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ABSTRACT 

Tele-surgery is one of the emerging fields which combine engineering and medical sciences. 

Application of tole-surgery can be found in remote communities, war-zones and disaster- 

stricken areas. One of the most complex and tedious issue in tele-surgery is needle insertion. 

The surgeon relies on haptic feedback during needle insertion. The force exerted on needle 

during insertion is measured and reproduced at surgeon's end is known as haptic feedback. 

The realistic force reproduction requires haptic feedback device which should be 

dynamically identical to needle. The haptic feedback device enables the surgeon to sense the 

needle insertion remotely. 

The basic objective of this thesis is to design a device used for needle insertions in soft tissue. 

The force information from needle insertions is measured by a sensor. The force feedback 

produced by the device can be used in robot-assisted needle insertion. A device is designed 

for reality-based data that results in more accurate representation of a needle insertion haptic 

feedback scenario. 

The device is modeled dynamically and it is clear from the model that the reactive force is 

reproduced by the friction forces which is controlled by the motors. The system is sensitive 

to mass of rollers, mass of the stick and friction between the stick and rollers. 

The needle insertion force is modeled in three parts; force due to capsule stiffness, friction, 

and cutting. The force due to capsule stiffness is modeled terms of three components namely 

diameter of needle, elasticity of tissue and deformation of tissue. The data from model is 

compared with real time force data. The haptic feedback device input and output forces are 

compared and the highest correlation factor is 82%. The sensitivity analysis of the device is 

performed. The capsule stiffness force for 0.9 millimeter diameter needle is 0.98 Newton, the 

stiffness force for 0.8 millimeter is 0.91 Newton and stiffness force for 0.6 millimeter 

diameter is 0.41 Newton. The capsule stiffness force for 0.6 millimeter needle is not 
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following the capsule stiffness model. The insertion force data was collected on chicken skin 

and meat. 

The device designed in this work is having one degree of freedom; it only produces force 

feedback for vertical needle insertion. This design is not able to produce the force feedback 

for angular needle insertion. 

Graphical User Interface is designed for the visual haptic feedback. The data acquisition is 

done with the help of a PC sound card. Future work should include the design of a multi- 
degree of freedom haptic feedback device and to advance the GUI for audio feedback that 

may be extended to accommodate the design of a simulator. 
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CHAPTER I 

INTRODUCTION 

A new technology emerging in the field of surgery is tele-surgery [1]. In this new 

technology, surgeons perform surgery over the patient from a distant place remotely. This 

technology saves the traveling time of the surgeons. In this type of surgery, robots are 

used to perform the surgery [2]. The robot at the patient's end is known as slave, 

controlled by the master at surgeon's end. The console by which the surgeon controls the 

slave is known as the master. The surgeon gives a command to the master. The command 

is communicated to the slave electronically by the use of Internet and the slave performs 

the requested actions accordingly. However, there are some limitations to telesurgery. 

The most drastic is the lack of information about the kinesthetics of the environment of 

the slave to the master. The same kinesthetic environment needs to be re-produced at the 

master. This is achieved with the help of a haptic feedback device. 

1.1 Haptic Feedback 

The term haptic comes from the Greek which means pertaining to the sense of touch. 

liaptic technology refers to the technology which interfaces the user via the sense of 

touch by applying forces, vibrations and motions to the user. This mechanical stimulation 

is used to create haptic information [3]. 

One ofthe earliest forms of haptic device is used in lighter aircraft without servo systems. 

As the aircraft approaches a stall, the aerodynamic buffeting is felt in the pilot's controls 

via a system of mass and spring. This is a useful warning to the pilot of a dangerous flight 

condition. This control shake is not felt when servo control systems are used in the 

aircraft. To replace this missing clue, the angle of attack is measured, and when it 

approaches the critical stall point a "stick shaker" (an unbalanced rotating mass) is 

engaged, simulating the effects of a simpler control system. This is known as haptic 

feedback or force feedback device [4]. 
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1.2 Application of Haptic Feedback 

Ilaptic feedback is applied in numerious fields. Tele-operators are remote controlled 

robotic tools. When contact forces are reproduced to the operator, it is called haptic tele- 

operation. In haptic tele-operations, the force applied on the robotic tool is sensed. Data is 

generated by the sensor accordingly and transferred to the device which produces the 

opposing force to the user applied force. 

The first electrically-actuated teleoperators were built in the 1950's to remotely handle 

radioactive substances [5]. Since then, the use of "force feedback" has become more 

widespread in all kinds of teleoperators. 

1-laptic feedback plays a key role in stations where visual feedback environment is 

limited. Unmanned aerial vehicle is one of such cases [6]. The UAV uses haptic feedback 

to inform the operator about obstacles to avoid collision. In this kind of research, the 

UAV is surrounded by proximity sensors measuring the proximity of the obstacles. When 

the obstacle passes by the proximity limit, a force feedback is produced according to the 

distance between the UAV and the obstacle. The same design criteria is used to design 

omni-directional wheel chair. The wheel chair has the same mechanism to measure the 

proximity of the obstacle [7]. It gives an audio feedback to the wheel chair user. The 

strength of the audio signal is proportional to the distance of the obstacle. 

Minimal invasive surgery is one type of tele-surgery. In minimal invasive surgery, the 

surgeon controls the manipulation from a remote place. In this type of surgery, small 

incisions are made in the body of the patient. In other words, the surgery is performed 

inside the body of the patient. An instrument equipped with a gripper and a camera is 

inserted in the body of the patient. Minimal invasive surgeries have advantages over open 

surgeries. The recovery time is less compared to open surgery. The minimal invasive 

surgery can be performed manually or autonomously. In both cases, the surgeon needs a 
force feedback from the instrument in the body of the patient. 
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The lack of force feedback can cause tissue damage and life-threatening surgical 

mistakes. These mistakes can make the surgery more painful and hectic. In the case of 

complicated surgery such as cardiac surgery, force feedback is more favorable for a 

successful surgery as it decreases the complication of the surgery by canceling the beats 

of the heart. 

In tele-surgery, needle insertion is one complicated task for the surgeon, especially in soft 

tissue. Precutaneous therapy mostly involves the tubular delivery of devices such as 

needles, trocars, bone drills and screws tightening etc. To achieve the desired depth or 
location, intra-operative imaging devices are normally used. 1-laptic feedback devices are 

also used for the location and depth accuracy. During surgery, use of imaging devices 

such as CT, MRI, ultrasound, and fluoroscopy can make the surgery more complicated 

and requires more workspace. The imaging devices have the shortcoming that the 

operator has to refer to them at all times and is thus more laborious. More importantly, 

these devices do not provide kinesthetic information to the operator. 

The kinesthetic information of the environment can be made known to the operator by 

haptic feedback. The operator can then sense the force applied on the tissues. Accuracy of 

the depth and location of the insertion can be achieved if the operator knows how much 

force is required for the layer that is in the path of the needle. 

Minimal invasive surgery is the surgery in which a small incision is made in the body of 

the patient. In this surgery, the vision of the operator is limited due to small workspace. 

'therefore, haptic tccdback can play a key role by enabling the operator to apply and 

control the force precisely. Therefore, the force feedback of the needle is essential to 

avoid any trauma, which may cause surgery complications and longer recovery of the 

patient. 

As mentioned earlier, the surgeon performs robotic surgery remotely. The needle 
insertion is a complicated task in robotic surgery and the surgeon needs the kinesthetic 

information about the needle. The surgeon has to avoid slip-over of the needle over soft 
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tissue and thus force feedback will help him. To avoid slip-over, the surgeon changes the 

direction of his applied force. The surgeon needs to be sure that the needle is inserted; lie 

must thus have force feedback of the piercing needle. To avoid over-insertion of the 

needle due to soft tissue, haptic feedback is used to pull the needle back to compensate 
for the overshoot. Hence, needle insertion in robotic surgery and minimal invasive 

surgery can be performed easily with the help of haptic feedback device. 

1.3 Background 

In haptic feedback, the sensor system senses the force. The sensor data is given to the 

safety monitoring system, which ensures the safety limits. At the surgeon's end, the 

actuators reproduce the force at the patient's end. The force applied at the surgeon's end 
is also sensed for comparison with that at the patient's end. A tactile sensor is used to 

sense the stiffness of the patient's tissues. The tactile feedback is reproduced on the 

screen and visual feedback to the surgeon is given by the laparoscope. Consequently, the 

surgeon can observe the internal action along with sensing the forces and stiffness of the 

tissues. 

Master 
Manipulator 

Master /Slave 
Control 

Safety 
Monitor 

Slave 
Manipulator 

Encoder 

Force-Torque 
Sensor 

Tactile Sensor 

Encoder 

Force-Torque 
Sensor 

Tactile 
Display 

Surgeon 

Tactile 
Intonation 

Patient 

Video Display Laparoscopc 

Figure 1.1: Haptic feedback system 
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The current study is based on a needle insertion haptic feedback model. The needle 
insertion forces model is based on the total forces acting on the needle during insertion. 

This model considers the force as a function of depth of the needle. Secondly, needle 
indentation model is based on the piercing force of the needle. The indentation model 

considers properties of the tissue. 

1.4 Problem statement 

The needle insertion is one of the most complicated tasks during tele-surgery. The lack of 

needle insertion force feedback makes this task more hectic than open surgery. Therefore, 

a haptic feedback device is needed to be designed, which enables the surgeon to sense the 

force exerted on needle during insertion. The device should require less workspace and 

reproduce output force identical to actual force sensed by the force sensor. The device 

should be dynamically identical to the needle. Furthermore, the device should enable the 

surgeon to sense the piercing of the tissue. 

1.5 Objectives and Scope 

This study is focuses on the design of the haptic feedback system for needle insertion. A 

prototype of the haptic feedback device is designed and analyzed. A dynamic model of 

the device is presented. The device is mathematically modelled. A graphical user 
interfäce (GUI) prototype is designed for visual haptic feedback. The real-time needle 
insertion experiment is performed on chicken skin. Visual haptic feedback for the 

experiment is reproduced on GUI. 

Different needle insertion models are studied and simulated and comparison of results 
between experiment and model is made. Interface circuitry is designed for haptic 

feedback device and needle insertion sensor system. Data logging is performed and 

applied with the help of Pocket data logger XR440 and data acquisition is achieved using 
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MATLAB. The Graphical user interface is designed in GUI MATLAB. The dynamics of 

the haptic feedback device is studied and the device is modeled dynamically. Haptic 

feedback reproduction is correlated with input signal of the device and correlation profile 
is found. This work can be used as a foundation for the future work on haptic feedback 

device. 

1.6 Thesis Organization 

This thesis is structured as follows. Chapter 2 presents literature review of the haptic 

feedback device. Chapter 3 presents the mechanical setup and experimental setup for 

needle insertion and haptic feedback of the needle insertion. Chapter 4 presents the 

needle insertion force model identification and results of the haptic feedback device. 

Chapter 5 presents conclusion of the thesis and future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The haptic feedback is playing important in the fields where hand-eye coordination is not 

good. Haptic feedback devices are used for reproduction of haptic feedback. In this 

chapter section 2.2 discusses haptic feedback devices. The section 2.3 discusses the 

telesurgery systems used for surgery. The section 2.4 discusses the importance of haptic 

feedback in needle insertion. The section 2.5 discusses the needle insertion models 

presented by the researchers. 

2.2 Haptic Feedback Devices 

Haptics is gaining widespread acceptance as a key part of virtual reality systems, adding 

the sense of touch to previously visual-only solutions such as 'The Wedge' and more 

recently in laptop-based VR solutions such as the '3D-Mobile Immersive Workstation' 

[14], as shown in Figure 2.1. Most of these solutions use stylus-based haptic rendering, 

where the user interfaces the virtual world via a tool or stylus, giving a form of 

interaction that is computationally realistic in today's hardware. 

Figure 2.1 3D-Haptic feedback device. 
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Shadow Dexterous Robot Hand (SDRH) uses the sense of touch, pressure, and position to 

reproduce the human grip in all its strength, delicacy and complexity. The SDRI-I was 

developed by Richard Greenhill and his team of engineers in Islington, London, as part of 

The Shadow Project (now known as the Shadow Robot Company), an ongoing research 

and development program whose goal is to complete the first convincing humanoid. An 

early prototype can be seen in NASA's collection of humanoid robots, or robonauts 

shown in Figure 2.2 [15]. The Dextrous I-land has haptic sensors embedded in every joint 

and in every finger pad which relay information to a central computer for processing and 

analysis. Carnegie Mellon University in Pennsylvania and Bielefeld University in 

Germany have found the Dexterous Hand as an invaluable tool in progressing our 

understanding of haptic awareness and arc currently involved in research with wide- 

ranging implications [16]. 

Figure 2.2 NASA's robonauts. 

1-laptic feedback devices are also used in computer games in the form of controllers such 

as joysticks or steering wheels. Pioneers in the field of software games developed 

Nintendo 64 Controller's Rumble Pack (Figure 2.3). This device is capable of producing 

vibration in selected situations which are firing some weapon or receiving damage. The 
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steering wheel is designed to provide the feel of acceleration or slipping over during 

turning of the vehicle [ 17]. 

Flaptic feedback also has a significant role in fields where the hand-eye coordination is 

important. It helps the operator to not rely only on visual information but also enables the 

operator to use the sense of touch and grasping. It is one of the challenging issues in the 

field of medical sciences. Effectiveness of haptic feedback depends upon the accuracy of 

force reproduction. 

Figure 2.3 Nintendo 64 controller's rumble pack. 

-laptic feedback devices are classified into two categories: grounded and ungrounded 

haptic feedback. Grounded devices are those devices which are positioned on the 

operator's body or hand. An example of grounded devices is 1-laptic Glove. The 

operator's body acts as a base for the device. Grounded devices are placed on the 

operator's arm at several intermediate locations. Therefore, these devices provide more 

realistic interaction. Grounded haptic devices are designed to connect on the arm of the 

operator [18] [19] [20]. Some devices are placed on the operator's hand [21] [22] [23] 

[24]. 
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Ungrounded devices are those which are placed on the desk or wall. The operator only 

interacts with the end of the master arm. These devices are non-portable. These devices 

support their weight and prevent the master from sliding or toppling. Examples of 

ungrounded devices are joysticks [25] [26]. Sonic of the ungrounded devices are string- 

based [27] [28]. Haptic feedback in these devices is proportional to the tension in the 

strings, with which an operator interacts. 

2.3 Haptic Feedback in Medicine 

Minimally invasive surgery (MIS) has improved patient surgical outcomes by enabling 

open surgical procedures to be completed through small incisions. While MIS has led to 

reductions in post-operative pain and surgical complications, its applications are 

restricted due to limited haptic feedback. Researchers are trying to reduce this limitation. 

This problem is solved by different approaches but the main objective is the same: to 

reproduce the force at the operator's end with help of a haptic feedback device. 

During the 1990s, several robotic systems for surgery left research institutes and entered 

dedicated medical centers for evaluation purposes or even daily practice. The first 

application area is represented by the systems CasparTM(Figure 2.4a) from Universal 

Robotic systems Ortho GmbH [29] and RobodocTM from Integrated Surgical Systems 

[30] (Figure 2.4b). Integrated Surgical Systems provides also the system NeuroMateTM 

(Figure 2.5a) which, together with PathFinder from Armstrong Healthcare Ltd. [31] 

(Figure 2.5b), represent robotic neurosurgery. 
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Figure 2.4a Casper 

Figure 2.5a Pathfinder 

Figure 2.4b Robodoc 

Figure 2.5b Neuromate 

Two of the robotic surgery consoles available commercially are ZeusT" and daVinci'"'. 

