43 research outputs found

    Haptic identification by ELM-controlled uncertain manipulator

    Get PDF
    This paper presents an extreme learning machine (ELM) based control scheme for uncertain robot manipulators to perform haptic identification. ELM is used to compensate for the unknown nonlinearity in the manipulator dynamics. The ELM enhanced controller ensures that the closed-loop controlled manipulator follows a specified reference model, in which the reference point as well as the feedforward force is adjusted after each trial for haptic identification of geometry and stiffness of an unknown object. A neural learning law is designed to ensure finite-time convergence of the neural weight learning, such that exact matching with the reference model can be achieved after the initial iteration. The usefulness of the proposed method is tested and demonstrated by extensive simulation studies. Index Terms—Extreme learning machine; haptic identification; adaptive control; robot manipulator

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Exploration of muscle fatigue effects in bioinspired robot learning from sEMG signals

    Get PDF
    © 2018 Ning Wang et al. To investigate the effects of muscle fatigue on bioinspired robot learning quality in teaching by demonstration (TbD) tasks, in this work, we propose to first identify the emerging muscle fatigue phenomenon of the human demonstrator by analyzing his/her surface Electromyography (sEMG) recordings and then guide the robot learning curve with this knowledge in mind. The time-varying amplitude and frequency sequences determining the subband sEMG signals have been estimated and their dominant values over short time intervals have been explored as fatigue-indicating features. These features are found carrying muscle fatigue cues of the human demonstrator in the course of robot manipulation. In robot learning tasks requiring multiple demonstrations, the fatiguing status of human demonstrator can be acquired by tracking the changes of the proposed features over time. In order to model data from multiple demonstrations, Gaussian mixture models (GMMs) have been employed. According to the identified muscle fatigue factor, a weight has been assigned to each of the demonstration trials in training stage, which is therefore termed as weighted GMMs (W-GMMs) algorithm. Six groups of data with various fatiguing status, as well as their corresponding weights, are taken as input data to get the adapted W-GMMs parameters. After that, Gaussian mixture regression (GMR) algorithm has been applied to regenerate the movement trajectory for the robot. TbD experiments on Baxter robot with 30 human demonstration trials show that the robot can successfully accomplish the taught task with a generated trajectory much closer to that of the desirable condition where little fatigue exists

    Robust neurooptimal control for a robot via adaptive dynamic programming

    Get PDF
    We aim at the optimization of the tracking control of a robot to improve the robustness, under the effect of unknown nonlinear perturbations. First, an auxiliary system is introduced, and optimal control of the auxiliary system can be seen as an approximate optimal control of the robot. Then, neural networks (NNs) are employed to approximate the solution of the Hamilton-Jacobi-Isaacs equation under the frame of adaptive dynamic programming. Next, based on the standard gradient attenuation algorithm and adaptive critic design, NNs are trained depending on the designed updating law with relaxing the requirement of initial stabilizing control. In light of the Lyapunov stability theory, all the error signals can be proved to be uniformly ultimately bounded. A series of simulation studies are carried out to show the effectiveness of the proposed control

    An adaptive fuzzy control for human-in-the-loop operations with varying communication time delays

    Get PDF
    Time delay, especially varying time delay, is always an important factor affecting the stability to the human-in-the-loop system. Previous research usually focuses on the performance of the internal signal transmission part, but rarely considers the whole system with human and environmental factors comprehensively. For the problem, we investigate this issue by using an improved proportional-derivative-like plus damping (PD-like + d) control method, the derivative term of which is calculated based on the estimation of time delays. An embedded adaptive fuzzy logic systems (FLS)-based observer is developed to estimate and compensate for the errors caused by time delay estimations and uncertain force/ torque measuring errors. The advantages of the proposed control scheme are discussed by building an environmental input energy function and the effectiveness is also verified by the comparative simulations. The results show that under the same simulation conditions, the follower can track the leader's movements well, and the energy introduced into the environment is the same as that of the leader, which means the extra energy is dissipated to enable the object to be manipulated as desired by the leader side

    Mobile Robot Path Planning Based on Ant Colony Algorithm With A* Heuristic Method

    Get PDF
    This paper proposes an improved ant colony algorithm to achieve efficient searching capabilities of path planning in complicated maps for mobile robot. The improved ant colony algorithm uses the characteristics of A* algorithm and MAX-MIN Ant system. Firstly, the grid environment model is constructed. The evaluation function of A* algorithm and the bending suppression operator are introduced to improve the heuristic information of the Ant colony algorithm, which can accelerate the convergence speed and increase the smoothness of the global path. Secondly, the retraction mechanism is introduced to solve the deadlock problem. Then the MAX-MIN ant system is transformed into local diffusion pheromone and only the best solution from iteration trials can be added to pheromone update. And, strengths of the pheromone trails are effectively limited for avoiding premature convergence of search. This gives an effective improvement and high performance to ACO in complex tunnel, trough and baffle maps and gives a better result as compare to traditional versions of ACO. The simulation results show that the improved ant colony algorithm is more effective and faster

    Control and Learning of Compliant Manipulation Skills

    Get PDF
    Humans demonstrate an impressive capability to manipulate fragile objects without damaging them, graciously controlling the force and position of hands or tools. Traditionally, robotics has favored position control over force control to produce fast, accurate and repeatable motion. For extending the applicability of robotic manipulators outside the strictly controlled environments of industrial work cells, position control is inadequate. Tasks that involve contact with objects whose positions are not known with perfect certainty require a controller that regulates the relationship between positional deviations and forces on the robot. This problem is formalized in the impedance control framework, which focuses the robot control problem on the interaction between the robot and its environment. By adjusting the impedance parameters, the behavior of the robot can be adapted to the need of the task. However, it is often difficult to specify formally how the impedance should vary for best performance. Furthermore, fast it can be shown that careless variation of the impedance can lead to unstable regulation or tracking even in free motion. In the first part of the thesis, the problem of how to define a varying impedance for a task is addressed. A haptic human-robot interface that allows a human supervisor to teach impedance variations by physically interacting with the robot during task execution is introduced. It is shown that the interface can be used to enhance the performance in several manipulation tasks. Then, the problem of stable control with varying impedance is addressed. Along with a theoretical discussion on this topic, a sufficient condition for stable varying stiffness and damping is provided. In the second part of the thesis, we explore more complex manipulation scenarios via online generation of the robot trajectory. This is done along two axes 1) learning how to react to contact forces in insertion tasks which are crucial for assembly operations and 2) autonomous Dynamical Systems (DS) for motion representation with the capability to encode a family of trajectories rather than a fixed, time-dependent reference. A novel framework for task representation using DS is introduced, termed Locally Modulated Dynamical Systems (LMDS). LMDS differs from existing DS estimation algorithms in that it supports non-parametric and incremental learning all the while guaranteeing that the resulting DS is globally stable at an attractor point. To combine the advantages of DS motion generation with impedance control, a novel controller for tasks described by first order DS is proposed. The controller is passive, and has the properties of an impedance controller with the added flexibility of a DS motion representation instead of a time-indexed trajectory
    corecore