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This paper proposes an improved ant colony algorithm to achieve efficient searching

capabilities of path planning in complicated maps for mobile robot. The improved ant

colony algorithm uses the characteristics of A∗ algorithm and MAX-MIN Ant system.

Firstly, the grid environment model is constructed. The evaluation function of A∗ algorithm

and the bending suppression operator are introduced to improve the heuristic information

of the Ant colony algorithm, which can accelerate the convergence speed and increase

the smoothness of the global path. Secondly, the retraction mechanism is introduced

to solve the deadlock problem. Then the MAX-MIN ant system is transformed into local

diffusion pheromone and only the best solution from iteration trials can be added to

pheromone update. And, strengths of the pheromone trails are effectively limited for

avoiding premature convergence of search. This gives an effective improvement and

high performance to ACO in complex tunnel, trough and baffle maps and gives a better

result as compare to traditional versions of ACO. The simulation results show that the

improved ant colony algorithm is more effective and faster.

Keywords: path planning, ant colony algorithm, A∗ algorithm, bending suppression, retraction mechanism

INTRODUCTION

Path planning is a key issue in the field of mobile robot research. Its main purpose is to find an
optimal or suboptimal, safe and collision-free path from the starting point to the target point in the
environment with obstacle (Cheng et al., 2010; Deepak et al., 2012; Zhou et al., 2013). According
to the degree of intelligence in the process of path planning, mobile robot path planning can be
divided into traditional path planning and intelligent path planning. The traditional path planning
algorithm includes simulated annealing algorithm (Miao and Tian, 2013), potential function theory
(Cetin and Yilmaz, 2014; Nair et al., 2015), fuzzy logic algorithm (Li et al., 2013; Jiang and Li, 2014;
Bakdi et al., 2016) and so on. However, these traditional methods can’t be further improved in path
search efficiency and path optimization. Intelligent path planning algorithm includes Ant Colony
Optimization (ACO) (Jovanovic et al., 2016; Wang et al., 2016), genetic algorithm (Arantes et al.,
2017; Lin et al., 2017), neural network (He et al., 2016a, 2017a,b) and particle swarm algorithm (Das
et al., 2016; Song et al., 2016) and so on. The ant colony algorithm has the advantages of strong
robustness, good global optimization ability and inherent parallelism. Moreover, it easily combines
with multiple heuristic algorithms to improve the performance of algorithms. So it is widely used
in path planning.
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However, due to the randomness of probabilistic transfer
and the inappropriateness of pheromone intensity update, the
traditional ACOwill easily fall into the local optimum and tend to
poor convergence. To this end, many scholars delivered a variety
of improved methods to solve problems regarding pheromone
update and path search strategy (Stützle and Hoos, 2000; Zeng
et al., 2016; Zhao et al., 2016; Zhang et al., 2017). In Stützle
and Hoos (2000), an Ant Colony System (ACS) algorithm was
proposed to speed up the convergence rate of ACO by updating
pheromones on the path of the optimal ant of each generation. In
Zhao et al. (2016), by adaptively changing the volatilization rate
and adjusting the pheromone updating formula, the search ability
of the ant colony and the convergence rate of the algorithm were
improved. In Zhao et al. (2016), some intelligent algorithm was
proposed to generate an initial path, which can be transformed
into the initial pheromone distribution to avoid blind search of
ant colony. In Zhang et al. (2017), the path information (such
as the crowded path and the steep path weight) was added into
the initial pheromone matrix, which could affects the efficiency
of the algorithm. In Zhao et al. (2016), the heuristic function
was adjusted to improve the convergence rate of the algorithm
according to the target point. In Zeng et al. (2016), it unlimited
step length of finding optimal path so that the improved ACO
could find a shorter path and its convergence was better. In
addition, many scholars have combined the ant colony algorithm
with other (intelligent) algorithms (He et al., 2016b; Liu et al.,
2016; Yen and Cheng, 2016; He and Zhang, 2017) to improve the
convergence rate and the smooth of path. In Liu et al. (2016), the
geometric method was used to optimize path. Also in Liu et al.
(2016), the force factor in the artificial potential field method
is transformed into local diffusion pheromone to improve the
ability of the ant colony algorithm to find the obstacle. In Yen
and Cheng (2016), the fuzzy ant colony optimizationmethod was
proposed to minimize the iterative learning error.