Zeus"' and daVinciTM are more technically mature and commonly used in operation 

rooms. These two provide scaling of motion, tremor filtering, optical magnification with 

3D visual feedback. ZeusTM system has three robots fixed on a table. The daVincil"' is a 

little bit slimmer than ZeusT"', providing space for surgery assistants. The surgeon at the 

daVinciT"' console is immersed at the master. The Zeus"' master is open, providing 
direct view of slave and patient to the surgeon. Figure 2.6 shows ZeusTM [32] [33] while 
Figure 2.7 shows daV inci ' "' [34]. Both these consoles provide partial haptic feedback to 
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the surgeon. Generally, haptic feedback is still in the research stage. Hence, the surgeon 

has to rely on visual feedback. [35] 

Figure 2.6 Zeus surgery and console. 

WW mp 

Figure 2.7 daVinci surgery console. 

... 
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2.4 Haptic Feedback Devices Used in Needle Insertion 

Needle insertion is one of the complex tasks in tele-surgery. Researches today have keen 

interest in needle insertion haptic feedback. Needle insertion purely depends on force 

feedback. Most of the researchers design a haptic simulator for the procedure. Most of the 

researchers focused on training the surgeons for haptic feedback [8]. 

The 4-DOF haptic feedback device is designed for hysteroscopy simulation [36]. The 

hysteroscopy device is mounted on a rod, which is running through a tube. The tube is 

acting as a foundation for rollers and actuators. The rollers are controlling the dynamics 

the rod. One roller is controlling transverse motion, the second roller controls rotation of 

the rod. The rollers are mechanically coupled to separate motors, while the motors are 

controlled by haptic interface circuitry. 

Needle insertion assumes a key role in I3rachytherapy, which is one type of therapy for 

cancerous tissue and is gaining popularity among surgeons. In this therapy, radioactive 

seeds are implanted in the cancerous tissue to prevent or reduce damage to healthy' 

tissues. The seed implantation is achieved with the help of a needle or a catheter. The 

efficiency of this therapy depends upon accurate seed implantation [37]. A brachytherapy 

simulator has been designed in the research described in [38]. The simulator is virtual- 

reality based and provides only visual feedback and partial force feedback. 

Instead of training the surgeons, some of the researchers focus on realistic force 

feedback. An autonomous blood sampling robot from the forearm was designed in [11]. 

The robot senses the stiffness of the forearm. The area that has higher stiffness is 

considered as the vein. This system is not capable to distinguish stiffness due to factors 

like illness or skin disease. Furthermore, the system cannot handle slip-over of the 

inserted needle on the vein. Thus, this system is not capable of effectively providing force 

feedback to the operator. 
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In another research, needle insertion is sensed by change in impedance at the needle's tip 

[ 12]. Electrodes are installed at the tip of the needle. Impedance between these electrodes 

drops due to conduction in internal fluids. The change in impedance is used for haptic 

]cedback. 

Thus, an efficient design of haptic feedback device and development of haptic needle 

insertion force simulation model are required. Different researchers have presented 

different models for different environments and tissue mechanical properties. These 

models are used to extract the needle insertion force. Every model has some assumptions 

and some limitations. The models whose assumptions are favorable for the system are 
discussed in the forthcoming section. 
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2.5 Needle Insertion Force Models 

This section focuses on the needle insertion force modeling. Di Maio research in [9] [39] 

is based on force estimation along the shaft of needle during needle insertion. The model 

is based on the finite elements method. The force is estimated with the help of tissue 

deformation. 

A non-linear model is presented by Christine Simone in [8]. Forces in this model are 

classified into three components and every component is treated differently. These are 

force due to stiffness of the tissue and its capsule, force due to the cutting of the tissue 

and force due to friction between needle and tissue. 

Ottensmeyer focused on modeling and measuring mechanical properties of the living 

tissues [101. This model is based on the needle and tissue parameters. The model is also 

know as elasticity model as it focuses on the elasticity of the tissue. 
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2.6 Summarv 

In this chapter, literature review of the haptic feedback device is presented. In the first 

section, the haptic feedback devices available commercially and classification of the 

haptic feedback devices is also discussed. In the second section, focused on the haptic 

feedback in medicines and telc-surgery, some commercially available systems are also 

part of this section. The third section discusses the different haptic feedback systems and 

some of the related researchers work. Three needle insertion force estimation models by 

the researchers were presented. 

In the next chapter, the design of the haptic feedback system is presented. The basic idea 

of the system design is taken from the literature review. Electronic interface circuitry and 

Graphical user interface. 
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CHAPTER 3 

DESIGN OF HAPTIC FEEDBACK SYSTEM 

3.1 Introduction 

This chapter discusses the design of haptic feedback system. In section 3.2, the needle 

insertion force modeling is discussed followed by dynamic modeling in section 3.3 and 

sensitivity analysis of the system is presented in section 3.4. Lastly the mechanical design 

of the system is discussed in section 3.5. 

3.2 Needle Insertion Force Modeling 

In this section the needle insertion force modeling is discussed. This section focuses on 

model study and deriving force from model presented for mechanical properties. Three 

models are studied and needle insertion force is derived from each model. The models 

studied are Di Maio model, Christine model and Ottensmeyer model. 

3.2.1 Di Maio Model (Finite Element Method Model) 

Tissue deformation is measured by finite element method. The tissue is divided into small 

elements. The element's area changes with the deformation of the tissue. The change in 

the area of elements is measured by camera. The tissue deformation is proportional to 

elasticity of the tissue. The force is estimated from strain energy E,,, 
0, � 

is presented in 

Equation 3.1 [40]. 
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. Urwn -ý 
ýE` (. r)6(x)dr 

Where as 

E= Mechanical strain 

6= Mechanical stress 

x= Displacement 

T= Total area of material 

n= Number of discrete element 

The strain energy E,,,,,,,, in the material can be written as in Equation 3.2. 

E. 
urauv --ýE 

(11)6(17) 
2 

i=0 

The total L takes the form as in Equation 3.3. 

Lunnn- 
1 
2E6 

3.1 

3.2 

3.3 

The "E" is given by Hook's law of elasticity and it is defined in Equation 3.4. Therefore, 

Equation 3.3 takes the form of Equation 3.5. 

6 
E_ - 

E 

Where as 

3.4 

E= Constant of elasticity 
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E,,,,,,, -162E 3.5 

The strain energy "Es is given in terms of linear force and linear deformation in [40]. 

and in Equation 3.6. 

I 
2 Pxi 

Where as 

P= Applied force 

x, = Linear deformation 

Comparing Equation 3.5 with Equation 3.6, Equation 3.7 is formed: 

1' = A' E-ý, 

3.6 

3.7 

The -11- in Equation 3.7 gives the force acting, on the needle during insertion in material. 

Where as 

A= Area of cross section of needle. 

3.2.2 Christine Simone Model (Non-linear Model) 

The force due to the stiffness of the tissue capsule acts on the needle before the puncture. 

When the puncture in the capsule occurs, the stiffness force vanishes and the force acting 

on the needle drops to a low value. The forces after the puncture are the cutting force and 

the friction force. The drop in the insertion force is used to sense the needle insertion and 

to avoid overshoot in needle position. In this model, the cutting force is assumed to be 

constant. The stiffness force is modeled as a nonlinear function of deformation. The 
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friction force is modeled by a modified version of Karnopp's model [8]. The cutting force 

is applied on the needle when the needle is slicing the tissue to move through it. The total 

force exerted on the needle is a summation of these components. The summation is 

represented by Equation 3.8. The stiffness force in the model is given as in Equation 3.9. 

F,, 
,u=3.8 

Zrrp <0 

SZ <_Z FslrJJru". 
n -r "1 rrp 2 

0zz up 2 

3.9 

Where "f" is instantaneous stiffness force, _�1, is the location of the needle tip. Figure 

3.1 shows the distribution of stiffness force during needle insertion. In the figure.:,, z', 

and 3 represent locations of the needle during insertion. 

1 Z, 

DD 
Figure 3.1 Positions of needle during insertion 

The stiffness force f, is nonlinear and represented by a second-order polynomial in 

Equation 3.10. The intercept a, is assumed zero as the force on needle is zero before 

needle contact the tissue. The terms a, and a, are nonlinear stiffness parameters. The 

parameters are estimated as a, =0.0204 , %, and a_ =0.0008 for the simulation [41). 

Thus, Equation 3.10 takes the form of Equation 3.11. 

No Contact i In Contact Tissue Pierced 

-I 



21 

fr = a0 + a,: + a, °` 3.10 

fr = 0.0204: + 0.0008: 3.11 

3.2.3 Ottensmeyer Model (Linear Model) 

The research is focused on modeling Young's modulus of the tissue. The model is 

presented in Equation 3.12 [10]. There are some assumptions for deriving the model 

which includes the tissue being isotropic, homogeneous and linear. 

r_K 3k 
8a 

3.12 

In the model, E represents the Young's Modulus of the tissue. K is the geometric factor 

which I for semi-infinite body and greater than I for thin material on a rigid substrate. k 

in the model represents stiffness of the tissue and a represents the radius of indenter. K 

is I for semi-infinite body. The skin is a semi-infinite body [42] therefore K is I for 

needle insertion in the skin. Hence, Equation 3.12 takes the form: 

r_3k 
8a 

3.13 

k is stiffness of the tissue and stiffness is the force per deflection. k can be written as in 

Equation 3.14, where J is the applied force producing deflection "6 ". 

k=ý3.14 
15 

Substituting the value of k in Equation 3.13, Equation 3.15 is formed: 



-y) 

E= 3f. 
8a8 

3.15 

Equation 3.16 rearranges Equation 3.15 for the indentation force. Figure 3.2 shows the 

parameters of the indentation force. 

f= 
8a(E 

3.16 
3 

C! 

f_ 

Figure 3.2 Parameter of indentation force 

The three models presented in this section are estimating the needle insertion force. Di 

Maio model is slower and cause delay in the surgeon response. Ottensmcyer estimation is 

for elasticity of the living tissues by needle insertion from this model needle insertion 

force is simulated. Christine models the needle insertion is by its components. 

3.3 Dynamic Model of System 

Dynamic modeling is modeling of different parameters changing their behavior with 

time. In other words, it is modeling of the interdependent parameters. Mostly, it refers to 

modeling of the forces and torques acting on the system under consideration. This 

modeling is very important for systems which interact with forces and torques. 
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Modeling, is performed in this research to study the effects of force on system behavior. 

Forces acting on the system are responsible to produce translational force or vibration 

force. Modeling is done to study the effect of torque, which is rotation or twisting effect. 

Friction and damping effects of the system are also studied in the modeling. 

The modeling is done by considering one point as reference and the force on the 

reference point is assumed to be zero. The reference point in the system acts as a sink or 

ground in the electric circuit. The same reference point is referred to torques as well. The 

forces and torques are drawn with respect to the reference point. The force vectors 

coming to the reference point arc cancelled out. Forces and torques of the same 

magnitude yet in the opposite direction cancel each other. Finally, the effect of total 

forces and torques on the system is clear. 

In Figure 3.3, the dynamic model of the system is shown, where two horizontal rollers are 

under consideration. The horizontal and vertical rollers have the same dynamic model; 

hence, the horizontal rollers are analyzed and the analysis is then extended to the vertical 

rollers. The lined point is considered as reference point as it is connected to the 

foundation of the device. 
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Figure 3.3 Dynamic model of haptic feedback device with two rollers 

In Figure 3.3, is the force applied by the user during needle insertion. Al, 

and . 41, are moments of inertia. F,,, and, F, are friction forces due to roller I and roller 2 

respectively, acting in opposite direction of the applied force. Force]-,, is the force 

applied by the horizontal roller connected to the motor. Normal force N is applied by the 

roller connected to the reference point; hence, the total force that is opposing the applied 

force is given in Equation 3.17: 

Ar r 
ýýiýý"ýr = F, 1 + F, Z + F, - 3.17 

The moments of inertia Al, and M, are equal but in opposite direction. The 

moments of inertia cancel one another hence; these have no effect on the haptic feedback 

output stick. Mathematically, it is illustrated as 

M, = Al, 3.18 
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The roller connected to the foundation is canceling the effects of roller I to move the 

stick downward; therefore, the stick is at equilibrium in the horizontal direction. Figure 

3.4 shows the dynamic model of a haptic feedback device with four rollers. The vertical 

rollers keep the stick at equilibrium in the vertical direction. The total opposing force is 

shown by Equation 3.19: 

=FFd, I +Fd, z +F,, +FF,,. _ - Nh - Ni, 3.19 

In figure F�P,,,,,,, applied force by the user. F,,., 
, 

F., are friction forces due to 

rollers connected vertically. F,,, , F1,2 are friction forces due to rollers connected 

horizontally. F, , F, are opposing forces applied by horizontal and vertical roller 

connected to motors. N is normal force to keep the stick at equilibrium. Same force is 

applied by vertical rollers as well. 

\ 
... ý_ 

a 

Fapplicd 
Fµýl E'µhl 

ý- .- 

f- f- 
1=F, ý, Fµnz 

m 

1 
) 
r, 

ýýýý\ ý'ý`. 

-ý ý r, F, 

Figure 3.4 Dynamic model of haptic feedback device with four rollers 
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3.4 Sensitivity analysis 

Sensitivity of system is defined as the change of response of the system with respect to 

fractional change of the system parameter. In other words sensitivity is ratio of the 

fractional change in the function to the fractional change in the parameter as the 

fractional of the parameter approaches to zero. The sensitivityS,. , of the function F is 

with respect to parameter? is shown in Equation 3.20 [47]. 

L]! ' ,/ ýF S,; !, _ lI fll 
AP/1 

/! 

According to definition of differentiation given in Equation 3.21 

limAr - 
SF 

v' -+o pp Sp 

3.2 0 

3.21 

Comparing Equation 3.21 and Equation 3.20 sensitivity takes the form of Equation 3.22 

PdF 
s,, =r (5P 

3.22 

Dynamic model of haptic feedback device illustrates the forces that are acting to oppose 

the applied force and used to reproduce the reactive force. The system parameters are 

mass of the stick, mass of the roller and friction between rollers and stick. Figure 3.5 

shows translational mechanical diagram. Translational mechanical diagram shows the 

forces and location of forces. 
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Figure 3.5 Translational mechanical diagram 

In Figure 3.5, F,,, 1 and Fµ2 .2 are friction forces due to rollers connected in vertical position. 

Fµf, 1 and F,, 1,2 are friction forces due to rollers connected in horizontal position. M,. 1 and 
M, 2 are masses of the rollers connected in vertical position. Mhl and Mh2 are masses of the 

rollers connected in horizontal position. Mg is mass of haptic feedback device steel rod 

moving in between the four rollers, the haptic feedback is produced on it. FappI d is force 

applied by operator and opposition to this force is produced by these parameters. 

