in a division by zero. To have a robust implementation, a test is added to verify

the magnitude of |pe–s|. If it is smaller than the threshold ε, the normal is simply set to ne and

hj to he. This case corresponds to the condition when the sphere centre is located near and above

the edge. It should also be noted that the location of pedge should be selected near the expected

location of contact. If it is very far from the contact site, this will have a detrimental effect on the

accuracy of the calculations.

A.2.3 Sphere-Cylinder

The sphere-cylinder geometric-pair was used to implement the ball bouncing on the inside surface

of a cylinder in Section 5.1.3. However, the geometric pair implementation can also deal with the
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case of the sphere being located on the outside surface of the cylinder. The latter case is obtained

by simply specifying a positive value for the radius instead of a negative one.

As in the preceding sections, the sphere geometry is defined by its radius R and the location

of its centre psph relative to Ki. The cylinder is described using a point located somewhere along

its central axis and a radius r. The position of this point relative to Kj is specified by pcyl. The

axis direction is given by a. The one-dimensional vector Psphere–cylinder specifying the constant

geometric parameters of the sphere-cylinder geometric-pair is ordered as follows:

Psphere–cylinder =
[

R , [psph]i , [pcyl]
T
j , [a]Tj , r

]

. (A.11)

To obtain the geometric-pair kinematics information, the following vectors are defined. The posi-

tion of the sphere relative to the cylinder is pc–s and is given as

pc–s = ri + psph − rj − pcyl . (A.12)

The vector pc–s can be decomposed into pc–s,a, the component of pc–s parallel to the cylinder axis

a, and pc–s,p, the component of pc–s perpendicular to the cylinder axis a; see Figure A.4. The latter

is found as follows

pc–s,p = (I − A)pc–s , (A.13)

where A = aa is the dyadic operator projecting any vector onto a.

The contact normal is obtained using pc–s,p and its direction is selected based on whether the

sphere should be impacting the inside surface of the cylinder (r ≤ 0) or the outside surface of the

cylinder (r > 0). The contact normal n is therefore defined as

n =











pc–s,p

|pc–s,p|
, r > 0

− pc–s,p

|pc–s,p|
, r ≤ 0

. (A.14)

Similarly, the penetration depth is also computed differently for the two separate cases

x =











|pc–s,p| − R − r , r > 0

−|pc–s,p| − R − r , r ≤ 0

. (A.15)

The point of action is always located at a distance R from the sphere centre, hence it is determined

using Equation (A.2). Note that the case when |pc–s,p| = 0 is not treated because the direction of

the contact normal cannot be found. This corresponds to the centre of the sphere being located on

the central axis of the cylinder. Hence, this situation should be avoided in the simulation scenarios.
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Figure A.4: Schematic diagram for the sphere-cylinder pair.

A.2.4 Sphere-Cone

A sphere-cone geometric-pair model was implemented to support the contact parameters iden-

tification experiments performed by the ROKVISS manipulator on-board the ISS in 2005–2006

(Rebele et al., 2006). This work is part of an on-going collaboration between the CSA and the

DLR. It consists of a series of contact experiments performed on ground prior to launch and then

repeated over a time when the robotic system was attached to the exterior of a Russian module of

the ISS. The author defined the experimental protocol for the contact experiments and supervised

the overall investigation. These contact parameter identification experiments constitute the first

investigation of this kind ever done in-situ the space environment.

As in the preceding sections, the sphere geometry is defined by its radius R and the location

of its centre psph relative to Ki. The cone is described by a point located at its apex, the direction

of its axis is a and the angle β of the surface at the tip, see Figure A.5. The position of the apex

relative to Kj is specified by pcone. The angle α is defined as the angle between the central axis

inside of the cone and its outer shell. Hence, by definition

α =
β

2
. (A.16)
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Figure A.5: Schematic diagram for the sphere-cone pair.

The one-dimensional vector Psphere–cone specifying the constant geometric parameters of the sphere-

cone geometric-pair is ordered as follows:

Psphere–cone =
[

R , [psph]
T
i , [pcone]

T
j , [a]Tj , β , ε

]

, (A.17)

where ε is a small numerical tolerance as before. The vector a is assumed to be pointing out of

the cone when it is placed at the apex. β is constrained to be less or equal to π such that the cone

remains convex. The case β = π corresponds to a plane.

