1,059 research outputs found

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    The future of robotic surgery

    Get PDF
    © 2018 Royal College of Surgeons.For 20 years Intuitive Surgical’s da Vinci® system has held the monopoly in minimally invasive robotic surgery. Restrictive patenting, a well-developed marketing strategy and a high-quality product have protected the company’s leading market share.1 However, owing to the nuances of US patenting law, many of Intuitive Surgical’s earliest patents will be expiring in the next couple of years. With such a shift in backdrop, many of Intuitive Surgical’s competitors (from medical and industrial robotic backgrounds) have initiated robotic programmes – some of which are available for clinical use now. The next section of the review will focus on new and developing robotic systems in the field of minimally invasive surgery (Table 1), single-site surgery (Table 2), natural orifice transluminal endoscopic surgery (NOTES) and non-minimally invasive robotic systems (Table 3).Peer reviewedFinal Published versio

    VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

    Get PDF
    The Intuitive da Vinci system enables surgeons to see and manipulate structures deep within the body via tiny incisions. Though the robotic tools mimic one\u27s hand motions, surgeons cannot feel what the tools are touching, a striking contrast to non-robotic techniques. We have developed a new method for partially restoring this lost sense of touch. Our VerroTouch system measures the vibrations caused by tool contact and immediately recreates them on the master handles for the surgeon to feel. This augmentation enables the surgeon to feel the texture of rough surfaces, the start and end of contact with manipulated objects, and other important tactile events. While it does not provide low frequency forces, we believe vibrotactile feedback will be highly useful for surgical task execution, a hypothesis we we will test in future work

    Ilaptic Feedback Device for Needle Insertion

    Get PDF
    Tele-surgery is one of the emerging fields which combine engineering and medical sciences. Application of tole-surgery can be found in remote communities, war-zones and disasterstricken areas. One of the most complex and tedious issue in tele-surgery is needle insertion. The surgeon relies on haptic feedback during needle insertion. The force exerted on needle during insertion is measured and reproduced at surgeon's end is known as haptic feedback. The realistic force reproduction requires haptic feedback device which should be dynamically identical to needle. The haptic feedback device enables the surgeon to sense the needle insertion remotely. The basic objective of this thesis is to design a device used for needle insertions in soft tissue. The force information from needle insertions is measured by a sensor. The force feedback produced by the device can be used in robot-assisted needle insertion. A device is designed for reality-based data that results in more accurate representation of a needle insertion haptic feedback scenario. The device is modeled dynamically and it is clear from the model that the reactive force is reproduced by the friction forces which is controlled by the motors. The system is sensitive to mass of rollers, mass of the stick and friction between the stick and rollers. The needle insertion force is modeled in three parts; force due to capsule stiffness, friction, and cutting. The force due to capsule stiffness is modeled terms of three components namely diameter of needle, elasticity of tissue and deformation of tissue. The data from model is compared with real time force data. The haptic feedback device input and output forces are compared and the highest correlation factor is 82%. The sensitivity analysis of the device is performed. The capsule stiffness force for 0.9 millimeter diameter needle is 0.98 Newton, the stiffness force for 0.8 millimeter is 0.91 Newton and stiffness force for 0.6 millimeter diameter is 0.41 Newton. The capsule stiffness force for 0.6 millimeter needle is not following the capsule stiffness model. The insertion force data was collected on chicken skin and meat. The device designed in this work is having one degree of freedom; it only produces force feedback for vertical needle insertion. This design is not able to produce the force feedback for angular needle insertion. Graphical User Interface is designed for the visual haptic feedback. The data acquisition is done with the help of a PC sound card. Future work should include the design of a multidegree of freedom haptic feedback device and to advance the GUI for audio feedback that may be extended to accommodate the design of a simulator

    Modeling of micro-scale touch sensations for use with haptically augmented reality

    Get PDF
    Possessing dexterity and sensory perceptions, the human hand is a versatile tool that can grasp, hold, and manipulate objects using various postures and forces interacting with the environment. Many industrial tasks are replacing human hands with anthropomorphic robotic hands. In skillful tasks such as micro surgical operations, a master-slave interface system of robotic hands is required to emulate a human hand\u27s dexterity by using glove controllers with force sensors for telemanipulation. Although these interface techniques are widely applied for large scale robots, little has been accomplished for micro-scale robots due to the constraints and complexity imposed by miniaturization. To provide sensible haptic control and feedback from robots at the micro-level, this work investigates the intricacies associated with the use of micro-scale robotic actuators with the intention of using them with haptic feedback systems. This work also develops a system model to test the ability of computing elements that emulate a microrobotic hand\u27s tactile perception of stiffness. An interface glove was used to collect control data from the user, which was used alongside a Matlab model to simulate the operation and control of two different microhand designs. In order to control the microhand device accurately, feedback from simulated sensors was used to affect the airflow of the pneumatic system driving the displacement of the microhand. Four major components were developed for the overall system. The glove interface gives the operator a method to interact with the system. The microhand modeling took place in two components. The first component was the model of the microhand itself. The other component needed was a pneumatic subsystem to drive the microhand operation. The final major component developed was a graphical user interface to give the operator feedback as to what is happening in the target environment. The integration of all of these components allows for experimentation of the intricacies of operating with these microhand devices. The investigation of this micro-haptic system shows that some parameters make the system perform faster and more accurately than others. Metrics such as percent error and settling time of the displacement of one micro-finger are shown to measure success of each method. Future improvements for this system could include the integration of pneumatically controlled balloon micro-actuators with the operator\u27s glove interface or implementing more accurate contact mechanics into the model

    Medical robotics:design of a master-slave system with force feedback

    Get PDF

    Micro-motion controller

    Get PDF
    Micro-motions in surgical applications are small motions in the range of a few millimeters and are common in ophthalmic surgery, neurosurgery, and other surgeries which require precise manipulation over short distances. Robotic surgery is replacing traditional open surgery at a rapid pace due to the obvious health benefits, however, most of the robotic surgical tools use robotic motion controllers that are designed to work over a large portion of the human body, thus involving motion of the entire human arm at shoulder joint. This requirement to move a large inertial mass results in undesirable, unwanted, and imprecise motion. This senior design project has created a 2-axis micro-motion “capable” platform, where the device studies the most common linear, 2-D surgical micro-motion of pinched human fingers in a damped and un-damped state. Through a system of printed and modeled parts in combination with motors and encoders a microsurgical controller was developed which can provide location-based output on a screen. Mechanical damping was introduced to research potential stability of micro-motion in any surgeon’s otherwise unsteady hand. The device is to also serve as a starter set for future biomedical device research projects in Santa Clara University’s bioengineering department. Further developments in the microsurgical controller such as further scaling, addition of a third axis, haptic feedback through the microcontroller, and component encasing to allow productization for use on an industrial robotic surgical device for clinical applications
    • …
    corecore