Figure 3.6 shows the free body diagram of the stick. The free body diagram shows all the 

forces acting on the stick. The free body diagram is drawn to examine the forces and in 

which direction the forces are acting. s2xM,.,, szxM, -2, S2XMh,, s`xM,, 2 and s2xM, t are 

inertial forces of the rollers and stick. Inertial force is that force which is required for a 

mass to move or to stop it. The inertial force is product of mass and acceleration. sxFF�,, 

sxFF,, 2, sxFuh, and sxF,, h2 are friction force between roller and the stick. The friction force 

is the product of velocity and friction coefficient. F, and F2 are the force applied by one 

vertical roller connected to motor and one horizontal roller connected to horizontal roller. 
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Figure 3.6 Free body diagram of haptic feedback device 

The applied force is given in Equation 3.23 

F. = 

777 
Fi +s'xAf, i +s7 ̀xM,,, +s"xAfi, l +s'xAfý,, 

+s'`xM +sxF +s: rF , +sxF +sxF ., +F, ar EJ+I ph_ ýrvl {n _ 

Rearranging the Equation 3.23 by shifting forces to left side Equation 3.24 is formed 

ýýý 
s`xM,., +si ̀ xM,., + s`xM,,, +s-xM,,, F-F-F, = , +s-xM� +s. rFý, +. S: rFFJ, +sxFf,,, +s"xFý., 

3.23 

3.24 

The forces are the same quantities; therefore, it can be replaced by same variable as in 

Equation 3.25 

F=f 
ýrý, .ý-F, - Fz 3.2 5 

Putting the Equation 3.25 in Equation 3.24. The Equation 3.8 takes the form of Equation 

3.26. 

s`xM,., +s`xM,., +sZxR1,, l +sZx/L1ýý F=3.26 , +S 2 xM� + sxF,, i+ sxFý,,,, + s. rF ,, i + sxF,,,., 
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The rollers are identical; therefore, their masses are same. Hence, masses can be replaced 

by same variable as in Equation 3.27 

A7,., = M,, = Min = M,, z = M, 3.27 

The material between four rollers and stick is rubber; therefore, friction is same for all 

rollers. f-lence, friction force is also replaced by one variable as shown in Equation 3.28 

F,, = F., = F,, = F,,, = F, 

I fence Equation 3.26 takes the form as in Equation 3.29 

F= S2x4AI, + s2 xMf� + sx4F, 

Rearranging the Equation 3.30 for transfer function, 

3.28 

3.29 

F=x(s24M, +s2M� +s4F, ) 3.30 

Transfer function is the ratio between output to input as written in Equation 3.31 

x1 
F s((4M, +M�)s+41', ) 

The substitution is made for analysis shown in Equation 3.32 

Mill = 4M, + M, 
r 

3.31 

3.32 

The transfer function of the system is given in Equation 3.33 
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I 
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5' eýf dJ J' -F- 
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Closed loop transfer function is given in Equation 3.34 

I. 1, ,= N1 ,, Is- +4F, s+] 

, ý. 3 3 

3). 3) 

The sensitivity formula is applied to closed loop transfer function. Firstly the sensitivity 
due to roller masses is löund in Equation 3.35. 

_ 
Ai, cSl� ý/ Sv 

.,,, 7fl Slrr 3.35 

Putting the value of closed loop transfer function in Equation 3.35, the sensitivity due 

masses ofthe roller is given in Equation 3.36 

3.36 S'j'' ,, = -4s 2A 
(4A1, + Al, ). s' + 41; s +I 

Sensitivity due to friction between rollers and stick is found in Equation 3.37 

sII, 
r ý 

4sF, 
(4Af, +M�)s2 +4F, s+l 

3.37 

Similarly, sensitivity due to the mass of the stick is found in Equation 3.38 



"i 

.c 
- s'` A1.,, 

3.38 , j<'ý`, " (4M, + M� )s' + 4F s+I 

Steady state error sensitivity is to observe the cflect of parameters on the steady state 

error [47J. To lind steady state error sensitivity, the steady state error is calculated. Then, 

the sensitivity formula is applied on the steady state error equation. The system type is 

one; therefore, velocity constant K, is found by formula given in Equation 3.39. 

0 sTJ. 

L' - 
S 

3.39 

3.40 11 
1, 

- 
ý^ 

Gms-r0 
S iifi,, 

K_1 
4F, 

The steady state error is reciprocal of velocity constant written in Equation 3.42 

Steady state error of the system is given in Equation 3.43 

3.41 

3.42 

c'(c>z) =4 Fr 3.43 
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Steady state error sensitivity with respect to AID is zero in Equation 3.44. Therefore steady 

state error is not sensitive to mass of the rollers. The mass of the rollers has no effect on 

the steady state error of the system. 

Al, &, (Co) 
S, 

(w). u, - 
e(ao) Stil, 

= 3.44 

Similarly, steady state error sensitivity due mass of the stick is also zero; therefore, mass 

of the stick have no effect on the steady state error of the system. 

itl� & (cn) 

e(w) f5M,, 
= 0 3.45 

The steady state error sensitivity due to friction coefficient is one; therefore, the steady 

state error is directly proportional to the friction coefficient of rubber and material of the 

rollers. 

3.46 
e(oo) 8F, 

3.5 Haptic Feedback System Design 

The force exerted on the needle during needle insertion is the reactive force exerted by 

the tissues of the skin. The main aim of this research is to measure this force and 

reproduce it remotely. The force sensor senses the needle insertion force. The sensor 

provides the output voltage according to the input force. The output ofthe sensor is given 

to the data acquisition card and also given to the interface circuitry. Data acquisition card 

provides input to Matlab graphical user interface. The interface circuitry amplifies the 
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output from preamplifier and makes it suitable for motors used in haptic feedback 

mechanism. The block diagram in Figure 3.7 shows the function of the experimental 

setup. Experimental setup consists of four modules namely; needle insertion module, 

interface module, haptic feedback module and graphical user interface. 

r-º 
Needle/I folder Sensor 

Data 
Acquisition 

Interface 
Circuitry I 

Matlab GUI 

I laptic feedback 
Mechanism 

Figure 3.7: Block diagram of experimental setup 

3.5.1 Needle Insertion Module 

The needle insertion module consists of a needle, a needle holder and a sensor. In this 

module, the needle and sensor are connected by a needle holder. The sensor senses force 

exerted on the needle. Reactive force exerted on needle depends upon the needle 

parameters. 

Needle shapes and other parameters may change according to the application. Generally, 

two types of needles are used, namely, the beveled shaped needle and diamond shaped 

needle. The beveled shaped needle is commonly used for percutaneous therapies whereas 

the diamond shape is used for tissue biopsy purposes. The beveled shaped needle has no 
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pre-puncture as compared to diamond shape. The tissue reactive force also depends upon 

the diameter of the needle and the length of the needle. Figure 3.8 shows the beveled and 

diamond shaped needle tip. The typical needle parameters are given in Table 3.1 

provided by Trumo®. The first column in the Table 3.1 gives the product codes. The 

second column provides the color code of the hub of the needle. The third column 

provides the Gauge and diameter of the needles and the last column shows the needle 

length in milli-meter and in inches [43]. 

Figure 3.8: Beveled and diamond shaped needle. 

Table 3.1: Needle color coding parameter 

Product Code 
EN/ISO Hub 
Color Code 

Diameter 
Gauge/mm 

Needle Length 
(mm) 

KN-1838SB Pink 18G 1.20 40 
KN-202511 Yellow 20G 0.9 25 
KN-2138RB Green 21G 0.80 40 
KN-2316RB Blue 23G 0.60 16 
KN-2325RB Blue 23G 0.60 25 
KN-2332RB Blue 23G 0.60 32 
KN-2516RB Orange 25G 0.50 16 
KN-2525RB Orange 25G 0.50 25 
KN-2713RB Grey 27G 0.40 12 

The needle holder is shown Figure 3.6. The needle is held by a holder. The needle holder 

is made of material known as Teflon. This material is used because it is light-weighted 
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and flexible. The holder holds the needle and the reactive force that is sensed is then 

transferred to the sensor. The holder can hold needles of different diameter and length. 

The needles from 18G to 23G have different holder from the needles 25G to 27G due to 

the differences in length. The sensor is also held by the holder in such a way that force 

exerted on the needle is sensed by the sensor. 

-7 9PREM. -f Holder 

Needle a W- 

i Sensor 

.i 

. ý:. ý ý,: 
ý 

Figure 3.9: Needle holder made of teflon 

The Figure 3.10 shows the force sensor. The sensor used in this module is a 

Piezoresistor. Piezoresistor is a resistor whose value changes when normal force is 

applied on its crystal. The piezoresistor is internally connected to the balanced Wheat- 

stone Bridge. When the resistance of one terminal changes, it disturbs the equilibrium at 

deflection nodes. The voltage shows the resistance change that is increasing or 

decreasing. The sensor output is very low and it is immune to noise [44]. 

In this setup, the sensor output is in the range of milli-volts. The low noise power supply 

is used for the biasing the sensor. Referring to Figure 3.10, pin I and pin 3 are connected 

to biasing voltage, whilst pin 2 and pin 4 are the output voltages. Input to the sensor 

which is the force is given on the load cell. Since the sensor has low resistances, the 
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terminals are specially insulated to avoid short circuit with one another. The sensor 

pictorial view is shown in Figure 3.10. 

�3 
ý 

I 

Figure 3.10: Force sensor. 

The force sensor is calibrated experimentally. The sensor calibration experiment consists 

of an electronic weighing machine, different weights, a multimeter and a low noise power 

source (regular dry-cell battery). The sensor is biased by the battery according to the pin 

configuration in the data sheet of the sensor: Pin 1 is connected to the positive terminal of 

the power supply, Pin 3 is connected to the negative terminal of the power supply and 

pins 2 and 4 are connected to the multimeter. The sensor terminals 2 and 4 have very low 

voltage change as force is applied on it, therefore the multimeter measures millivolt 

readings. The sensor is of piezoresistor type: its resistance changes with the force applied 

on its load cell. The piezoresistor is connected internally with a wheat stone balance 

bridge. The change in resistance is sensed by the wheat stone bridge. The wheat stone 

bridge is unbalanced due to the change in resistance, therefore the deflection terminal 

gives the voltage to balance it. Figure 3.11 shows the internal wheat stone bridge of the 

sensor [44]. 
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Figure 3.1 1 Internal wheat stone bridge of force sensor. 

The calibration experiment is carried out by placing weights on the weighing machine to 

measure their . weight. The same weight body is placed on the load cell of the sensor. The 

reading is taken by the multimeter. This experiment is carried out for twenty different 

weights. 

The force from tissues is exerted on the needle. The holder holds needle steadily. The 

force exerted on needle is sensed by the sensor. The sensor converts the input force into 

voltage but in the milli-volts range. Therefore, the sensor output has to be pre-amplified. 

The output from the sensor is given to the Graphical User Interface Module for visual 

tecdback. The output from sensor is also given to the interface circuitry. This circuitry 

processes the input for haptic feedback module. 
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3.5.2 Interface Module 

Interlace circuitry is designed to interface the haptic feedback module to the needle 

insertion module. Furthermore, this circuitry is used for the isolation of the low current 

module from high current module. The needle insertion module is a low current module, 

the sensor has very low input and output resistance. The haptic feedback is a high current 

module as motors are producing opposing force to applied force. Figure 3.12 shows the 

circuit diagram of interface circuitry. 
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Figure 3.12: Interface circuit diagram 

In the interface circuitry, the cascaded scaling amplifiers achieve the amplification. 

Operational amplifiers are used as scaling amplifiers because of its accurate scaling and 

very high noise rejection. The summing junction in feedback is also op-amp based. The 

stall torque of the motor is cancelled by applying reverse voltage. This voltage produces 

n 
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; j, ý 

ý 
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torque in the direction to oppose the stall torque. The interface circuitry has power 

MOSFETs to derive motor. There are two MOSFET set for every motor. One is the P- 

channel MOSFET while the other is the N-channel MOSFET. The P-channel MOSFET is 

used to drive the motor in clock wise while the N-channel is used to derive motor in anti 

clock wise. 

The output of the sensor is the input of the isolator. The isolator is connected to the set of 

cascaded scaling amplifier. The output of the scaling is given to the motor drive circuits 

which are the power MOSFETs, These MOSFETs drive the motor according to the input 

at gate as MOSFET is voltage controlled resistor. The conduction through source to drain 

is controlled by gate voltage. The gate voltage is controlled according to sensor output. 

Figure 3.13 shows the diagram of the interface circuitry. 
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Figure 3.13: Working block diagram of interface circuitry 
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In the feedback part, the sensor used is the same type of sensor that is used to measure the 

force from haptic feedback device. The isolator I is used to isolate the tcedback sensor 

from over loading. Power amplifier is MOSFET driven circuitry. This is the driving 

motors of the haptic feedback device. One MOSFET set is for one motor. Therefore, two 

MOSFETs are driving the horizontal motor and the other two are driving the vertical 

motor. The MOSFET has many advantages over transistor. This is the reason why the 

transistor is not used. The MOSFETs are voltage-controlled resistors. The gate voltage 

controls the voltage between the source and drain whereas the transistor can control the 

emitter-collector voltage by base current. Therefore, transistor is current controlled 

device. 

3.5.3 Haptic Feedback Device Module 

The designed haptic feedback device uses friction as reactive force. The designed haptic 

feedback device is based upon the theory that when a one body slides on other body, 

there are some forces acting on the sliding body to oppose its motion. That opposition is 

kno\ý n as friction. The friction is of two types. Static friction is offered to the body when 

it is tending to start motion. Dynamic friction is offered when the body is in motion. The 

design device is one of the dynamic friction devices. 

The concept of this device is taken from the device designed for the hysteroscopy. This 

device is of 4DOF [36]. The designed device also consists of four rollers. The designed 

haptic feedback device is shown in Figure 3.14. 



41 

Vertical Haptic 
Motor Feedback 

Stick 

Gear 
Mcchanism 

Vertical 
Roller 

Horizontal Moto 

Figure 3.14: Designed haptic feedback device 

These rollers are used for the production of dynamic friction. The rollers are made of 

Teflon material. This material is used because of its rigidness and light weight. This 

material is commonly used for the production of plastic gears. It has less wear and tear as 

compared to other materials available. The diameters of the rollers are 5-milli meter. The 

lengths of these rollers are 20-milli meter. The stainless steel rod is installed in the roller 

axially. The steel is used as the shaft of the roller. The diameter of this rod is 2.5 milli- 

meters. The two rollers are installed horizontally while two rollers vertically. This 

arrangement is done to distribute the reactive force uniformly along the output stick and 

to avoid the undesirable movement of the stick. One vertical and horizontal roller is 
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connected to the motor by gear mechanism. Gear mechanism is used to avoid slippage at 

joint between roller and motor. To avoid friction between the rollers and their foundation 

ball bearings are installed. Therefore, every attachment point of the rollers have ball 

bearings. Figure 3.15 shows the isometric view of the roller. 

Figure 3.15: Roller isometric view 

The rollers are driven by motors to produce the reactive torque. The motors used in this 

design are permanent magnet DC motor. The torque of these motors is proportional to the 

applied voltage. The applied voltage is the amplified form of sensor voltage. The motors 

have stall torque equal to 15 milli Newton meter that can be produced by the 4.2 volts in 

opposite direction. 

The reactive torque can be converted to tangential force by placing a body on the roller. 

The torque is equal to the product of tangential force to the moment arm. The moment 

arm is the distance between the axes of rotation and the applied force and vice versa. 
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Therefore the output stick is placed in between the rollers. The output stick is made of 

stainless steel. The reactive force produced on the stick is the friction between it and the 

rollers. The friction force is equal to the torque over the moment arm. The moment arm is 

the radius of the rollers. The rollers are rotating along its center. The friction between the 

rollers (Teflon) and steel is very low especially for smooth surfaces. To avoid slippage 

between the steel stick and rollers, a rubber sleeve is putted on the stick. The friction 

coefficient of rubber and Teflon is higher than Teflon and steel. The roughness of the 

surfaces is not applicable because it will produce vibrations in friction force which is the 

reactive force. The gravitational pull is cancelled out by bending moment analysis. The 

steel stick length is found, which obeys the bending moment equations. In this analysis, 

the stick is treated as the beam is connected at one end to support and the other end is 

free. At the free end, the feedback sensor of the interface circuitry feedback terminal is 

connected. This connection is manual, which means that the operator will have to hold 

the sensor at the end in his hand. 