In this paper, an effective version of ant colony algorithm
is achieved. It utilizes the evaluation function of A∗ algorithm
to improve the heuristic information of Ant colony algorithm,
which accelerates the convergence speed during the search. And
MAX–MIN Ant System is used to make the global search ability
better by updating the path pheromone of the optimal network.
At the same time, the bending suppression operator is introduced
to improve heuristic information, which aims to optimize the
smoothness of the path. The problem of deadlock is solved by
using the retraction mechanism. All these procedures not only
give an effective improvement and better performance to ACO,
but also give the best results as compare to traditional versions of
the algorithm (Zhao et al., 2016) and ACO in complex tunnel,
trough and baffle maps. The simulation results show that the
proposed algorithm is effective and fast.

MATERIALS AND METHODS

Environment Model
The work environment is built by using the grid model, which
divides the robot working space into N∗N squares. As shown in
Figure 1, the gray grids are represented as obstacles (the grid with
barriers) and the white grids are represented as free grid squares

FIGURE 1 | Environment model.

(the robot canmove). In order to identify obstacles, the white grid
cell is represented by 0 and the gray grid unit is represented by 1.
The grid method is simple and effective to create and maintain
grid model. Moreover, the grid method have strong adaptability
for obstacle. This method is convenient for computer storage
and processing.

The grid model was placed into two-dimensional coordinate
system. And then serial number method is adopted to mark each
grid. In N∗N grid map, the starting node is named after Start
and the target node is named afterGoal. The position coordinates
(

x, y
)

corresponding to any grid whose grid number isR as follow:







x =

{

mod (R,N)− 0.5 if mod (R,N)! = 0
N +mod (R,N)− 0.5 otherwise

y = N + 0.5− ceil
(

R
N

)

(1)

Where mod is the surplus operation, ceil rounds the elements to
the nearest integers toward infinity.

Ant Colony Algorithm
Heuristic Strategy With Direction Information
In the traditional ACO, the probability of the next node is selected
by roulette wheel method as follows:

Pkij (t) =







(τij(t))
α
·(ηij(t))

β

∑

s∈allowk
(τis(t))

α
·(ηis(t))

β s ∈ allowk

0 s /∈ allowk

(2)

ηij (t) =
1

dij

dij =

√

(xj − xi)
2
+ (yj − yi)

2

Where τij is the pheromone trail of the path grid i to grid j, and
ηij is the heuristic information of the path grid i to grid j. α is the
stimulating factor of pheromone concentration which determine
the relative influence of the pheromone trail. β is the stimulating
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factor of visibility which determine the relative influence of the
heuristic information. dij is the distance between node i and node
j. (xi, yi) and (xj, yj) is the coordinates of grid i and grid j. allowk is
the collection of grids which ants can choose when ants in the grid
i (in other words, they are the grids around the grid i except the
obstacle grid and taboo grid).

Coverage and Updating Strategy
According to the traditional ACO, the next node is decided by the
roulette wheel method and it is repeated until the target point is
obtained. After each iteration is completed, pheromone trails are
updated in line with the length of path planning. For each trial
during pheromone update, all imperfect pheromones evaporates
and only the best pheromones are updated to trials history,
because it enables ants to neglect all substandard pheromone
trails and improve its coverage efficiency to find a shorter path.
Formula (3) is used to update the pheromone quantity on each
vertex at the end of each cycle:







τij = (1− ρ) τij +1τij

1τij =
m
∑

k=1

1τ kij , 0 < ρ < 1
(3)

wherem is the number of ants. ρ is pheromone evaporation rate.
1τ kij represents the value of pheromone that the ant k leaves in

the path of grid i to grid j. This article uses the ant-cycle-system
model, and1τ kij is defined as follows:

1τ kij
(

k
)

=

{

Q1/Lk (t) if arc
(

i, j
)

is used by k in iteration t
0 otherwise

(4)

Where Q1 is a constant. LK (t) is the length of the path that the
ant k is looking for.