To obtain the geometric-pair kinematics information, the following vectors are defined. The

position of the sphere relative to the cone is pcn–s and is given as

pcn–s = ri + psph − rj − pcone . (A.18)

The unit vector np perpendicular to pcn–s and a is defined as

np =
pcn–s × a

|pcn–s × a| . (A.19)
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Figure A.6: Sphere-cone pair cross-section in the pcn–s–a plane.

The vector np is perpendicular to the plane defined by pcn–s and a. The case when |pcn–s × a| < ε

occurs when the sphere centre is located very near the central axis of the cone and above or below

its apex. In this case, np should not be evaluated. The normal n is then simply set as a and the

penetration depth is computed as

x =











pcn–s · a − R pcn–s · a > 0

pcn–s · a sin (α) − R pcn–s · a ≤ 0

, (A.20)

where the sin(α) term has been added for the case where the centre of the sphere is located inside

the cylinder. This scaling avoids a discontinuity as the sphere rolls over the tip of the cone from

one side to the other. When the sphere is on the side of the cone, its depth is measured in a direction

perpendicular to the surface and not along a.

If the sphere centre does not lie along the central axis of the cone, np can be computed without

any possibility of numerical problems, i.e., division by zero. In this case, the cone surface tangential

vector tc is found using

tc = R
(

np, α
)

a , (A.21)

where R
(

np, α
)

is a matrix rotating a about np by α. Hence, the resulting vector tc lies in the

plane defined by pcn–s and a and is tangential to the cone surface; see Figure A.6. Note that if

β = π, then α = π/2 and the cone surface tangential vector is simply perpendicular to a, i.e., the

cone becomes a plane.
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Once the cone surface tangential vector is determined, it is used to distinguish two cases for the

evaluation of the contact normal and the penetration depth. When the sphere is on top of the cone,

i.e., it is above the apex of the cone, then pcn–s · tc > 0; see Figure A.6(a). The shaded grey area

indicates the possible locations for the centre of the sphere. Here, the contact normal corresponds

to the direction from the apex of the cone to the centre of the sphere,

n =











pcn–s

|pcn–s|
, pcn–s · a > 0

− pcn–s

|pcn–s|
, pcn–s · a ≤ 0

, (A.22)

where the condition depending on a has been added to ensure that n is always pointing out of the

cone. The situation where |pcn–s| is small or zero has already been considered when treating the

condition that |pcn–s ×a| < ε. Hence, at this point in the geometric-pair algorithm implementation,

|pcn–s| has a none negligible magnitude such that the definition for n above can always be evaluated.

The penetration depth is given as

x = pcn–s · n− R . (A.23)

When the sphere is not located above the tip of the cone, the contact normal is perpendicular to the

surface of the cone. Figure A.6(b) shows the possible locations of the centre of the sphere in the

shaded grey area. This region satisfies the condition that pcn–s · tc ≤ 0. The normal to the cone

surface nc is obtained using

nc = tc × np . (A.24)

Hence, when pcn–s · tc ≤ 0 then n = nc and the penetration depth, in turn, is found using Equa-

tion (A.23).

A.3 Volumetric Contact Model

This section presents an implementation of the two-deformable body contact model presented in

Chapters 4. In the derivation of this contact model, it was shown the the two deformable body

contact model equations were identical to the one deformable body ones, with the exception that

the contact stiffness coefficient was interpreted differently. Hence for the implementation, a single

stiffness coefficient kv will be used and it will be left to the user to set this parameter correctly. The

definition of the contact normal from the two deformable body model will also be used because it is

more general and can readily be implemented without requiring extra geometric information. The

tensor Js will be approximated by Jv; see Section 4.2.1. Finally, the contact model implementation

assumes the inter-penetration depth to be small, and therefore that vsct ≈ vct.
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A.3.1 LLG Polynomial Geometry Model

The Parallel Geometry Inc. (LLG) polynomial technology is a solid modelling system based on a

pure mathematical representation of geometry. With this technology, a cylinder is described exactly

as a cylinder, a sphere is exactly a sphere, etc. Polygons are not used to model and display geome-

tries, unless their geometry are truly polygonal in nature. A short background on the technology

was given in Section 2.3.2.