The interface circuitry module gives the input to the motors of this haptic feedback 

module. The inputs of these motors are proportional to the reactive force exerted on 

needle during needle insertion. The motors produce the reactive torques. The torques are 

transferred to the rollers with the help of gears and ball bearings. The reactive force 

produces the reactive tangential force along the circumferences of the rollers. The 

reactive force is transferred to the stick as a friction force to the applied force. The 

applied force is acting on another end of the stick. This force is analogous to reactive 
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force applied on needle by tissues. The applied force is force acting on the needle to be 

inserted while the reactive force is the force opposing the exerted force. 

3.5.4 Graphical User Interface Module 

This consists of two parts i. e. the data acquisition and user interface. In this module, the 

sound card of the computer is configured as the data acquisition card. The sound card is 

used to minimize the processing delay as compared to the other DAQ cards. The trigger 

is set manually. When the start button in the GUI is pressed, the sound card is triggered 

and it will start acquiring data. The signal from the force sensor is analog. The sound card 

of the computer also does the analog to digital conversion as it is done for voice signal. 

The level of the sound card is -l to I volt. Therefore, the pre-amplifier and filter is used. 

The sampling rate is 8000 samples per second to achieve a higher level of accuracy. The 

sound card gives force data to matlab workspace and the figure is updated accordingly. 

The figure provides a visual haptic feedback. Figure 3.16 shows the block diagram of the 

GUI setup. 

Figure 

Sensor II Amplifier/Filter 
i 00 

Sound card 

Figure 3.16: Block diagram of GUI. 
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Matlab 
workspace 
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Figure 3.18 shows the view of graphical user interface environment. The GUI decides the 

needle status by model force. The parameters are entered into the GUI environment by 

the user manually. These parameters are elasticity of the tissue in K,,;,, diameter of needle 

in millimeter and the depth of the needle in millimeter. Than the GUI compares the input 

Ibrce and the model force at insistent these two are equal than the GUI shows that needle 

inserted. 

03 

03 

ý 
ena,. �n.. ý 

_1JJ 

i 
i 

ataR 

14 n5 nc n7 ni r9 

Figure 3.17: Pictorial view of GUI environment. 
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The operator has option to change the condition of the decision making of GUI for the 

needle insertion status. The GUI makes decision that needle is inserted when needle force 

is greater than model force. Also GUI can make decision from the force data acquired by 

DAQ card. When abrupt drop in the force occur than the GUI status changes to needle is 

inserted. 
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3.6 SUIIIIIlaT3' 

In this chapter the haptic feedback system design is discussed. The first section discusses 

needle insertion force models. Second section of the chapter discusses the dynamic 

modeling. The third section discusses the sensitivity analysis of the system. Last section 

discuses the design of system. 

In the next chapter, the simulation and experimental results is discussed. Firstly needle 

force simulation results are presented followed by experimental results of sensor 

calibration, needle insertion on chicken skin, haptic rendering, GUI results and sensitivity 

analysis on the system is discussed. Lastly the comparison between experimental results 

and model is discussed. 
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CHAPTER 4 

HAPTIC FEEDBACK DEVICE RESULTS 

4.1 Introduction 

In this chapter the results of the system is discussed. Section 4.2 discusses the model 

simulation results. In section 4.3 discusses the experimental results of Needle piercing 

force, sensor calibration, haptic rendering, GUI results and sensitivity results. Section 4.4 

provides the discussion based on experimental results. 

4.2 Needle Insertion Force Simulation 

Simulation of the model is carried out by substituting the values of elasticity [13]. The 

value of the needle diameter is substituted from Table 3.1 which is given by the needle 

manufacturer, Trumo® [43]. The tissue deformation value is assumed to be 20 

millimeters. Table 4.1 shows the values of the parameters and Figure 4.1 shows the 

simulation results of the model. 

Table 4.1: Indentation force for different needle diameters 

Diameter(mm) Deformation(mm) Elasticity(Kpa) Force (N) 
0.4 20 23 0.490666667 
0.45 20 23 0.552 
0.5 20 23 0.613333333 
0.55 20 23 0.674666667 

0.6 20 23 0.736 
0.65 20 23 0.797333333 
0.7 20 23 0.858666667 
0.75 20 23 0.92 
0.8 20 23 0.981333333 
0.85 20 23 1.042666667 
0.9 20 23 1.104 
0.95 20 23 1.165333333 

I 20 23 1.226666667 
1.05 20 23 1.288 
1.1 20 23 1.349333333 
1.15 20 23 1.410666667 
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Figure 4.1 Relation of indentation force to needle diameter 

Simulation results are showing that needle insertion force is linearly related to diameter 

of needle. Increase in the diameter of the needle the reactive force will increase as well. 

4.3 Experimental Results 

In this section results of experiments performed on the haptic feedback system is 

presented. Firstly, the results of sensor calibration are presented, and then this is followed 

by needle insertion force profile. Needle insertion forces for different diameters, haptic 

rendering results and GUI results are also presented in this section. Lastly the sensitivity 

analyses of the system are presented. 

4.3.1 Sensor Calibration Results 

The finding of sensor calibration experiment is given in Table 4.2. The first column is the 

value of mass. The mass is converted to weight with the help of gravitational constant. 
The voltage output of the sensor is given in millivolts in the fifth column. For every 

reading, the conversion factor from force to volts is found which is given in the seventh. 
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The average value conversion factor is constant 0.0285±0.007. The Figure 4.2 shows the 

relation between input of the sensor and output of the sensor i. e. force and voltage. From 

Figure 4.2, it is clear that input output is linearly related to each other; therefore, the 

sensor is linear for the range of the needle insertion force. 

Table 4.2: Sensor calibration readings 

Mass 
(g) 

Mass 
(hg) 

Gravitational 
Constant 
(g=9.8) 

Force(N) Volts(V) Volts to gram Volts to Newton 
Average 

for 
V to N 

0 0 9.8 0 0.0027 0 0 
24 0.024 9.8 0.2352 U. UU5 0.000208333 0.021258503 
32 0.032 9.8 0.3136 0.0073 0.000228125 0.023278061 
40 0.04 9.8 0.392 0.0101 0.0002525 0.025765306 
54 0.054 9.8 0.5292 0.0136 0.000251852 0.025699169 
66 0.066 9.8 0.6468 0.0178 0.000269697 0.027520099 
78 0.078 9.8 0.7644 0.0215 0.000275641 0.028126635 
100 0.1 9.8 0.98 0.02806 0.0002806 0.028632653 
108 0.108 9.8 1.0584 0.0318 0.000294444 0.030045351 
124 0.124 9.8 1.2152 0.039 0.000314516 0.032093483 0.0002799 
134 0.134 9.8 1.3132 0.0395 0.000294776 0.030079196 
150 0.15 9.8 1.47 0.0424 0.000282667 0.028843537 
162 0.162 9.8 1.5876 0.0502 0.000309877 0.031620055 
188 0.188 9.8 1.8424 0.0554 0.000294681 0.030069475 
208 0108 9.8 2.0384 0.0605 0.000290865 0.029680141 
216 0.216 9.8 2.1168 0.064 0.000296296 0.030234316 
230 0.23 9.8 2.254 0.0677 0.000294348 0.030035492 
242 0.242 9.8 2.3716 0.0718 0.000296694 0.03027492 
258 0.258 9.8 2.5284 0.078 0.000302326 0.030849549 
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Figure 4.2 Force vs output voltage of sensor 

These experimental results show that the sensor is linear for the range of needle insertion 

force. The range is different for various tissues in literature [8] [13] [41 ] 

4.3.2 Needle Insertion Force 

Figure 4.3 shows the experimental results of the needle insertion reactive force acting on 

the needle. The reactive force starts to increase as the needle contacts the tissue. The 

reactive force increases up to a certain point and then drops down as shown by the arrow. 

The point at which reactive force reaches its first maximum that applied force is equal to 

the stiffness of the tissue capsule. The reactive force falls to a very low value and this 

may cause overshooting of needle position. This point is very significant for needle 

insertion haptic rendering. The stiffness force vanishes as the needle pierces through the 

skin and the reactive force is now the result of friction and cutting forces [41]. Data of 

needle insertion reactive force is acquired by pocket logger XR440 and is taken on 

chicken meat with skin. The first spike shown by arrow in the reactive force profile 

shows that at this instant, the skin of the chicken is pierced and the needle is entered into 

the tissue. 

3 
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Figure 4.3: Force vs time from pocket logger XR440 

4.3.3 Experimental Results of Needle Insertion 

- Force vs Time 

Readings of the force profile are taken on needles of different diameters. The needle 

gauges are already shown in Table 3.1 in the previous chapter. These are 20G, 21G and 
23G. Table 4.3 shows the needle piercing force according to diameter. Figure 4.4 plots 

needle piercing force for different diameters of the needle. 
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Table 4.3: Experimental reactive force on needle during piercing of skin 

Gauge Dia Voltage Converting 
Factor Force 

20 0.9 3.24 0.3 0.972 
20 0.9 3.34 0.3 1.002 
20 0.9 3.07 0.3 0.921 
20 0.9 3.54 0.3 1.0627-7 
21 0.8 3.1 0.3 0.93 
21 0.8 2.75 0.3 0.825 
21 0.8 3.05 0.3 0.915 
21 0.8 3.33 0.3 0.999 
23 0.6 1.19 0.3 0.357 
23 0.6 1.1 0.3 0.33 
23 0.6 1.39 0.3 0.417 
23 0.6 1.78 0.3 0.531 
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Figure 4.4: Experimental piercing force according to diameter of needle. 

The average force needle insertion force for 20 gauge needle is 0.989±0.072 Newton, 

average needle insertion force for 21 gauge needle is 0.917±0.092 Newton and average 

needle insertion force for 23 gauge is 0.41±0.12 Newton. 
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4.3.4 Haptic Rendering Results 

To study the correlation of applied force and reproduced force of the haptic feedback 

device, the needle insertion reactive Force is given in Figure 4.5. This is the applied force 

which is input to the haptic feedback device, while an identical signal generated 

electronically via the interface circuitry is shown in Figure 4.6. 
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Figure 4.5 Needle reactive force vs time 
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Figure 4.6 Reactive force reproductive circuit 
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Normalized values of the signal given as input force to the haptic feedback device is 

shown in Figure 4.7 and normalized values of the signal reproduced by the haptic 

feedback device is shown in Figure 4.8. Correlation of the input force signal and output 
force signal is shown in Figure 4.9. Table 4.4 is shows the correlation factor of the 

dev ice. 

Force Vs Time 
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Figure 4.7 Input force signal of haptic feedback 
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Figure 4.8 Output force of haptic feedback device 

Table 4.4: Correlation factor. 

Correlation 
Factor Percentage 

Average 
value Positive Error 

Negative 
Error Error 

0.75 75 
0.51 51 
0.82 82 0.696 0.186 0.124 ±0.18 
0.76 76 
0.64 64 



56 

Figure 4.9 Correlation of haptic feedback device 

The average correlation factor of the system is 69.6%±18. The system can achieve the 

correlation factor of 82%. The correlation diagram is showing that the system following 

the input. In other words the output is of the pattern of input. 

4.3.5 Graphical User Interface Results 

Figure X1.10 shows the graphical user interface. The processed data is shown on the screen 

of the computer. The graphical user interface is only for visual feedback so that a surgeon 

can observe the reactive force on the needle. Needle status is shown near to the start 

button. As the start button is pressed, the needle force is acquired by the sound card with 

the help of' the force sensor. The needle status updates as needle force changes very 

abruptly. The elasticity, diameter, and depth are parameters keyed into the graphical user 

interface and the program calculates the model force. \'Vhen the needle sensor has no 

data, it means that the needle is not inserted and it is moving freely. The data acquisition 
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card acquires noise from the sensor as the sensor is very immune to noises as shown in 

Figure 4.10. The graphical user interface has a feature that it can only calculate the data 

which is in the range of skin or tissue range. If one of the parameters is not in the range 

cited in the literature review, it will show an error message and it will not show the real 

force, as shown in Figure 4.11. The parameters key in are 23Kpa for Elasticity 0.8 

millimeter for diameter of the needle and 12 millimeters for the deformation of the skin. 

The model force calculated by the GUI is 0.888 Newton. 
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Figure 4.10 Graphical user interface of haptic feedback device with needle insertion 
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Figure 4.1 1 Graphical user interface of haptic feedback device with error 
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4.3.6 Sensitivity Analysis Results 

The response sensitivity analysis of the device shows that system response will change 

with respect to mass of the stick reciprocally due to the negative sign. The mass of the 

stick increases by one unit the response sensitivity will decrease by one unit. The 

response sensitivity due to mass of the roller is also related inversely means with increase 

in mass of the roller the sensitivity will decrease but the decrease rate will four times as 
in the case of mass of the stick. While in the case of steady state error sensitivity for mass 

of the stick and roller is zero therefore mass of the stick and roller have no effect on 

steady state error. 

Table 4.5: Sensitivity analysis results 
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In the case of friction force between roller and stick the response sensitivity is inversely 

related to it and while the steady state error sensitivity is fully depending on it. Change in 

the friction force between roller and stick will change steady state error. The reason is 

that the system is friction based i. e. it produces the opposing forces by friction forces. 

The device is friction based device. 

4.4 Discussion 

The needle insertion haptic feedback is one of the solutions in tele-surgery. The needle 
insertion force is modeled in three parts: force due to capsule stiffness, friction, and 

cutting. Experimental results shows that before needle pierces skin the capsule stiffness 
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force is acting on the needle shaft while after piercing the cutting and friction forces are 

acting on needle. The force due to capsule stiffness is depending on three parameters of 

needle, namely diameter of needle, elasticity of tissue and deformation of tissue. 

Figure 4.12 shows the comparison between the experimental and the simulation results. 
The 23-gauge needle is deviating from the model due to its small diameter: diameter of 

the skin pore is 50 microns or 0.05 millimeter [45]. Hence, the needle is not piercing the 

skin but enlarging the skin pore. The 20- and 21-gauge needles are converging to the 

model and thus following the model behavior. Needles lower in diameter than the 23- 

gauge are deviating from the model. The model is converging for 20- and 21-gauge 

needles. The needle length is only affecting the friction force. The longer needle will 
have more friction due to more area of contact as compared to shorter needle. The friction 

force is only acting on needle when the needle is traveling through the tissue. 
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Figure 4.12: Comparison of experimental and simulation results. 
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Referring to Figure 4.3, the first drop is due to stiffness of the skin's first layer. When the 

needle is in contact with another layer the stiffness force of that layer starts to react. This 

layer to layer force variation takes place as the needle reaches uniform tissue or bone. 

Hence, the force profile as seen in the Figure 4.3 is not smooth. 

The needle insertion force can be sensed and reproduced remotely with help of interface 

circuitry. The overshoot in the needle position occurs due to the softness of the tissue. 

The tissue is pressed by needle till its elastic limit and when the elastic limit of the tissue 

is attained the skin rupture occurs. This point the skin tends to come back to its 

equilibrium position and the reactive force is very low and the applied force is very high. 

Hence, this difference in equilibrium forces the needle position overshoot occurs. 