Improved Ant Colony Algorithm
The traditional ACO has the following shortcomings: Due to the
lack of initial pheromone and the unapparent difference of the
heuristic value between adjacent grids, it usually requires a longer
search time, which leads to the slow convergence rate. When grid
model is complex, the robot maybe fall into a deadlock state in
which the robot cannot move to the surrounding grids. In the
gridmap, the path planning with traditional ACOmay havemore
bending times and big cumulative bending angle. To solve the
above problems, this paper makes the following improvements.

Heuristic Information Based on A∗ Algorithm
A∗ algorithm (Duchon et al., 2014) is the most effective direct
search method for solving the shortest path in static road
network. It is developed on the basis of Dijkstra algorithm,
which can avoid blind search to improve search efficiency. In this
paper, A∗ algorithm is used as the heuristic information of path
searching to improve the convergence speed of the algorithm
and obtain the better path. The bending suppression operator is
added to the heuristic information to reduce bending times and
cumulative bending angle.

The heuristic cost of A∗ algorithm is expressed by the
estimated function, and the estimated function equation f (n) is
as follows:

f (n) = g (n)+ h (n) (5)

h (n) =
(

(

nx − gx
)2

+
(

ny − gy
)2

)1/2

g (n) =
(

(nx − sx)
2
+

(

ny − sy
)2

)1/2

where g(n) is the minimum cost from the source node to the
current node. h(n) is the minimum cost from the current node to
the destination node. nx and ny are the coordinates of the current
node n . gx and gy are the coordinates of the target node g, sx,

and sy are the coordinates of the initial node s.
The estimated function of A∗ algorithm is used as heuristic

information to search for global optimal path in ant colony
algorithm, and the bending suppression operator is added to the
heuristic value of ant colony algorithm to reduce the number
of bending times and the large cumulative turning angle. The
improved heuristic information formula is as follows:

ηij (t) =
Q2

h (n)+ g (n)+ cost(bend)
(6)

cost
(

bend
)

= ϕ · turn+ ψ · thita

where Q2 is a constant more than 1. cost(bend) is a bending
suppression operator. turn is the number of turns from node
n− 1(previous node) to node n+ 1 (next node). thita is the angle
between the line segment of node n− 1 to node n (current node)
and the line segment of node n to node n+ 1. ϕ is the coefficient
converting turning times into grid length. ψ is the coefficient
converting angle into grid length.

Solve the Deadlock Problem
When the robot environment is more complex (especially the
ants go into the environment of concave obstacles), due to the
presence of the taboo table, the ants may fall into a deadlock state
without the next grid to move. As shown in Figure 2, when the
ant travels from the grid T to the grid S, the next optional grid is
C. At this time, the ant is trapped in a deadlock state and it cannot
move to its surrounding grid.

For the deadlock problem, Wang and Yu (2011) adopted
the early death strategy, which deleted the ants trapped in a
deadlock state from the ant colony and did not update the global
pheromone. However, when more of the ants are trapped in the
deadlock state, the number of ants that can reach the goal is
significantly reduced, which results in a decrease in the diversity
of solutions and is not conducive to the search of optimal path
for ants. In this paper, the improvement measure is that the ants
adopt retraction mechanism when they fall into the deadlock
state. As shown in Figure 2, the ant, which has walked into
the grid, is trapped in the deadlock state, and the improved
strategy allows the ant to roll back one step and updates the
taboo table information. If the ant is still trapped into a deadlock
state, the ant will continue to rollback untill grid T. At this
moment, the ant escapes the deadlock area. Since the deadlock
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FIGURE 2 | Deadlock state diagram.

edge may be the part of global optimal path, no pheromone
punishment is carried out on the deadlock edge. The retraction
mechanism cannot prevent ants from entering a deadlock state,
but it lets the deadlocked ants return back to the previous
grid until there is a feasible grid around the ants, so the ACO
with the retraction mechanism has higher efficiency and fewer
iterations. The ACO with the retraction mechanism and without
the retraction mechanism is compared in section The Retraction
Mechanism Results Analysis below.