The LLG models take the form of an ASCII text file written in the functional programming

language Scheme. The Scheme .scm files are then processed by the LLG Scheme interpreter and

result in .sl files. The latter are referred to as “compiled model files” and contain the result of

the execution of the Scheme model file. For example, a Scheme file may contain a program that

reproduces a given volumes many time. In the Scheme file, the volume may be described only

once, and a recursive loop may be set up to generate its many incarnations. On the other hand,

the corresponding .sl file will contain the data for each of the volume instances. Hence, the .sl file

contains an explicit description of the object geometries.

A.3.2 Geometric and Collision Metric Functions

The suite of collision detection and collision metrics functions developed by LLG for the CSA take

as input the .sl file. The Matlab function script MuT createCollisionObject() processes

the .scm file to create the .sl file. This function also obtains the number of cells in the polynomial

geometry and computes the volume metrics for the entire geometry, i.e., the total volume and the

corresponding centroid location and moment of inertia tensor. These latter informations are used

by the free-floating body block implementation in Simulink to model the motion of the geometry

as a single rigid body. The Matlab script MuT createCollisionObject() takes as input the

name of the Scheme model file and returns a Matlab structure containing all the relevant informa-

tion regarding the geometry. Information on how to use this function is provided in the on-line

help.

The volumetric information is obtained by decomposing the geometry into voxels, and count-

ing contribution from each voxel toward the total geometry volume, centroid location and inertia

tensor. The voxel-decomposition algorithm used by the LLG implementation relies on statistical

information of the content of each voxel to do a recursive octree decomposition. The resulting

voxel representation is therefore a variable resolution data structure. A voxel size limit is specified

to stop the recursive decomposition. This limit is set to 10−3 by default, but can be changed. A

scaling parameter can also be defined to convert the geometric model reference unit into the unit

system used by the user. Its default value is set to 1.

The voxel-decomposition algorithm starts by identifying a box around the volume of interest.

In the case of the collision metrics functions, the starting box corresponds to the intersection of the

two geometry boxes. The volume is then analyzed and statistical information about its content is
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obtained. When it is decided that the voxel is of mixed-type, i.e., it is partially inside and partially

outside the volume of the geometry, it decomposed into 8 equal voxels.

The voxel-decomposition algorithm is also capable of handling concave shapes. Because it

relies on statistical information about the content of the voxel rather than simply looking at the

corners of the cube, it can determine that a voxels is of mixed-type even when all corners of

the voxel are located inside the volume of the geometry. Hence, a concave shape will force the

algorithm to sub-divide the voxels until it finds only voxels located entirely inside the volume

of the geometry. The details of the statistical voxel-type determination algorithm is proprietary

information to LLG. Another advantage of the statistical approach is that it is also used to estimate

how much a voxel is filled by the volume of the geometry. This extra information is taken into

account when computing the total volume of the geometry and, hence, the resulting volume is

estimated with a much better accuracy then if it was estimated using only the voxels contained

inside the volume.

The LLG functions return the moment of inertia of the volume Jv,w of the geometry about the

‘world’ reference frame. Hence, the volume-inertia tensor Jv with respect to the centroid of the

volume is obtained as follows

[Jv]w = [Jv,w]w − V
(

[pc]
T
w[pc]w [I] − [pc]w[pc]

T
w

)

, (A.25)

where [I] is the identity matrix and [pc]w is the position of the centroid of the volume relative to

the ‘world’ frame and resolved in the ‘world’ frame. The vector [pc]w is computed by the LLG

functions. The location of the point of action is simply

pa = pc . (A.26)

The LLG functions provide a boolean test function to detect when two geometries are overlapping.

A function returning the minimal distance between the geometries when they are not colliding

was also provided. However, there is no function available that returns an estimate of the inter-

penetration depth. It is therefore estimated as x = −V
1

3 . This definition ensures the minimal

distance and inter-penetration depth function is a continuous function around the time of collision

and crosses zero at the time the contact initially occurs. The Simulink variable step solvers use this

function to find the exact time contact is initiated. Fixed-step solver do not try to detect this exact

time and hence, the computer implementation is such that only the boolean collision test is called

when using the fixed-step solvers. The boolean test is much faster than the minimal distance test.

Finally, the volumetric contact model also needs to get an estimate for the contact surface normal

n. This is covered in the next section.
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A.3.3 Contact Normal

The contact surface normal n is found using the inverse iteration method (IIM). This algorithm

takes as input an estimate of the eigenvector direction and iterates toward the closest eigenvector.