The needle insertion performed in real time on chicken skin and the results are compared 

with the different models. The Table 4.6 shows the comparison between model forces 

and experimental forces. 

Table 4.6: Experimental and model needle insertion forces 

Diameter (mm) Experimental 
Force(N) Di Maio Model Ottensmeyer Model 

0.6 0.989 0.002839565 0.736 
0.8 0.917 0.005048115 0.981333333 
0.9 0.4095 0.006389021 1.104 

The results in table show the comparison between two models. Both models are 

estimating the needle insertion force. The experimental results converge toward 

Qttensmeyer model as compared to Di Maio model. 

The correlation of the input and output force is done using statistical formula. The forces 

are compared with help of Equation 4.1. The input force is taken as x and output force is 

taken as y then the cross correlation r at delay d is defined as 
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J' = 
nrx)* (y(i -d)-nry)] 

4.1 
(. v(! )-mx)` 

ý,, 

Where nix and my are the means of the corresponding series. If the above is computed 

for all delays el=O, 1,2... N-l then it results in a cross correlation series of twice the 

length as the original series. At best performance of the device the correlation factor is 

82%. It means that output force of the haptic feedback device is 82% similar to input 

force. 
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4.5 Summary 

This chapter discusses haptic feedback setup results and analysis. The first section 

discusses the sensor calibration, which enables to find the conversion factor from sensor 

voltage to force. The second section discusses the needle insertion force for different 

diameters of needle. These forces are compared with the model simulated forces. Then 

the needle insertion measured forces are discussed and divided into its components. The 

needle insertion force is reproduced by electronic circuitry; the haptic feedback device 

reproduces the haptic force on the surgeon's hand. The input signal of the interface 

circuitry and output force of the device is correlated and correlation factor is found. The 

haptic feedback GUI is also discussed in the chapter. The GUI is only for visual haptic 

feedback, it can also calculate the model force by factors given to it. The chapter also 

included dynamic model of the haptic feedback system on the basis of the dynamic 

model. The design sensitivity analysis of the device is analyzed the steady state error 

sensitivity is also included in this chapter. The system response is reciprocally sensitive 

to mass of the stick; four times mass of the rollers and four times to the friction force 

between stick and rollers. System steady state error is only sensitive to the friction force 

between stick and rollers. 

Forth coming chapter is conclusion drawn from the experimentation and analysis. The 

second section discusses the future recommendation for this work. Future work is based 

on the limitations in the system or advancement in the system. 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

5.1 Haptic Feedback Device Accuracy 

The aim of this study was to design a haptic feedback device for needle insertion and 

study different models for needle insertion. Force from needle insertions at slave is being 

measured by sensor and communicated to master. At master end, the force signal is 

reconstructed with help of electronic circuitry. The force feedback is produced by the 

device on the hand of the surgeon. Previously, most of the research is based on realistic 

data and realistic force reproduction. Most of the studies were based to train the surgeons 
for tele-surgery. The goal of the work reported here was to design a device for reality- 

based data that results in more accurate representation of a needle insertion force 

feedback scenario. The device designed in this study is friction based. The device is 

producing the feedback force with the help of friction force. The device friction is 

controlled with help motors which are driven by the reproduced signal by interface 

circuitry. 

The needle insertion model force and experimental force is compared and it is found that 

0.6 millimeter is not converging to model. The 0.6 millimeter needle force profile is 

studied and it is found that the needle is not piercing the skin but it enlarges the pore size. 

Therefore its force is not dropping at skin piercing. The average skin stiffness force for 

0.9 millimeter needle is 0.989 Newton, for 0.8 millimeter needle the average force is 0.91 

Newton and for 0.6 millimeter needle the average force is 0.41 Newton. 

The device designed is studied and checked for the needle insertion force reproduction 

and the device was able reproduce the prick on the operator hand. To study the accuracy 

and realistic production of the haptic feedback the correlation between input force and 

output force can give better insight. This analysis will give the percentage relation 

between output and input. The designed haptic feedback device correlation factor is 87%. 

The system correlation is only for the perpendicular needle insertion. The device is 
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accurate only for the perpendicular forces, if the angular needle insertion occurs than the 

device will only produce the vertical component of reactive force. It will be unable to 

produce the literal force components. 

The sensitivity of the device is studied and the device response is found sensitive to mass 

of the stick, rollers and friction. The device steady state error is sensitive only of the 

friction between stick and rollers. 

5.2 Suggestions for Future Extensions and Developments 

The haptic feedback device designed in this thesis has one degree of freedom, therefore it 

is not able to produce realistic force feedback for angular needle insertion. It only 

produces realistic haptic feedback for normal that is when needle is at 90 degrees to 

tissue. Therefore, in future the research is needed to be carried out to increase the degree 

of freedom of the device. 

The graphical user interface in this study is used as visual feedback. The GUI can be 

made more accurate and clear as it only provide needle status in the study. The GUI can 
be used as simulator for the models in future research. 
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Appendix-A 

Data Sheets of Electronic Components 

Operational Amplifier LM741 

Natto it al 
Semiconductor 

LM741 
Operational Amplifier 
General Description 
The LM741 serial are genural purpose opemuonal amplifi- 
ers which feature improved perto; um n: e over industry stan- 
dards like the LM709. They are duect, plug-ii replacecnents 
for the 709C. LM-101. MC1439 and 74x3 it most appicotions. 
The amplifiers oiler many features which make their 
cation nearly fook5iool: overload protection on the input and 

Connection Diagrams 

0((SEi IWLL 

J 

Molal Can Packaffe 

INY(PM0 WUT )6 MIIYUi 
f 

MON-ol'! (Plº: 4 Mi9Jf 3} pýTSCT NUII 
" 

CGilJI G1 
Nob 1' U4741" n at . 19ab. r. 41 0,13831 0,10101 

Order Number Lt. 1741H, Ltd741HIB83 (Nc1e 1). 
Lk1741AH/883 or LL1741CH 

See US Package Number H08C 

Ceramic Flatpak 

r: I 

"aan wul 
-IwuT I 

---UT 

LM741W 

ýý 
ýW 3'. 

]CJ'fl'1 

mfucc 
Order Number Lb1741 W/883 

See NS Package Number WIOA 

Typical Application 

Avyust 2000 

output, no latch-up whc-n uie common mode range is ex- 
ceeded. as will as freedom from oscdlahons. 
The LM741C is idenucal to the LM741; L1.1741A except that 
the LM741 C has their perform Ice guaranteed over rr C'C to 
+70 C temperature rarxt.. instr-rd ý4 -55 Ct a1h5'C 

Features 

Dual-In-Line or S. O. Package 

Orr5t1 M:. L 

rKRlwo rruf 

MpF-KIEqTMK. 
Mý1 

Order Number LM741J. LM741J1883. LM741CN 
See NS Package Number JOGA. L4O8A or N08E 

Offset Nulling Circuit 
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Appendix-A (Continued) 

Absolute Maximum Ratings (Note 2) 
If Military/Aerospace specified devices are required, 
please contact the National Semiconductor Sales Office/ 
Distributors for availability and specifications. 
(Note 7j 

LM741A LL1741 LId741C 
Supply Voltag. ' ±22V ±22V ±18V 

Po'Aer Dissipation (Note 3) 500 mw 500 mw 500 mW 
Differential Input Voltage ±30V ±30V ±30V 
Input Voltage (Note, 4) ±15V ±15V ±15V 
Output Short Circuit Duration Continuous Continuous Continuous 
Operating Temfxretute Range -55'C to +125 C -55 C 10 +125'C O'C to +70 C 

Storage Temperature Range -65 C to +150 C -65 C to +150 C -65'C to +150'C 
Junction Temperature 150'C 150"C 100C 
Soldering Information 

N-Package (10 seconds) 260'C 260 C 260 C 

J- or H"Package (10 seconds) 300'C 300'C 300 C 
1.1-Package 

Vapor Phase (60 seconds) 215'C 215'C 215'C 
Infrared (15 seconds) 215'C 215'C 215'C 

Sev AN"450'Sudace Mounting Methods and Their Effect o n Product Reliability' for other methods of 
sold ring 
suitace mount devices. 
ESD Tolerance (Note 81 400V 400V 400V 

Electrical Characteristics (Note 5) 
Parameter Conditions LL1741A L14741 L1474IC Units 

Min Typ Max Min I Typ Max Min Typ Max 
Input Offset Voltage TA 25 C 

R; 10 kit 1.0 5.0 2.0 6.0 mV 
R, 5011 O. B 3.0 n)V 
T.. - T, TAAN% 

Rs . 505! 4.0 mV 
R. 10 kt1 6.0 7.5 mV 

Average Input Offset 15 NVrC 
Voltage Drift 
Input Offset Voltage TA = 25'C. VQ = ±20V ±10 ±15 15 mV 
Adjustment Range 
Input Offset Current TA = 25 C 3.0 30 20 200 20 200 nA 

TAM,, 5 TA T. 70 85 500 300 nA 

Average Input Offset 0.5 rnA, C 
Current Drift 
Input Bias Current TA = 25 C 30 80 80 500 80 500 nA 

TAM,, = TA TAMAX 0.210 1.5 08 pA 
Input Resistatrca TA = 25'C. Va = 220V 1.0 6.0 03 2.0 03 2.0 1.1! 1 

TAm1 ,. TA TAMAx" 0.5 MS! 
Ve = ±20V 

Input Voltage Range TA = 25'C ±12 it",; V 
TAir� S TA TAMAx ±12 ±13 V 
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Appendix-A (Continued) 

Electrical Characteristics (Note 5) (continued) 

Peren»1. r Conditions LL1741A LM741 LL1741C Units 
Min Typ Max Min Typ Max Min Typ Max 

Lnrlj! : "131AI WdtilqA (., 1ir1 TA 
. 25 C. RL 

-2 kl! 
V, . a20V, V. .S 1SV 50 V/mv 

V, =x 15V. Vo =2 10V 50 200 20 200 V: 1nV 
TAM� L TA TAw, >,. 
RL .2 kit. 

15V 32 V/mV 
V. =I 15V Vo = s: 10V 16 V: rnV 
Vs xSV, V. 22V 10 V. /mV 

Output Vu1t. MjP Sw111Sf V. . 22pV 
RL 10 kit x16 v 
RL 2kit x15 V 

V. = it 15V 
RL. 10ki1 x12 =14 =12 x14 V 

RL. 2kt1 x10 x13 x10 213 V 
Output Short Cut: un TA = 25'C 10 25 35 25 25 rrA 
CGUn, nt TA�,, s T. s T_ 10 40 mA 

Cunmon-Mnd. TAL,,, _ TA TAw, A>t 
Rel, stxxl Ratio R, ý 10 kiL V,, A . t12V 90 70 90 dB 

n, : 5011. V, � = x12V 80 95 d8 
Supply Volt4pa Relactiotl TAA,,, ; T. TA.. A,,. 
Ra11o V, x20V to V, . : 5V 

R. 5011 86 06 

F 

dB 

R, 1o kit 77 96 77 96 dB 
Tlanawnt Rae. paw. TA 25'C. Unity Gain 

Rue Time 0.25 0.8 03 0.3 Ns 
Ovwsllout 6.0 20 5 5 "" 

BarrJwldlh (Note 6) TA . 26'C 0.437 1.5 1.4 Hz 

Stew Rnte TA = 26C. Unity Giun 0.3 0.7 05 0.5 V. ti, s 
`a/rpN Curr. n+ T. = 25 C 17 2.8 1.7 2.8 mA 

Pow" Cansunl)tron TA . 25'C 
Vo. *20V 80 150 mw 

V. x 16V 50 85 50 85 mw 

LM741A V,. 120V 
TA - TAA,,, 165 mW 

T. . TA.,.., 135 n1W 
LM741 Ve. 2 15V 

TA = TAxn, 60 100 mW 
TA = TArAA+i 45 75 mW 

how : Abh4b Maws Ratnps' un1CAr tnin tr">W wtwh UirtnW U tM 4: w4 mnr occui Otwatrp RssnQs trxy+ con0ub3ra ta rLatt t7w Grew* K 
tun[Unal Du dü m dgm, W {y-il: prl. xmmcý Y. @& 
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Appendix-A (Continued) 

Electrical Characteristics N. s) (catLnueJ) 
N. I. 9: {'. r at f'. rtt(-ur�., ttw.. O:. M'a. mu. t D. dvos: d D. OOtl o. Ih --. W acM., ra .wT, mu J. fra rw. x ". wo? uo Mnnýn 
Faupý ý. T, 

- T. . . t. Vpt 

Thonnal R9RtMtallG" CYfdiP (J) DIP (H) HOB (H) SO-8 (M) 

ttN lJuýl; UOn tn AnýlHwai 1L(i GM: 1fKtCYJ 170 CW tvSC: \, V 
luf- (, lut>:: UCn to Cnerl NýA N: A 25'C! W WA 

Thermal ii9plplrnc" 

t1N (Jutt; UOQ In AmlHwtt) 

uf- (Ju; F; Ucn to Cnerl 

Ih. w 4 lu au114 .. a. y.. e I..; o Il. nn "15V. IM ebwtvw I. mmuln irpul-ab-g- w -Wal U fw wpplr -A-pr. 
No1Y ü. Ud.. cl ".. t.. rwvý ».. {-d tlrw cOY: rcokar ppy k:. Vo -"15V -? 5 C. L 

. "1: 5C (LM7414M741AI Ga v. Y LM7+ICLM'41E. tlwt. 

1M . Y. r IYiYlwl Y. ý vý. Tý .C 
Now e. CaF: uI: Y.. J whI" Ilcnl 13W MHt). o. ssTilw TYnr. L1s1 
Now 7: F- inMHr 61.. "IkMI". no e.... Fit TS711 K 1". I 1M71 1 nW METS7IIAX kY LM711Y. 

ILIw Yc H. YIYYI I.. y n.. f.. I I1 Yu iD uw. M M1I1 1-IF 

Schematic Diagram 

c. rair (Jº 
i O(i CM, 

NA 

DIP (N) 

1 no CVi 
N. A 

HOB (H) 

1-aCVII 
25'GW 

so-8 (G1) 

ý,. ". r; w 
NA 
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Appendix-A (Continued) 

Physical Dimensions inches (mdlrneters) unless otherwse noted iContinuedt 

0.090 +0,270 MAX 
0.03 0.0501 0.001 j+ 0-005 YIN -YP 

0.075 tY'' I 

0.026 10 6 
Typ 

0.370 
0.250 

C. 773 u., x 0.260 
G1ý1. 0.38 

1 ý 
0.0'2 
o. DOr ý 

() 1AU A 
DETAIL A 0.37D 

o ä3D 

PIN +1 
IDENI . 10+ lit. Q 

0.006 w w 
0,001 

J L 

ý 

lip C. 0191IF 
. 