Max–Min Ant System
As the traditional ant colony algorithm may cause premature
convergence and precocious phenomenon, it needs to improve
algorithm to solve these problem. The MAX-MIN Ant System
(MMAS) (Stützle and Hoos, 2000) can solve these problems well.

(1) Pheromone trail updating. After each iteration trial, the
pheromone is submitted into update history in traditional
ant colony algorithm. While in the MMAS, only the path
pheromone of the optimal network is updated after the iteration
is completed. Accordingly, the modified pheromone trail update
rule is stated by:

τij (t + 1) = (1− ρ) τij (t)+1τ
best
ij (7)

1τ kij (t) =
Q1

Lbest
+

Q3

Cbest
turn

Cbest
turn = ω1Cals

(

l
)

+ ω2Turns
(

l
)

ω1 =
Vrobot

Wrobot

ω2 = Vrobot × ta

where Q3 is a constant more than 1.Lbest denotes to the shortest
path currently found by the algorithm. Cals(l) represents the sum
of all the angles of turning on the best optimized path. Turns(l)
is the sum of the turns on the best optimized path. w1 and w2

represent different weight coefficient and are set by analyzing
the robot’s structure and kinematics (Wu et al., 2013; Li et al.,
2017). The w1 and w2 can convert turning angle and turning
times into grid length, respectively.Vrobot represents the constant
speed of a mobile robot.Wrobot represents the angular speed of a
mobile robot as it turns. ta represents the time of acceleration and
deceleration as the mobile robot turns once.

(2) Pheromone trail limits. In order to avoid the situation that
the traditional ant colony algorithm may falls into local optimal
solution and loses the further search space ability by pheromone
accumulation, the pheromone trail of the MMAS is limited in the
upper limits and lower limits

[

Taumin,Taumax,

]

. The formula is:

Tau =







Taumin, Tau ≤ Taumin

Tau, Taumin < Tau ≤ Taumax

Taumax, Tau > Taumin

(8)

Aco Procedure
To sum up, specific steps of mobile robot path planning based on
the improved ant colony algorithm are as follows:

Step 1: The working environment is modeled by the grid
method, and the starting point start and the target point goal
of the mobile robot are given.
Step 2: Initialize the ant system. Set the number m of
ants, parameter α which determines the relative influence
of the pheromone trail, parameter β which determines the
heuristic value, the global pheromone volatilization coefficient
ρ, pheromone intensity Q1 and other related parameters.
Step 3: Update taboo table. Place the ant k (k = 1, 2, · · · ,m)
on the current node and add the current node to the
corresponding taboo table.
Step 4: Process deadlock. According to the taboo table, it will
judge whether ants are trapped in a deadlock state. If the
ants are in a deadlock state, the retraction mechanism will be
adopted and the deadlock node will be added to the taboo
table. Conversely, it will judge whether the ants reach the target
point. If the ants reach the target point, it will turn to Step 6,
otherwise it will turn to Step 5.
Step 5: Select the next grid. It will calculate the heuristic
function according to formula (6), and calculate the
probability function according to formula (2). Finally, it
will use the roulette method to select the next feasible grid. If
the ants reach the target grid, it will turn to Step 6, otherwise
it will turn to Step 3.
Step 6: If the ants reach the target node, it will repeat Step 3
until each ant completes the search target during its iteration
process and then turn to Step 7.
Step 7: Update pheromone. After each iteration, if the
number of iterations satisfies inequality N ≤ Nmax, it
will update the path pheromone and determine whether it
meets the convergence conditions. If it meets the convergence
conditions, it will withdraw. If it does not meet, it will turn
to Step 3. If the number of iterations satisfies inequality N >

Nmax, it will be not counted further. The final result is output
as long as the end condition is satisfied.
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The implementation process of improved ant colony algorithm is
as in Table 1.