The convergence of the iterations using this algorithm is much faster than with the power iteration

method. It also guarantees that the algorithm will converge to the eigenvector closest to the esti-

mate. The implementation of the IIM can be made even more efficient here because the matrix for

which the eigenvector is sought is a 3x3 positive-definite symmetric matrix. A simple closed-form

solution for the inverse of such a matrix exists. For a 3x3 symmetric matrix A is given as

A =









a11 a12 a13

a12 a22 a23

a13 a23 a33









, (A.27)

the inverse of A is

A−1 =
1

denom









a22a33 − a2
23 −a12a33 + a13a23 a12a23 − a13a22

−a12a33 + a13a23 −a2
13 + a11a33 −a11a23 + a13a12

a12a23 − a13a22 −a11a23 + a13a12 −a2
12 + a11a22









, (A.28)

where

denom = 2 a13a12a23 − a2
13a22 − a2

12a33 + a11a22a33 − a11a
2
23 . (A.29)

The IIM implementation stops iterating toward the eigenvector when the maximum number of

iteration ni has been reached, or when the following condition is met

nest(n) · nest(n − 1) > 1 − θ2
ε

2
, (A.30)

or, in other words, when the angle between the current eigenvector estimate nest(n) and the previ-

ous one nest(n − 1) is less than θε, and θε is a small angle tolerance. Note that because θε is small,

its cosine is 1 − θ2
ε/2.

The IIM starts from an initial guess of the eigenvector and iterates toward the closest eigenvec-

tor. This initial guess nguess is given as a combination of a geometric estimate ngeo of the contact

normal and of the eigenvector found in the previous time step nprev. The LLG algorithm generating

this geometric estimate guarantees the vector will always point from Bj toward Bi. The contact

surface normal guess is generated using

nguess = (1 − rn)ngeo + rn nprev , (A.31)

where rn is a ratio that controls how much of the eigenvector found in the previous time-step
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should be used to generate the eigenvector starting guess. This feature was added to help the

contact normal change smoothly over time. At the first point in time where the contact is detected,

the guess is simply set to nguess = ngeo.

A.4 Complex Geometries

A contact model designed to deal with more complex geometries was also implemented. The

complex polynomial geometries are characterized by the fact that there are made of multiple cells.

Each cell corresponds to the intersection of projective polynomial primitives or is simply a single

projective polynomial primitive, e.g., a sphere geometry has only one cell in the LLG system. The

number of cells of a given geometry can be obtained when the Scheme model file is compiled.

The contact model capable of handling these cellular object is called the cellular contact model.

Here, the collision metrics are obtained for each colliding cell-pair of the objects and not in terms

of the overall object interaction. In other words, separate contact models are assigned to each cell-

pair in collision. These will be referred hereafter as contact sub-models, but constitute in fact a

full-fledged implementation of the volumetric contact model, complete with all of its forces and

torques components. Hence, it becomes imperative to keep track of which cells are in collision and

to which contact model a cell-pair combination is assigned. This section described the algorithm

implemented for this purpose.

Each cell in a LLG model is assigned a unique identifier number (ID). The numbers are as-

signed from zero to the total number of cells minus 1. Hence, the cell IDs can be used as index to

a 2-dimensional matrix matching the index of a contact model to a cell ID-pair. Similarly, when

a contact model index is assigned to a specific cell-pair, the ID numbers of these cells can also be

stored. As a result, it is possible to know to which contact model a cell-pair is assigned to, and

reversely, to which cell-pair a contact model is assigned to. The processing of these indexes is

accomplished by the cellular LLG-pair object.

The cellular contact model uses the getNumPairs() function of the cellular LLG-pair ob-

ject to determine the number of contact models needed, and then registers the necessary number

of states with the simulation system, e.g., Simulink, and allocates memory for the internal param-

eters of each contact model. The contact model objects are themselves only aware of the constant

parameters of the contact model. Hence, the contact-model-specific information is stored in the

cellular contact model container class and not in the contact model itself. As a result, the cellular

contact model does not need to be given extra force model components for its implementation,

i.e., a frictionless cellular contact model container class only needs 1 normal contact force model

component.