L 
0. C13 4AX 

. 0I 
10-Lead Ceramic Flatpak (W) 

Order Number LM741W/883. LM741WIG-LIPR or LM741WG/883 
NS Package Number W10A 

National does not assume any responsbIty for use of any circulry described. no circuit patent licenses are implied) aixt National reserves 
the rwht at any U ne without notice to change said cirutry and specifications 

For the most current product infonnation visit us at wxw. n tional can 

LIFE SUPPORT POLICY 
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS 
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR 
CORPORATION As used herein: 
1 Life support devices or systems are devices or systems 2. A critical component Is any component of a life support 

which (a) are intended for surgical hrplail into the Dody. or device or system whose Ialure to perform can be reasonably 
IS) support or sustain Ilte and whose failure to perform when expected to cause the failure of the life support device or 
properly used in accordance with instruclxru for Use system, or to affect its safety or effectiveness 
prWided In the labehng can be reasonably expected to result 
In a sigitifhcanl uipiry to the usor 

BANNED SUBSTANCE COLIPLIANCE 
National Se rllcoix)ucbr certifies that Ste products a xi packing materials meet the provisions of the Customer Products Stewardship 
Specification (CSP-9-111 (32) and the Banned Substances and Materials of Iilerest Specification (CSP-9.111S2) and contain no Banned 
SLOstances" as delved in CSP-9-1 1192 

NatitN41I $wmKpndycbi NcUOncl Swn1COlWYCtor National Swmieonductor NancrW Swmconduwtor 

Vryý 
Amwncwc Cwbmwr Ewap CwcomN 6upport Comm 4r DweYa Wriomwr Japan Cuuowwr Support Cwncr 
$uppulCwnwr Faa. JG10! 11051: "OS 6i OupportCanur Fac: BIJX147607 
Enal nr. badOwckOnccum Emd aury; appatdnwecm Email yupppt, nwcocm Emtd pn4aChwekOncttm 
Tal It: 42YD44S0 pwuwcn it NT. "i04005: 85208 Tat 813K00754: " 

En01wn T. I. w461o! 07C"24ti"2171 
w"wnapwmm Furpwr Tat aCý10; 14101 8740 
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Appendix-A (Continued) 

Power MOSIAý. 'I' M"I'P? y55 

MTP2955V 

Power MOSFET 
12 Amps, 60 Volts 
P-Channel TO-220 

Tltl, 1 \Y! )'; j 1 '1 1% devgne(I to withstand Isiah enet*' in the 

ncalit l: he uud uunnt. )tIVII IIIudes Lhslvlled for 1ow co1raize. hlcll 

y)ecd %%%at. ltintl a Ill 011C. 111011% 111 power supplies. couvetter; and poster 
Iltohq ctUt las. II"esc dct ices alle p; nt is ttlu r Iy 'cell suited lot badge 

cit. lilts glide diode speed Acid conuuutAti't safe Opelftinm ateas are 
cl It Ical and otter adthtlonaI safety plat will against tutexpected voltage 
(1alhlellls 

" AvalAUChe Energy 1pe: t2iad 
" II )tii and %'Uti(un) Spc. "ficd lit Elct tted Tdlupelitul. 

MAXIMUM RATINGS II", C unloss ulhomisc. noI . d) 

Rating Symbol Value Unit 

Drain-10-Source VWtage VDSS Ij0 Vdc 

OiunHu 13nte Vultuqe (R(-'S =10 MC)) VDGR 60 Vdc 

Gale-10-SOtlfCe Voltage 
-Continuous V("S 2 15 Vdc 

- Nor. -Rulw. hnvn Its, ", 10 ms) VC, SAt t 2.. 'i Vpk 

Drain Current - Continuous ID 12 Adc 

- Crxltlnuous gp 100"C ID 80 

- Gngte Pulse )Ip s 10 )15) 1pNI 42 Apk 

Tula11 Powel 0lsslpatl. ai--- PD 6D Watü 
C1Vr(11e nbnve 25 C. 0 40 ýY. "'C. 

Opelatuv, ) llnd Slolaye Ten>ueiatule Ti. Tslq -551V C 
kn, 1{pr 17', 

)In(f1e P111so Drnir. -to-SrxlrceAvalonche EAti 211) m. ) 
Enertly - Stan, ny Td = 25"C 
IVDD = _5 Vdc V1_; ti = 10 Vdc Peak 
IL =L RC.; = 25 i)) 

Theunal ReSlstunce ý"Cý 
-Ju11L11tx1toCuSp RWr 25 

- Juncnon to Amhr. nt RbJA 625 

Alnumum Lead Tuln; w"IUWIu I41 Soldnnnt) TL 260 °C 
Purposes. L)Y Iran cnse InI 10 
Sa. LVIMI. 

ON Somlconductor " 

12 AMPERES 
60 VOLTS 

RDS(on) = 230 msi 

P-Channel 

DI 

/... r- - .ý 
I fº, i 

c o-=-'ý " 
ds 

a 4 Oran 

TO-220AB 

IA 

ST 
CASE 

E5 YLE b 

2 :'i; 
nla 

ýýýfýf 
Source 

2 
Drain 

http:! lonsenii. com 

MARKING DIAGRAM 
& PIN ASSIGNMENT 

MTP2955V = Device Code 
LL = Locoocn Code 
Y= Year 

ORDERING INFORMATION 

Device Package Shipping 

MTP2455V TC-220AB 50 Unlt>Fnd 

Pr. Hrr. O Oevlce$ are recoiMlende0 maces ror Mot use 
aM Uest overall value 
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ELECTRICAL CHARACTERISTICS (Tj = 25'C unless otherwise noted) 

OFF CHARACTERISTICS 
Characteristic Symbol Min Typ Max Unit 

Drain-to-Source Breakdown Voltage (Cpk 2.0) (Note 3, ) V(BR)DSS 
IVES =0 Vdc, ID =0 25 rnAdc) GO - - Vdc 
Temperature Coefficient (Positive) - 58 - mV! "C 

Zero Gate Voltage Drain Current IDSS PAdc 
IVDS = 00 Vdc, VGS =0 VdC) - - 10 
(VDS = 60 Vdc, V(-, S =0 Vdc T, ) = 1EA'C) - - 100 

Gate-Both Leakage Current (v4-,. 
-; 

=t15 Vdc VDS =0 Vdc) IGSS - - 100 nAdc 

ON CHARACTERISTICS (Note 1 
Gale Threshold Voltage (Cpk ý2 0) (Note 3 VGS(Ih) 

(VDS = VGS ID = 250 pAdC) 20 28 40 Vdc 

Threshold Temperature Coettrcrent (Nagallve) - 50 - mV. '°C 

Static Dran-lo-Source On-Rosistance (Cpk 15) (Note 3. ) RDS(on) Ohm 
(VGS = IU Vdc, ID =bU Adc) - 0 185 0.230 

Drain-to-Source On-Vottoge VDS(on) Vdc 
(V(-, S = IO Vdc. ID = 12 Adc) - - 2.9 
(VGS=1UVdc, ID=6OAdc, Tj =150`C) - - 25 

Forward Tronsconductance (VDS = l0 Vdc. ID =60 Adc) 9FS 30 5.0 - mhos 

DYNAMIC CHARACTERISTICS 

Input Capucdance Ciss - 550 700 pF 

Output Copoutance NpS = 25 Vdc, VG S=0 Vdc, 
0 M1 ü) 1= 1 

COSS - 200 280 

Reoers9 Tlonsler Copaulonce . CM - E'0 100 

SWITCHING CHARACTERISTICS (Note 2 

Turn-On Delay Tine-- 

Rise Time 

Turn-Off Delay Time 

Fall Time 

Gale Charge 

SOURCE-DRAIN DIODE CHARACTERIS 
F orward On-Voltage (Note I 

(IS= 

Reverse Recovery Time 

Revers Recovery Stoied 
Charge 

INTERNAL PACKAGE INDUCTANCE 

Turn-On Delay Time td(onl - 15 30 n$ 

Rise Time (VDD = 30 Vdc ID = 12 Adc. I, - 50 100 

Turn-Off Delay Time 
VGS = 10 Vdc. 

RG = 9) ii) I d(otf) _ 24 50 

Fall Time It - 39 80 

Gale Charga OT - 19 30 nC 

(VDS = 48 Vdc" ID = 12 Adc, 01 - 40 - 
VGS = 10 VdC) O-, - 90 - 

03 - 70 - 

Forward On-Voltage (Note 1) (IS = 12 AdC, VGS =O VdC) 
(1S=12Adc. VGS=0VdC. Tj =150"C) 

VSD 
- 
- 

18 
15 

30 
- 

VdC 

Reverse Recovery Time to - 115 - as 

to - 00 
(IS=12AdC, VGS=0VdC. 

dISldt =1 OO Arµs) it) 25 

Reverse Recovery Stored 
Charge 

ORR - 0 53 - pC 

Internal Drum Inductance LO nH 
(Measured horn the drain lead 0 25" from package to center of dre) - 45 - 

Internal Source Inductance LS nH 
(pleasured from the source lead 0.25' from pockege to source bond pod) - 75 - 

1 Pulse Test Pulse width 5 300 frs, Duly Cycle ! 2% 
2 Switch r chniacteristics nie independent of operaUny function temperature 
3 Reflects typicol values 

Cpk- 
h1ax limt - T_ 

3 xSlc3 
ý 
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TYPICAL ELECTRICAL CHARACTERISTICS 
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Switching bchaviot is most easily modeled and Predicted 
by lecoguizing that the power i\IOSFET is charge 
court oiled The lengths of canons switching laterals (At) 
Ire determined by how fast the FET input capncitmce cnu 
be charged by cunent lironl the generator. 
The published capacitancc data is difficult to use for 
calculatutg titre and tell because (Main-gate capacitance 
varies _rcacly stillt applied voltage. Accordingly, gate 
chase data is used. In most cases. I satisfactory estimate of 
overage input Current (IG(AV)) can be made from a 
Ltdinteminrs' analysis of the (1iive circuit so that 

Dutiug the list! and fall time inter- al when switching a 
resistive load. VGS reutaius virtually constant at a level 
kuoNm is the plateau voltage. VSGP. T1terefore. rise and till 
times nui) be appioxminted by the foliossins:: 

ir. - Q_ x RG'(\'GG - VGSP) 
if -Q: xR(_, A'C, Sp 
55 

\(j(i° the gate (irse volts e. Nltch CNIeS 110111 ZelO 10\'GG 
RC, rile gate drive resistance 

and Q, and VCISp are read front the gate eInrge cure. 
During du tint-on Mud tut-off delay times. gate CIUTent is 
mart constant. The 'uuple, t calculation uses appropriate 
values flow the capacitmue curves in a stvrdial equation for 
voltage change in an RC network. The equations are: 
1(1(0,1) ° RG Cis., 111 IVGG'(vG(j - VGSP)] 
(d(oll)' RG Ciss In l\'G(Y\VGSP) 

a E 
C7 

The capacitance (Css) is read from the capacitance curve at 
a soltace conespondirng to the off-state condition when 
calculating td(oil) mud is rend at a volmze conespouclnlg to the 
on-state slier calculating td(off). 

At high switching speeds. parasitic circuit elements 
complicate the analysis. The inductance of the MOSFET 
source lead, inside rise package and in the circuit wiling 
which is colnm sou to both the drain and gate current paths. 
produces a voltage at the source N hich reduces the gate drive 
clurent. The voltage is deteruliued by Ldi-dt, but since di di 
is a huserion of drain current, the mathematical solution is 
complex. The MOSFET output capacitance also 
complicates the nratliematics. And finally. MOSFETs have 
finite interval gate resistance which effectively adds to the 
resistance of the driving source. but the internal resistance 
is difficult to umeastue and. consequently. is not specified. 

The resistive switching time variation versus Fate 
resistance (Figure 9) shows how typical switching 
perfornnauce is affected by the parasitic circuit elements. If 

the pansitics were not present. due slope of the curves would 
maintain a value of unity regardless of the switching speed. 
The circuit used to obtain the data is constructed to uritliruize 
common inductance in the drain and gate circuit loops and 
is believed readily achievable with board mounted 
components. Most power electronic loads are inductive: the 
data in the fisure is taken with a resistive load. which 
approximates an optimally snubbed inductive load Poss er 
MOSFETs may be safely operated into an inductive load: 
however. snubbing reduces switching losses. 
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SAFE OPERATING AREA 

The Foiwaid Biased Safe Operating Area cun'es define 
the ntaximmki sinutltaneous drain-ro-source voltaac and 
drain cuneut that a trausi, tor can handle safely when it is 
fotasatd biased. C'ui es hie based upon utaxinwut peak 
junction temperature and a case tentperattue (TC) of 25 'C. 
Peak tepeutice pulsed Iwwet limit, are deteuuined by u: utg 
the thennal response data in conjtutction with the ptvicechue 
discussed in A\561. "Transient Thetnt<al 
Resistance Genegal Data and Its Use. " 

Switching between the off-state nud the on-state may 
nacetse any load hue provided neither rated peak cuncut 
ODNI) nor rated voltage ("'DSS) is exceeded and the 
ltausitiou tithe (tt. tf) do not exceed 10p, -, In addition the total 
power acet: aged oset a complete switching cycle must 3101 
exceed (T1(( \1A\) - T(-)tR(17C )" 

A Power h1C)SFFT deswnated E-FET can be, afcly n. cd 
to aartchutc cnsutl, sctih uuclautpcd inductive loads. For 

reliable operation. the stored enetly tiow circuit inductance 
dissipated in the transistor while in avalanche must be less 

than the rated limit and adjusted for operating conditions 
differing from those , pecitied. Although iudusuy practice is 
to rate in tenors of energv. avalanche energy capability is nor 
n constant. The energy rating decreases non-linearly with an 
increase of peak cturent in avalanche and peak junction 
tetupet ature. 

Although uutuy E-FETs can witltstand the stress of 
drain-to-source avalanche at currents up to rated pulsed 
cturetn (ID%I). the energy rating is specified at tared 
continuous current (ID), in accordance with industry 
custom, The energy rating must be dernted for tenrperanrc 
as shown itt the accompanying graph (Figure 13). Maxiumrn 
energy at currents below rated continuous ID can safely be 
assumed to equal the values indicated. 
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SAFE OPERATING AREA 
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PACKAGE DIMENSIONS 
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Power MOSFET MTP 3055 

MTP3O55V 
Prtlwrtn Dtwc" 

Power MOSFET 
12 Amps, 60 Volts 
N-Channel TO-220 

I'hn Poscei \fi tSFI. T is dcsianed to ss5thsmud high eucr_y in the 

. n. Im ic., u. i c, antnutntiou nus. les I)estzned to, low s'oltale. Iuglr 

+pced . sv, ich, uu opphastion+ III 1, owel supplros, tomertu s and pm%cl 
motor cotiiiols. ihc+o devices me pnlticulnLI} «eiI suited liar bridee 

cu suit. where diode speed and connnutating sole opernnnlt meal arc 
cl rotor nud otter additional sntely 111.11 ? 111 agains iu expected t oltn. c 
tt nn. teuts. 