RESULTS

In order to verify the effectiveness of the improved ant colony
algorithm, this paper uses MATLAB software to simulate. It
is more convincing to use comparative method to carry out
experiments under the same experimental conditions. In the
simulation, the main parameter values of the ACO should be
determined firstly. The main parameters include number of
ants, stimulating factor of pheromone concentration, stimulating
factor of visibility and pheromone evaporation coefficient.
Through parameter analysis method (Wu et al., 2010), the
relationship between each parameter and simulation results (path
length, number of iterations) can be obtained. According to the
relationship between each parameter and simulation results (Shi
et al., 2014), we can get the value of the main parameters in the
ACO. In the simulation, value of each parameter in the ACO is as
in Table 2:

Comparative Analysis of Path
Planning Algorithms
The experiment was divided into four parts according to four
types of maps(the common map, the tunnel map, the trough
map and the baffle map) and three algorithms (the traditional
ant colony algorithm, the algorithm (Zhao et al., 2016) and

TABLE 1 | Description of ACO algorithm for solving path planning.

Algorithm A*MMAS

Begin

create grid environment

initialize the ant colony system

Repeat

for each ant k do

if grid i ∈ allowk then

if grid i ∈ taboodeadlock then

fallback

end if

according to formula (2) and (6) select next grid j

Update taboo

end if

Update pheromone on each iteration by improved MMAS method according to

formula (7) and (8)

Until algorithm convergence

Return best grid serial number

END

TABLE 2 | Values of the main parameters in the ACO.

Number of ants

m

Stimulating

factor of

pheromone

concentration

α

Stimulating

factor of

visibility

β

Pheromone

evaporation

coefficient

ρ

Pheromone

intensity

Q

50 1 5 0.5 10

the improved ant colony algorithm proposed in this paper) are
simulated on each map in turn. The convergence speed, shortest
path length and bending suppression effect of those algorithms
are compared.

(1) Example 1. In this example, the environment of the
robot was built into the 20∗20 grid model and the three
algorithms are tested on the commonmap. The coordinates
of grid Start and grid Goal is (0.5, 19.5) and (19.5, 0.5)
(shown in Figure 3), respectively.

(2) Example 2. In this example, the environment of the
robot was built into the 30∗30 grid model and the three
algorithms are tested on the tunnel map. The coordinates of
grid Start and grid Goal is (0.5, 8.5) and (15.5, 18.5) (shown
in Figure 4), respectively.

(3) Example 3. In this example, the environment of the
robot was built into the 40∗40 grid model and the three
algorithms are tested on the troughmap. The coordinates of
grid Start and grid Goal is (5.5, 34.5) and (28.5, 5.5) (shown
in Figure 5), respectively.

(4) Example 4. In this example, the environment of the
robot was built into the 20∗20 grid model and the three
algorithms are tested on the baffle map. The coordinates
of grid Start and grid Goal is (0.5, 14.5) and (14.5, 14.5)
(shown in Figure 6), respectively.

As shown in Figure 3, the optimized path length of the
improved ant colony algorithm is 29.2133 and the number
of bending times is 6. The improved ant colony algorithm
is basically as same as the path planning effect of the ant
colony algorithm (Zhao et al., 2016) on the path length,
but it is 25% lower on bending times than the ant colony
algorithm (Zhao et al., 2016). Compared with the traditional
ant colony algorithm, it is 73% reduction in the number of
bending times.

As shown in Figure 4, the optimized length of the improved
ant colony algorithm is 37.3849, and the number of bending
times is 7. In the shortest path length, the improved ant colony
algorithm is basically as same as the algorithm (Zhao et al., 2016).
In the number of bending times, it is 50% decrease than the
traditional ant colony algorithm and is 22% decrease than the
algorithm (Zhao et al., 2016).

As shown in Figure 5, the optimized path length of the
improved ant colony algorithm is 51.1128. In Figure 6, the
optimized path length of the improved ant colony algorithm
is 50.7280. But in Figures 5, 6, both the traditional ant colony
algorithm and the algorithm (Zhao et al., 2016) can’t search the
global optimized path. Even as the scale of the problem expands
and the environment map becomes more and more complex, the
improved algorithm can still perform very well.