To correctly process the contact sub-models assigned to each cell-pair, the cellular contact

model relies on cell-pair information lists provided be the cellular LLG-pair object. This object

includes additional utilities that store and list the cell-pairs in contact and compare this list to the
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previous state of the cellular LLG-pair object. It also keeps track of the contact model indexes, i.e.,

the number used to reference one of the contact sub-models. The following lists are provided:

• New cell-pairs: the list of cell-pairs in contact during the current time-step, but that were not

in contact in the previous time-step.

• Found cell-pairs: the list of cell-pairs currently in contact, but also in contact in the previous

time-step.

• Current cell-pairs: the full list of cell-pairs currently in contact.

• Lost cell-pairs: the list of cell-pairs that were in contact during the previous time step, but

are no longer in contact.

• De-activated contact insides: the list of currently unused contact model indices’s.

The cellular LLG-pair object keeps track of which contact model index is assigned to which cell-

pair ID. It also keeps track of which contact model indexes are currently used and those that are

currently de-activated. The cellular contact model process for each time step is given as follows:

1. Updated the LLG-pair object list information.

2. Parse through the list of lost cell-pairs and reset the contact models.

3. If the objects are not colliding (0 cell-pairs in contact), return, otherwise, go to the next step.

4. Process new contacts: parse through the list of newly found cell-pairs, assign an available

contact model to them, initialize it and calculate and apply the contact forces and moments

from the force model(s) to the objects.

5. Process on-going contacts: parse through the list of found cell-pairs, calculate and apply the

contact forces and moments from the force model(s) to the objects.

The lost cell-pair list is processed first because this can make a previously used contact model

available for a newly discovered cell-pair in contact. The cellular contact model obtains the contact

sub-model indexes from the LLG-pair object. All contact model and cell-pair indexes are managed

from inside this object and the cellular contact only has to connect the contact model index to the

corresponding force model component. A similar process is implemented to process the function

computing the contact sub-model state derivatives. The contact model state derivatives are found

as follows:

1. Process on-going contacts: parse through the list of current cell-pairs, and compute the state

derivatives of each contact model.

2. Parse through the list de-activated contact indexes and reset the contact model state deriva-

tives.
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Hence, the cellular contact models simply rely on the volumetric contact model implementation

of the single-cell-pair contact model. The management of all indexes is handled by the cellular

LLG-pair object and the cellular contact models take care of assigning the proper states and internal

parameters to process each contact sub-model. The only difference between the frictional cellular

contact model and the frictionless one it that an extra force model needs to be processed. Examples

of contact models C-code files are given next.

A.5 Contact Model C-Code Examples

This section presents a few examples of user-created contact models. The presented files end with

a pre-processor #include statement that links-in a standard S-Function file using the defined

macros. The user only needs the change the code shown here to create new/different contact models

from available contact model components.

Figure A.7 gives an example of the C-code creating a sphere-cone contact model using a normal

contact model component that includes numerical constraint relaxation and a bristle friction model

component with dwell-time dependency.

#define S_FUNCTION_NAME sfun_cd_sphcne_wrbrdw // must match the filename

// include and specify geometric pair model

#include "MuT_SphereConePair.hpp"

#define GEO_MODEL_NAME MuT_SphereConePair

#define NUM_PARAM_GEO NUM_PARAM_SPHERE_CONE_PAIR

// include and specify normal contact force model

#include "MuT_PointContact_RelaxedHystereticDamping.hpp"

#define CONTACT_MODEL_NAME MuT_PointContact_RelaxedHystereticDamping

#define NUM_PARAM_CONTACT NUM_PARAM_POINTCONTACT_RELAXED_HYSTERETIC_DAMPING

// include and specify friction model to be used (comment out if no friction)

#include "MuT_PointFriction_BristleModelWithDwellTime.hpp"

#define FRICTION_MODEL_NAME MuT_PointFriction_BristleModelWithDwellTime

#define NUM_PARAM_FRIC NUM_PARAM_POINTFRICTION_BRISTLE_MODEL_WITH_DWELL_TIME

// total number of continuous states (contact model + friction model)

#define NUM_STATE_CONT NUM_STATE_POINTCONTACT_RELAXED_HYSTERETIC_DAMPING + \\

NUM_STATE_POINTFRICTION_BRISTLE_MODEL_WITH_DWELL_TIME

#include "MuT_cd_model.cpp"

Figure A.7: C-code for a frictional sphere-cone contact model.