" r. ht-rest+tauce Arco Pt odact Obaut Otte-hall that of Standard 
sü , SFF. Ts Warr New Low \isltnge. Low RDSiott) Technology 

"F . ter Swsgclriug than E-FET Piedeces+<m 

" As :, lauche Euergy Specified 

" IL)SS "ur. l \'DS(uu) Spcctficd M Etcs atcd TctuI eratruc 
" Static 1'mauteters me the Same for both THOS V and 

'i \I( is i-: --FFT 

MAXIMUM RATINOS ii,, - 25 C unWS oltx, nn; o iw, tual 

Rating Symbol Value Unit 

Drain-SOUrce Vollage VOSS RO Vdc 

Drnln-r. atn V01tn0e (Rt; S =1U Mtl) VDUR no Vdc 
G014-GC)ulcN Voitugb 

- Con11nI ms V(jS 1 20 Vdc 

- Nw, -RupoUUVO (iV :: 10 ms) VGSM 3 25 Vpk 

Dlmn CUnent -CunUnu, xrs 1j1 25'C ID 12 AJc 
- Cuntuxwus (Q1 100"C ID 7.3 

- Srrujle Pulse (Ip s 10 INS) IDM 37 Apk 

total P, »"1 Dss+poUOr, (W 25, C PID 'Its Watts 
Derotu ubuve 2UC 0 32 WrC 

Otwrnhrty und Sluluge Tempeluture Range TJ, Ist') -5510 'C 1 
175 

SIlx, lle P, Ilsw CNPIn-to-SOUrce Avalanche EA., 72 mJ 
Enulgy - ýtolLny T, ) 251C 
(VLILI - 2`ý Vdc, V. = 10 Vck. 
IL _ I: A1. h L= IUn, H ft(-, - 2b tr) 

TA. anwil fjeststnnce - Junction to Case R, I(; 3 13 `C. W 
- . lunrno) to AmMent Rrf. lA (Q 5 

Mnxunum Lwvl TanglelLift ru fur GjL. lonna 1L 260 °C 
Pulpr. as, 141' from cnSe to( 111 ceccrtrts 

i Si 

VN Somlconductor " 

http: llonsenil. com 

12 AMPERES 
50 VOLTS 

RDS(on) = 150 m! 2 

GO 

ýý ýý, 
w mill- 

jo 

3 wl Source 

2 
Drain 

h1TP3055V = De"ce Code 
LL = LocOilOn Code 
y= Ye.; r 
ýVYr = WDf6 Weuk 

ORDERING INFORMATION 

Device I Package 
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Shipping 

50 UnnsRml 

"rohrr*tl (k! vlces are recommit lüN itulces km M, re use 
YU OBSt Ovelall vakre 
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Tj 
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TO-220AB 
CASE 221A 

STYLE 6 

MARKING DIAGRAM 
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ELECTRICAL CHARACTERISTICS (TJ = 25 C unless othomrse noted) 

L-ý Characteristic Symbol Mln Typ Max Unit 

Dram-Source Brenkdown Voltage V(BR)DS-'; 
(VGS =0 Vdc, ID = 2501! Adc) 60 - - Vdc 
Temperolure Coefficient (Posdrve) - 65 - mWC 

Zero Gote Voltage Drain Current IDSS 1`Adc 
(VDS=6OVdc, VGS=0Vdc) - - 10 
IVDS = 00 Vdc. VGS =0 Vdc T, ) = 150°C) - - 100 

Gale-Body Leakage Current (VGS =. t 20 Vdc. VDg = 0) IGSS - - 100 Mdc 

Gate TNe5110k1 Voltage VGS(tn) 
(VDS = V(-, S 1D = 250 pAdc) 

20 27 40 Vdc 

Tomporaturo CoattKlonl (NOgaUvo) - 54 - mV; C 

Static DraurSource On-Resistance (Vr, S = 10 Vdc ID =f0 Adc) RDS(on) - 0.10 0 15 Otxn 

Droll)-Source On-Vottago (VC3S = 10 Vd() VDS(on) Vdc 

(Ip = 12 Adc) - 13 22 
IJ 

(Ip = 60 Adc, Tj = 150'C) 

For, vard Tronsconductance (VpS =70 Vdc. Ip =60 Adc) 9FS 40 50 - rnhos 

Input Capuutünce 
-_- C155 - 410 500 PF 

Output C apocilance 
(VO S= 25 Vdc, VGS =0 Vdc, 

I=I0 MHz) 
Coss - 130 180 

Reverse Transfer Capoatance Crss - 25 50 

Turrr-C)n Daley Time td(on) - 70 10 ns 

RrsN Tn1w (VDD = 30 Vdc, ID = 12 Adc, tr - 34 60 

Turn-c)ry DNey Time 
VGS = 10 Vdc. 

RG =9 111) td(off) - 17 30 

Fall Time if - 18 50 

Gote Charge OT - 122 17 nC 
(See Figure 8) 

ID = 12 Adc, (VDS = 48 Vdc 01 - 32 - 
. VGS = 10 Vdc) 02 - 52 - 

03 - 55 - 

Forwartl On-Vollage (Note 1 (IS = 12 AOC, Vrg -0 Vdc) 
VSD 

_ 10 Iü 
Vdc 

(1S = 12 Adc, VAS =O VOC, T, ) = 150'C) 
- 0 91 - 

Reverse Recovery Time trr - 513 - ns 
(See Figure 15) 4n - 40 - 

(IS=12Adc. VGS=OVdc 
t - 16 - dtgldt = 100 A'µs) 

Reverse Recovery Stored ORR - 0 128 - NC 
Charge 

Internal Dram Inductance LD nH 
! Measured from contact screw on tab to center of diet - 3,5 - 
(Measured Iron Me drain load 0 25" from package to center of die) 45 

Internal Source Inductance LS - 75 - nH 
(Measured horn the source lead 0 25' from package to source bond pod) 

I Pulse Test Pulse Width ; 300 Its, Duty Cycles 2% 
2 Switching charactonstics me independent of operatin9 unction temperature. 
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TYPICAL ELECTRICAL CHARACTERISTICS 
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POWER MOSFET SWITCHING 
Sa tlchimg behavior i, utost easiIy' modeled and predicted 

by recognizing that the power MOSFET is cliarge 

controlled The lengtlis of t: 'at tau, swochntg intervals (. fit) 

arc determined by how tact the FET input capacitance can 
be chalu'ed by cunent trout the geuet: alur. 
The published capacitance data is difficult to use for 
calculanug lice and fall because drain-gate capacitance 
canc, greatly sstth applied voltage. Accordingly. gate 
chatge data is used lu moo cases, a ati, tacroty estimate of 
aveiage input cunent (1G(A\")l can be made fivut a 
iuditnenrary analysis of the drive circuit so that 

I-Q! cj(: \'I 
Dutinu the tise and tall time interval when switching a 
resi. tive load. VCS relunius virtually constant at a level 
kilos it a. the plateau voltage. \',, Gp. Thetetote, tine and fill 
times uta). be approximated by the following: 

1I. =Q2 xRC; '(VGG-VGSpi 
If'" Q_ x RIyx, GSp 
%%hele 

VCi(i ° the gate chive volm2e. Much varies from zero to VC; G 
RG - the hate ch ise resistance 
and Q: and \'(, yp ate tend bout lime gale charge cure. 
During the tuns-on and tunt-oft delay times, gate cuneur is 
not constant. The simplest calculation uses appropriate 
values lion the capacitance cants in a standud equation for 
voltage flange in an RC network. The equations are: 

41iou1 ° RG C[S, In [VGGo(VC; C; - VGSp)J 
41(ofl) " Rc, (iss It, (\'GG'V(JSp) 

1200 
VL)S"0V VGS 

1000 
ý 
ý 
ä ä 
1400 

0 

The capacitance (C'iss) is teal fimu the capacitance clove at 
a voltage conesponding to the off-state condition when 
calcldatlil2 td(On) and is lead at a voltage coned oiidic12 to the 

on-state when calculating t, l(ofl). 
At high switching speeds. parasitic circuit elements 

complicate the analysis. The inductance of the MOSFET 

sotuce lead. inside the package and in the circuit wiring 
NN 11h: 11 is conunon to both the drain and gate current paths. 
produces a voltage at the source which reduces the sate chive 
clurelit. The voltage is deteuninei by Ldi dt. but since di'dt 
is a fltnction of drain current, the lllatlltnlatical solution is 

complex. The AIOSFET output capacitance also 
complicates the mathematics. And finally. MOSFETs have 
finite interval state resistance which effectively adds to the 
resistance of the driving sotuce. but the internal resistance 
is difficult to measure and. con; equemly. is not specified. 

The resistive Swltclliiig time variation SersuS gate 

resistance (Figure 9) shows how typical switching 
perfonnauce is affected by the parasitic circuit elements. If 

the p. asitics welt not present. the slope of the curves would 
maintain a value of unity regardless of the switching speed. 
The circuit used to obtain the data is coustnicted to nlitlisuize 
couunon inductance ill the dram and gate circuit loops and 
is believed readily achievable with board mounted 
components. Most flower electronic loads are inductive: the 
data in the tismre is taken with a resistive load. which 
approximates ail optimally snubbed usductive load. Power 
MOSFETs may be safely operated into nil inductive load: 
however, snubbing reduces switching losses. 

0v f--1-f-1 Tj = 25 C 

ýas 

Gss - Ciss 

Cross- 

- ýrss 

+- VGS - VOS -s 

GATE TO SOURCE OR DRAIN TO SOURCE VOLTAGE (VOLTS) 

10 505 10 15 

Figure 7. Capacitance Variation 



87 

Appendix-A (Continued) 

C 

oT 

- 

- 
- 

- 

Ul 

1- - - 
02 

- - 

VG b' 

l yl I x 
IU . 12A 

03 E M- VDS 
Tj=25 C 

I z 34 5 6 ID 11 12 

so ý 
ý 

50 ý 
Z 40 
p 

200 

m 

10ý 

oý 13 
Q. TOTALCHARGE (nCl 

Figure 8. Gate-To-Source and Drain-To-Source 
Voltage versus Total Charge 

0.13 

0.12 

o ii 

0.10 

9 009 

dl: Vdl .I OO Allu 
'4)p. 25V 
id=25C 

00eº 
0 z 

I B9 

1000 

100 

w 

10 

I 

DRAIN-TO-SOURCE DIODE CHARACTERISTICS 

46B 

IS. SOURCE CURRENT (AMPS) 

Figure 10. Stored Charge 

10 12 

12 

to 

. 70V VDI) 
1p. 12A 
VGS = 10 V 
iJ= 25`C I 

_ I 

la(o a 
- 

Id)on) 

R 

it t 

I to 
RG. GATE RESISTANCE (OHMS) 

100 

4GS=0V 
Tj =2SC 

8 

6 

4 

2 

0 

Figure 9. Resistive Switching Time 
Variation versus Gate Resistance 

lIT iii :i iii 

ITT Eli 

: TETZTE 
ITTZTTT 
-- -- 

ÖSO 055 060 ohs 070 0.75 080 085 090 o95 
VSD SOURCE TO DRAIN VOLTAGE (VOLTS) 

10 

Figure 11. Diode Forward Voltage versus Current 

SAFE OPERATING AREA 
The Fot Bald Bia, ed Site Opelatnlg Area ctuti'cs define 

the 111a. imnun Swiul4111eo11s diaiit-to-, ource soli a and 
dioiu ctlriellr dint a nansi stor can handle safely when it is 
forssaid biased. Curves are baud upon maximum peak 
junction remperanuc and a case reulpelauuc (TC") of 25 C. 
Pcak repetitive pulsed Irosser limits nit deteluliued by using 
the thantnl IespOII; e data ill ccmjuncnrnf with the pioce(fiues 
dis, sud m A\569. " Tramsieit Thainal 
Reusr. tncc Gatei ll Data and Its Use. " 

Sw irchiug berweeu the off-state and the ou-state may 
traverse any loud line provided neither fated peak cunent 
(1Dp1) not fared voltage O'DSS) is exceeded and the 
ti nihitioi inne (tr. rf) ski not axceed 1011 s. In addition the total 
power averaged over a complete switching cycle must not 
exceed (TJ(\lAX TC)ý'(RHJC ). 

A Power n IOSFET designated E-FET can be safelyused 
in swltclung circuits with unclamped inductive loads. For 

reliable opeiatlom the stored ener, 'y tronl circuit Qnhtctance 

di, sipated in the transistor sslule in avalanche tuu, t be less 

than the rated limit and nd)usted fat operating conditions 
differing from those specified. Although industryprlctice is 

to rote in terms of energy. asalanche energy capability is not 

n constant. The cnetgy rating decl eases note-linearly with an 
increase of peak current in avalanche and peak function 

tentperantre. 

Although many E-FETs can widlstruld the stress of 
drain-to-sotu'ce avalanche At currents up to rated pulsed 
current (1DMI. the energy rating is specified at rated 
contintaus current (1D). in accordance with industry 
custom. The energy ratnlg must be derated for te111p etatltre 

as shown in the accompanying graph tFizure 13). Maxi nuum 
energy at CW rents below rated Coil? W UOUS 1D can safely be 

nsstuned to equal the values indicated. 
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Permanent Magnet Brush Less D. C. Motor 

Airpax Series 9904 120 52.. DC Geared Motors 
39mm square flange - plastic geared DC motor 

RS 336-343 : 9904 120 52402 RS 336-321 9904 120 52602 
RS 336-337 9904 120 52405 RS 336-315 : 9904 120 52605 

This range of small d. c. motors with integrated gear train is designed for applications 
requiring quality design and long life drive units. The motor has been designed with a 
permanent magnet stator system. The reduction gearbox has gearwheels of polyacetal 
resin. Spark suppression is obtained by a sandwich mounted disc-VDR between 
commutator and rotor coils. The grey injected plastic housing is highly resistant to 
chemicals and corrosion. Mounting of the motor is provided for with four M2 5 clearance 
holes on the flange. 

Application examples include. 
vending & coffee machines 
air valve control 
ticket dispensers 
office automation 
printing machines 
entertainment products, scale models 

Dimensional drawing 
27 

i; 
ýi T--- I1 -0 

Iýý: --" 

Summary of the motor parameters 

: 
Ogjý-- i"- 

_ 

Rated workin(I point 
3.5mNm c 3000rpm (1 Watt, continuous. motor typical life approx. 2500 hours) 
Not relevant for all gear ratios - Max. gearbox torque to be considered 

Rated 
Voltage 

Rotor 
Resist. 

No Load 
Speed 

Stall 
Torque 

Torque 
Constant 

P. ut Number (V) (Ohm) (rpnt) (rNm) (n1Nm1A) 

9904 120 52 4>o< 6 4.7 3900 15 11 

9904 120 52 Caoc 12 14,5 3900 15 21 

Brushes : Carbon 

Commutator flat copper 
3 segments 

Connections : Solder tags 

Thermal res. : 30°K! W 
(windinglamblent) 

Product designed and manufactured in the EEC to ISO 9001 standards 



91 

Appendix-A (Continued) 

Operating temperature Range 
Storage temperature Range 
Bearings 
Maximum axial play 
Housing material 
Gear material 
Mass 

-20 to +60"c 
-40 to +70'C 
Sleeve Bronze, Self Lubricating 
0.5mm 
Polycetal Resin - Grey 
Polycetal Resin 
1258 approx. 

The values given below apply to an ambient temperature of 22 3 5'C, an atmospheric pressure of 
88 to 108kPA and a relative humidity of 45 to 75%. 

catalogue number 
9904 120 62.. 402 602 406 605 

reduction ratio 9: 1 60 :1 

Nominal values 

voltage (d. c. ) 6 12 6 12 V 

torque 25 125 mNm 

speed at nom. load 330 60 rev/ 
at no load 416 78 min 

current at nom. load 360 185 360 185 mA 
at no load 80 46 80 45 mA 

input power 2.1 2.2 2.1 2.2 W 

direction of rotation " CW CW + CCW ý 

max. radial force N 
on the bearings 2 6 

max. axial force 2 6 N 

Limiting conditions 

may voltage (d. c. ) 9 18 9 18 V 

d 
50 N max. perm. loa 37.5 1 m m 

' Vlewed from the shaft end 

Notes: - The specified rated current values should not be exceeded. 

- The gearbox should be externally protected (eg torque limiter or current control) 
in systems where torque peaks (or stall) can be expected. 