The results of the three algorithms that run 100 times in
same map environments are shown in Table 3. Compared with
the traditional ant colony algorithm and the algorithm (Zhao
et al., 2016), the improved algorithm has a good performance
on the efficiency. At the same time, it has a good adaptability
in a complicated area. The improved algorithm proposed in
this paper can be used not only in the path planning of mobile
robots, but also in the path planning of robot manipulators
(Yang et al., 2017, 2018).
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FIGURE 3 | The test results of three algorithms run on common map. (A) Simulation results in 20*20 grid. (B) Convergence curve.

FIGURE 4 | The test results of three algorithms run on tunnel map. (A) Simulation results in 30*30 grid. (B) Convergence curve.

FIGURE 5 | The test results of three algorithms run on trough map. (A) Simulation results in 40*40 grid. (B) Convergence curve. (Other two algorithms is failed in

trough map).

The Retraction Mechanism
Results Analysis
In order to show the function of retraction mechanism, the
ACO with the retraction mechanism and ACO without the

retractionmechanism are tested on the troughmap and the baffle

map, respectively.
As shown in Figures 7A, 8A, ACO with the retraction

mechanism has higher efficiency and fewer iteration than ACO
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FIGURE 6 | The test results of three algorithms run on baffle map. (A) Simulation results in 20*20 grid. (B) Convergence curve. (Other two algorithms is failed in

trough map).

TABLE 3 | Test results for three algorithms under different maps.

Map Algorithm Optimal solution

of the algorithm

The average of the

shortest distance

Average

iteration times

Average time-

consuming(sec)

Number of

bends

Common map À 37.4143 38.6335 40 9.22 22

Á 29.2133 29.4506 33 7.26 10

Â 29.2133 29.3807 12 4.89 10

Tunnel map À 38.2133 38.6325 47 26.92 17

Á 37.3849 38.4813 35 20.62 12

Â 37.3849 38.1262 16 17.97 10

Trough map À – – – – –

Á – – – – –

Â 51.1128 51.8471 40 88.20 13

Baffle map À – – – – –

Á – – – – –

Â 50.7280 51.0605 15 8.40 13

À: The traditional ant colony algorithm.

Á: The algorithm [20]. Â: the improved ant colony algorithm.

without the retraction mechanism. When ants fall into deadlock
state, the retraction mechanism is used to replace the early death
strategy, which avoids a large number of ant deaths in one
iteration. Therefore, each ant can obtain a path by using the
retraction mechanism, which increases the diversity of results
and is beneficial to find the optimal path. As shown in Figures 7B,
8B, the number of ant retracted in the initial stage of the
algorithm is higher than in the middle and later stage of the
algorithm and the retraction mechanism can effectively suppress
the decline of the number of ants.

DISCUSSION

This paper makes a valuable contribution to the improvement of
ant colony algorithm in complicated maps for the mobile robot,
especially the improvement on convergence speed, shortest path
length and bending suppression effect. The estimated function
of improved A∗ algorithm is used as the heuristic function to
improve search efficiency and smoothness of path. By employing
the retraction mechanism and the improved MAX–MIN Ant

System method, the problem of ant deadlock is solved and the
global search ability of the algorithm is improved.

Three algorithms are researched on path planning in the
common map, tunnel map, trough map and baffle map,
respectively. Compared with the traditional ant colony algorithm
and the algorithm (Zhao et al., 2016), the improved ant colony
algorithm is better in the convergence rate and the bending
suppression effect. Compared with the traditional ant colony
algorithm, the improved ant colony algorithm hasmore than 65%
reduction in number of iterations and 41% decrease in bending
suppression. In addition, the improved ant colony algorithm is
54% lower than the algorithm (Zhao et al., 2016) in number of
iterations. To sum up, this paper proves the effectiveness, rapidity
and adaptability of the improved ant colony algorithm in the
complex map environment.

AUTHOR CONTRIBUTIONS

XD and DG proposed the innovation and designed the
experiment in this study. ZZ and SL performed the simulation
experiment and analyzed the experiment results. XD checked the

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2019 | Volume 13 | Article 15

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Dai et al. Mobile Robot Path Planning

FIGURE 7 | The test results of two algorithms run on trough map. (A) Path planning comparison. (B) Ant retraction number curve.

FIGURE 8 | The test results of two algorithms run on baffle map. (A) Path planning comparison. (B) Ant retraction number curve.
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