Next, the C-code for a frictionless sphere-edge contact model is given in Figure A.8. The model

uses that same normal contact model as the previous example. Notice that the section concerning

the friction model was simply commented out, and that the number of states corresponds to the

number of states of the normal contact model.
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#define S_FUNCTION_NAME sfun_cd_sphedg_nofric // must match the filename

// include and specify geometric pair model

#include "MuT_SphereEdgePair.hpp"

#define GEO_MODEL_NAME MuT_SphereEdgePair

#define NUM_PARAM_GEO NUM_PARAM_SPHERE_EDGE_PAIR

// include and specify normal contact force model

#include "MuT_PointContact_HystereticDamping.hpp"

#define CONTACT_MODEL_NAME MuT_PointContact_HystereticDamping

#define NUM_PARAM_CONTACT NUM_PARAM_POINTCONTACT_HYSTERETIC_DAMPING

// include and specify friction model to be used (comment out if no friction)

//#include "MuT_BristleModelWithDwellTime.hpp"

//#define FRICTION_MODEL_NAME MuT_PointFriction_BristleModelWithDwellTime

//#define NUM_PARAM_FRIC NUM_PARAM_POINTFRICTION_BRISTLE_MODEL_WITH_DWELL_TIME

// total number of continuous states (contact model + friction model)

#define NUM_STATE_CONT NUM_STATE_POINTCONTACT_HYSTERETIC_DAMPING

#include "MuT_cd_model.cpp"

Figure A.8: C-code for a frictionless sphere-edge contact model.

The last C-code example is for an LLG Scheme model. The contact model includes the volu-

metric version of the normal contact model with numerical constraint relaxation and the volumet-

ric friction model. The standard S-Function file MuT cd model.cpp was modified for the LLG

Scheme model to allow the model to be described by file names instead of being characterized by

an array of numerical parameters. It has been replaced by the MuT cd sgdl model.cpp file.

Figure A.9 shows the corresponding C-code.

#define S_FUNCTION_NAME sfun_cd_sgdl_wrbrdw // must match the filename

// include and specify normal contact force model

#include "MuT_VolumetricContact_RelaxedHystereticDamping.hpp"

#define CONTACT_MODEL_NAME MuT_VolumetricContact_RelaxedHystereticDamping

#define NUM_PARAM_CONTACT NUM_PARAM_VOLUMETRICCONTACT_RELAXED_HYSTERETIC_DAMPING

// include and specify friction model to be used (comment out if no friction)

#include "MuT_VolumetricFriction_BristleModelWithDwellTime.hpp"

#define FRICTION_MODEL_NAME MuT_VolumetricFriction_BristleModelWithDwellTime

#define NUM_PARAM_FRIC NUM_PARAM_VOLUMETRICFRICTION_BRISTLE_MODEL_WITH_DWELL_TIME

// total number of continuous states (contact model + friction model)

#define NUM_STATE_CONT

NUM_STATE_VOLUMETRICCONTACT_RELAXED_HYSTERETIC_DAMPING \\

+ NUM_STATE_VOLUMETRICFRICTION_BRISTLE_MODEL_WITH_DWELL_TIME

#include "MuT_cd_sgdl_model.cpp"

Figure A.9: C-code for a frictional LLG-pair contact model.
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A.6 Simulink Diagram Example

The results of sphere-cylinder simulation presented in Section 5.1.3 were generated using the

Simulink numerical simulation environment from The MathWorks, Inc. The corresponding dia-

gram is given in Figure A.10. The image shows the contact model block “Sphere-Cylinder with

Friction” generating contact forces and moments. These are then fed to the “Free-Floating Body

Forward Dynamics” block that contains a numeric implementation of Euler’s equations of motion.

This block computes the accelerations, velocities and positions resulting from the action of the

forces and torques. In turn, the positions and velocities given as input the the contact model, and so

forth. A block was also implemented to compute the total system energy. The compressive energy

stored in the spring of the contact model is obtained by numerically integrating the compressive

power P = −fk vn over time.
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Figure A.10: Simulink diagram for the ball-cylinder simulation using the point contact model.