- Indicated no-load-currents are maximum values, to be considered as worst case over 
the whole motor life. In practice, new motors will show significantly lower values. 
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Typical Performance curves at 6 and 12V, Tamb = 22 °C 
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Force Sensor Data Shcct 

MICRO SWITCH Force Sensors 
Force Sensor 

FEATURES 
" Robust performance 

characteristics 
" Precision force sensing 
" Adaptable product design 
" Highly reliable 
" Signal conditioning available 
" Electrically ratiometric output 
" Extremely low deflection (30 

microns typical © Full Scale) 
" Low repeatability errors 

(t 0.2% Span) 
" Low linearity errors (i. 0.51v 

Span) 
" Low off-center loading errors 
" Resolution to 1.0 gram force 
" Fast response time 
" Low power consumption 
" High ESD resistance - 10 KV 

TYPICAL APPLICATIONS 
" Medical infusion pumps 
" Kidney dialysis machines 
" Robotic end-effectors 
" Variable tension control 
" Load and compression 

sensing 
" Contact sensing 

FS Series 

The FS Series Force Sensor provides precise, reliable force sensing 
performance in a compact commercial grade package. The sensor 
features a proven sensing technology that utilizes a specialized 
piezoresistive micro-machined silicon sensing element. The low power, 
unamplified, non-compensated Wheatstone bridge circuit design 
provides inherently stable mV outputs over the 1,500 gram force range. 

The force sensor operates on the principle that the resistance of 
silicon implanted piezoresistors will increase when the resistors flex 
under an applied force The sensor concentrates force from the 
application through the stainless steel plunger directly to the silicon 
sensing element. The amount of resistance changes in proportion to the 
amount of force being applied. This change in circuit resistance results 
in a corresponding mV output level. 

The sensor package design incorporates a patented modular 
construction. The use of innovative elastomeric technology and 
engineered molded plastics resuts in load capacities of 5.5 Kg over- 
force, The stainless steel plunger provides excellent mechanical stability 
and is adaptable to a variety of applications. Various electrical 
interconnects can accept pre-wired connectors, printed circuit board 
mounting, and surface mounting. The unique sensor design also 
provides a variety of mounting options including mounting brackets, as 
well as application-specific mounting requirements. 

IJourv t11 Srnstnu and Control 
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MICRO SWITCH Force Sensors 
Force Sensor 

PERFORMANCE CHARACTERISTICS @ 10 ± 0.01 VDC, 250C 
Preum na, v. based on limited test data 
Parameter 

_ 
Min. Typ. Max. Units 

Excitation' - 10 12 VDC 
Null shift. to 0', 25 to 50'C -±0.5 - mV 
Null offset -30 0 +30 mV 
Linearity (BFSL) -±0.5 -% Span 
Sensitivity - 0.24 - mVigrf 
Sensitivity shift 
25 to 0.25 to 50°C -! 5.0 -% Span 
Repeatability -i0.2 -% Span 
Response time --1.0 msec 
Input resistance - 5.0 K- ohms 
Output resistance - 5.0 K- ohms 
Plunger deflection - 30 - microns 
weight 2.0 - grams 
ESD (direct contact - terminals 
and plunger 10 -- AVOIts 

' Non-compensated force sensors. excited by constant current (1.5 mAi 
instead of voltage, exhibit partial temperature compensation of Span. 

ENVIRONMENTAL SPECIFICATIONS 
Operating temperature -40 to +85°C (-40 to +155"F) 
Storage temperature -55 to +105'C (967 to +221'F) 
Shock Qualification tested to 150 g 
Vibration Qualificatlon tested to 0 to 2 kHz. 20 9 sine 
Note: Al; force related specifications are established using dead welght or 
compliant force. 

ORDER GUIDE 
Force 

Catalog Range 
Listing (grams) Min. 

F53.15NIA 1.500 290 

Overforce 
Span, mV grams 
Typ. Max. Max. 

430 5.500 

MOUNTING 
The sensor output character- 

istics do not change with respect 
to mounting orientation. Care 
should be taken not to obstruct 
the vent hole in the bottom of the 
sensor housing. Improper 
venting may result in unstable 
output 

Mounting bracket mounting 
torque: 2-5 in. lb. (, 21-, 56 Nm). 

APPLYING FORCE 
Evaluation of the sensor is to 

be performed using dead-weight 
or compliant force. Application of 
a rigid, immobile force will result 
in output drift (decrease) as 
elastomeric seals relax. Off- 

center plunger loading has 

minimal effect on sensor 
performance and maintains 
operation within design 

specifications. 

FS Series 

EXCITATION SCHEMATIC 

FS SERIES CIRCUIT 
1. Circled numbers refer to sensor 

terminals (pins). Pin 1 is 
designated with a notch. 
Pin I= Supply V, (+) 
Pin 2= Output, (+) 
Pin 3= Ground, (-) 
Pin 4= Output, (-) 

2. The force sensor may be 

powered by voltage or current. 
Maximum supply voltage is not 
to exceed 12 volts. Maximum 

supply current is not to exceed 
1.6 mA. Power is applied across 
Pin 1 and Pin 3. 

3. The sensor output should be 

measured as a differential 

voltage across Pin 2 and Pin 4 
(V, = V, - V, ). The output is 
ratiometric to the supply voltage. 
Shifts in supply voltage will 
cause shifts in output. Neither 
Pin 2 nor Pin 4 should be tied to 
ground or voltage supply. 
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MICRO SWITCH Force Sensors 
Force Sensor 

MOUNTING DIMENSIONS (for reference only) 

ý 
5.08 

. 
200 

3,1 
12- 

1,3 

. 05 

8.0 31 

NOTCH 
1.0 PIN 1 
04 

05 

. 02 

9.0 
. 35 

2,5 
10 

102 1,6 

. 40 . 06 
ACCESSORY 

Catalog Llsbn9 Description 
PC 15 1 32 Plastic mounting bracket 

FS Series 
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MICRO SWITCH Force Sensors 
Force Sensor FS Series 

SALES AND SERVICE 
Ho, eywell's MICRO SWITCH 

Div, sion serves its customers 
through a worldwide network of 
sales offices and distributors. For 

application assistance, current 
specifications, pricing or name of 
the nearest Authorized Distributor, 
contact a nearoy sales office. Or 

call: 

1-800-537-6945 USA 
1-416-293-8111 Canada 
1.815-35.6847 International 

INTERNET 
http: /. ww, v. sensinq. honeywelI com 
info, _Z"micro. honeywell com 

Spec cations may change 
without notice. The information we 
supply is believed to be accurate 
and reliable as of this printing. 
However, we assume no 
responsibility for its use. 

While we provide application 
assistance, personally and 
through our literature, it is up to 
the customer to determine the 
suitability of the product in the 
application. 

Honeywell 
', ruiluý S. l'uuQ ul 
i I., c> .. cll In:. 
I1 1\'c`t 1pnuýt Sncet 
f, ccl"n, ý. 116nniti 61012 

Hýlyurg Y. C-oo( 3onr ilo, ld 

®`°. 
M "* 1-w. 
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Needle Insertion Force by XRF 440M Pocket Data Logger 

21 (lauge/0.9 millimeter Diamctcr Needle insertion Force 
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20 Gaugc/0.8 millimeter Diameter Needle Insertion Force 
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Force vs Time 
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23 Gauge/0.6 mill juicier Diameter Needle Insertion Force 
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Force vs Time 
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25 Gauge/0.5 millimeters Diameter Needle Insertion Force 
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Force vs Time 
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Mechanical Drawing of l-laptic feedback Device Components 

Assembly Drawing 
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Limit Switch Plate 
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Motor Plate 
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Appendix-C (Continued) 

Top Plate 

Section view A"A (1: 1) 
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Sidc Plate 
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Appendix-C (Continued) 

Roller View 
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Appendix-D 

M-file of Graphical user interface 

(unction varargout = Ngui2(varargin) 
% Ngu12 Wile for Nguilfig 
% Ngui2, by itself, creates a new Ngui2 
°/, singleton*. 
ll il 

Uý 
ýU 

U/ 
/U 

UU 

% 

ýý0 

% 

UýO 

Oý0 

% 
Uý 

U/ 
/0 

Uý0 

(v0 

`% 

or raises the existing 

II Ngui2 returns the handle to a new Ngui2 or the handle to 
the existing singleton*. 

Ngui2('CALLBACK', hObject, eventData, handles .... ) calls the local 
function named CALLBACK in Ngui2. M with the given input arguments. 

Ngui2('Propert); ', 'Value',... ) creates a new Ngui2 or raises the 
existing singleton*. Starting from the left, property value pairs are 
applied to the GUI before Ngui2_OpeningFunction gets called. An 
unrecognized property name or invalid value makes property application 
stop. All inputs are passed to Ngui2_OpeningFcn via varargin. 

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one 
instance to I'Lill (singleton)" 

0 

% Sec also: GUIDE, GUIDATA, GUII-IANDLES 

% Copyright 2002-2003 The MathWorks, Inc. 

% Edit the above text to modify the response to help Ngui2 

% Last Modified by GUIDE v2.5 06-Apr-2008 00: 34: 48 

`% Begin initialization code - DO NOT EDIT 
gui_Singleton = I; 
gui_State = struct('gui_Name'. infilename, ... 'gui Singleton', gui Singleton, ... 

'gui_OpeningFcn', c Ngui2_OpcningFcn.... 
'gui_OutputFcn', i Ngui2_OutputFcn, ... 
'gui_LayoutFen', [] 

, ... 
'gui_Callback', []); 

if nargin && ischar(varargin{ I)) 
gui_State. guiCalIback= str2func(varargin(I )); 
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Appendix-D (Continued) 

cncl 

il nargout 
I\'arargou( {I : nargout) J= gui_mainicn(gui_State, varargin{: }); 

else 
gui_ ma inlcn(gui_State, varargin {: }); 

end 
% land initialization code - DO NOT EDIT 

--- Executes just before Ngui2 is made visible. 
Function Ngui2_OpeningFcn(hObject. eventdata, handles. varargin) 
% This Function has no output args, see OutputFcn. 
% hübject handle to ligure 
% eventdata reserved - to be defined in a future version of MATLAB 

handles structure with handles and user data (see GUIDATA) 
% varargin command line arguments to Ngui2 (see VARARGIN) 

% Choose del: iult command line output for Ngui2 
handles. output = hObject; 

Update handles structure 
guidata(hühject, handles); 

% UI WAIT makes Ngui2 wait for user response (see UIRESUME) 
% uiwait(handles. figure I); 

--- Outputs from this function arc returned to the command line. 
function varargout = Ngui2_OutputFcn(hObject, evcntdata, handles) 
% varargout cell array for returning output args (see VARARGOUT); 
% hObject handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
U/, handles structure with handles and user data (see GUIDATA) 

% Get deläult command line output from handles structure 
varargout {I}= handles. output; 

% --- Executes on button press in start. 
Function start 

_Callback(hObject, 
eventdata, handles) 

% hObject handle to start (see GCBO) 
% eventdata reserved - to be defined in a future version of MAT LAB 
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Appendix-D (Continued) 

°/, handles structure with handles and user data (see GUIDATA) 
Al=analoginput('winsound'); 
Chan=addchannel(AI, I ); 
duration= I, 

sct(A l, 'SampleRate', 8000); 
start(A l ): 

dI =gctdata(A 1); 
%duwnsamplc (d 1,50); 
E=str? num(gct(handlcs. Elastcity, 'String')); 

a=str2num(get (hand les. Dia, 'String')); 

d=sti2nunI (get(handles. Dept h, 'String')); 

1=((8*E* Ie3*a* Ic-3*d* Ie-3)/3); 

I num2str(I); 

sct(handles. force, 'String', F); 

it' (F -I 00>=O) 

set(handles. Elastcity, 'String', '#Error#'); 

sct(handIcs. force, 'String', '#Error#'); 
else 

c=num2str(E); 

set(handles. Elastcity, 'String', e); 
end 

if (a-0.9>=0) 

set(}handles. Dia, 'String', '#Crror#'); 

set(hand Ics. forcc, 'Stri ng', '# Error#'); 

else 
A=num2str(a); 
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Appendix-D (Continued) 

sei( hand Ics. l)ia, 'String', n); 

end 

i i'(t1-20>-0) 

set(han(I Ies. I)epth, 'String', '#EErrorW); 
set(handles. lorce, 'String', '#Error#'); 

else 

D=num2str(d); 
set( haut! les. Dc pt, St ri a g'. D); 

end 

plot(dl); 

if (d I-f<=0); 

set(han(lles. textl, 'String', 'Needle is not inserted'); 

else 

end 
set(handles. textl, 'String', 'Needle is inserted'); 

lünction l: lastcity_Callback(hObject, eventdata, handles) 
% hObject handle to Elastcity (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 

%I lints: gct(hObject, 'String') returns contents of Elastcity as text 
str2double(get(hObject, 'String')) returns contents of Elastcity as a double 

--- Executes during object creation, after setting all properties. 
function Elastcity_CreateFcn(hObject, eventdata, handles) 
% hObject handle to Elastcity (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles empty - handles not created until after all CreateFcns called 
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%I lint: edit controls usually have a white background on Windows. 
% See ISPC and COMPUTER. 
il' ispc 

set(h()bjcct, 'l3 tekgroundColor', '%vhite'); 
else 

set(h(bject, 'l3ackgroundColor', get(0, 'defauItUicontrolBackgroundColor')); 

end 

function 1)ia C'allback(hObject, eventdata, handles) 
% hObject handle to Dia (see GCBO) 

evcntdata reserved - to be defined in a future version of MATLAB 
°/' handles structure with handles and user data (see GUIDATA) 

%I Hints: get(hOhjcct, 'String') returns contents of Dia as text 
% str2doublc(get(hübject, 'String')) returns contents of Dia as a double 

'% --- Executes during object creation, alter setting all properties. 
function Dia_CreateFcn(hObject, eventdata, handles) 
% h(Tbject handle to Dia (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles empty - handles not created until after all CreateFcns called 

'%ý I lint: edit controls usually have a white background on Windows. 
% See ISPC and COMPUTER. 
if ishc 

set(hobjcct, BackgroundColor', 'wwwhite'): 
else 

set(hObject, 'BackgroundColor', get(0, 'defauItUicontrolBackgroundColor')); 
end 

(unction I)epth_Callback(hObject, eventdata, handles) 
% h(hject handle to Depth (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
%, handles structure with handles and user data (see GUIDATA) 

`%, II ints: get(hObject, 'String') returns contents of Depth as text 
% str2doublc(get(hObject, 'String')) returns contents of Depth as a double 
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--- Executes during object creation, after setting all properties. 
Function I)cpth_Createl cn(hObject, eventdata, handles) 
% hObject handle to Depth (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles empty - handles not created until after all CreateFcns called 

0/, I lint: edit controls usually have a white background on Windows. 
°/, See ISPC and COMPUTER. 
i I' ispc 

set(hObject, '13ackgroundColor', 'white'); 

else 
set(hOhject, 'ßackgroundColor', get(0, 'defaultUicontrolBackgroundColor')); 

end 

function törce Callback(hObject, eventdata, handles) 
°/, hObject handle to force (sec GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 

%I Iints: get(hObject, 'String') returns contents of force as text 
'%� str2double(get(hObject, 'String')) returns contents of' force as a double 

I, / --- Executes during object creation, after setting all properties. 
lünction 11orce_CreateFcn(hObject, eventdata, handles) 
°/o hObject handle to force (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
°/o handles empty - handles not created until after all CreateFcns called 

`%, I lint: edit controls usually have a white background on Windows. 
% See ISPC and COMPUTER. 
if ispc 

sct(hObject, 'BackgroundColor', 'white'); 
else 

set(hObject, 'l3ackgroundColor', get(0, 'defaultUicontrolBackgroundColor')); 
end 