Appendix B

The Multibody Toolbox (MuT)

This appendix gives a high-level overview of the Multibody toolbox (MuT) and its implementation

philosophy. The MuT is a non-commercial software package developed by the Robotics Section at

the CSA to support internal projects. The reader is referred to the MuT documentation for a more

detailed description (Lange and Gonthier, 2006a,b; Gonthier and Lange, 2006).

B.1 Executive Summary

• MuT is a set of tools that, if used sequentially, provide symbolic and numeric multibody

systems modelling capabilities to generate customizable sets of model functions, and the

exporting of these functions to NRT and RT execution environment, e.g. for real-time model-

based control or simulation.

• MuT was designed to be easy to integrate with other multibody software packages through

clearly defined interfaces. These interfaces allow MuT to take advantage of the specific tool

within each external software package.

• MuT is based on state-of-the-art software engineering principles and incorporates advanced

modelling and simulation techniques.

B.2 Description

The Multibody Toolbox (MuT) is a framework allowing the integration of different multibody

software packages under a common environment, to generate software solutions to tackle real-life

engineering problems, and to seamlessly port these solutions into a real-time operating environment

(with focus on space robotics). This framework permits the leveraging of the expertise embedded

within different software packages, thus reducing the need to ”re-invent the wheel” each time a

new feature is required.

213
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The MuT framework is a combination of the Maple symbolic processing environment for mod-

elling the multibody system, and the Matlab/Simulink/Real-Time Workshop (RTW) for the execu-

tion environment. The MuT concept is to characterize the multibody model behaviour by defining

a number of model functions, e.g., the mass matrix of the system. These are obtained symboli-

cally in the Maple environment and are then ported into the execution environment in the form of

automatically generated C-code functions which can be queried either from the Matlab command

prompt or placed in the Simulink simulation environment, and are designed to be compatible with

the RTW, such that stand alone executable can be created automatically.

In the MuT frameworks no assumptions are made about which model functions were selected

by the user to be generated and exported to the execution environment. It is the responsibility of the

user to select or set-up these functions. MuT provides a flexible and open infrastructure that makes

it easy to select and include into a common modelling framework all model functions, whether

these are generated using the built-in symbolic modelling environment or from any external mod-

elling software package. By design, MuT has clearly defined access points that allow externally

obtained model functions to be inserted into the MuT framework, such that creating interfaces to

external software packages is a simple and straightforward process. In effect, the MuT framework

does not distinguish from where or how the model functions were obtained, i.e. there are no special

cases.

Furthermore, since Maple allows the multibody models to be processed symbolically or numer-

ically, it provides the versatility of creating symbolic or numeric model function, and MuT takes

advantage of this additional flexibility. Hence, each MuT model can have different model functions

associated with it in the execution environment, these model function can correspond to a symbol-

ically derived modelling process or a numerical one, and these different model functions can come

from different sources, i.e. not exclusively from the MuT symbolic modelling environment.

The MuT exporting process is scalable, transparent and requires no special knowledge on the

part of the user, except knowing how to use Maple, and a basic-level understanding of multibody

dynamics if modelling a multibody system. It was designed to allow model functions to be easily

and automatically exported right up to the real-time execution environment. The framework relies

on a simple process to export the model functions, and uses only standard Matlab/Simulink/RTW

utilities to do so, such that compatibility with forthcoming releases of Matlab/Simulink/RTW is

maximized. The framework architecture is presented in the next section.

B.3 Framework

The Multibody Toolbox Framework:

• Facilitates the creation of new formulations (analytical, numerical or hybrid) by providing

topology management, a convenient model interface and basic kinematic and kinetostatic

toolboxes for any given model.
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• Features an object-oriented architecture that simplifies integration of new modelling compo-

nents (based on standard component templates), functions (e.g., identification (kinematics,

dynamics), CoG, variable mass, sensitivity analysis, parametric studies, optimization), and

support implementation of these new functions right up to the RT-OS execution environment.

• Uses a general XML component template that allows new components to be added or mod-

ified without changing the existing formulations code, thus simplifying the component inte-

gration and validation process.

• Was designed with a modular structure that simplifies code modification and maintenance.

• Was designed to efficiently generate code in C based on simple code-generation templates

ensuring maintainability and compatibility with changing versions of execution environment.

• Provides an infrastructure to do benchmark comparisons of different modelling algorithms

(efficiency, stability).
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