2,969 research outputs found

    Therapeutic Potential of Haptic TheraDrive: An Affordable Robot/Computer System for Motivating Stroke Rehabilitation

    Get PDF
    There is a need for increased opportunities for effective neurorehabilitation services for stroke survivors outside the hospital environment. Efforts to develop low-cost robot/computer therapy solutions able to be deployed in home and community rehabilitation settings have been growing. Our long-term goal is to develop a very low-cost system for stroke rehabilitation that can use commercial gaming technology and support rehabilitation with stroke survivors at all functioning levels. This paper reports the results of experiments comparing the old and new TheraDrive systems in terms of ability to assist/resist subjects and the root-mean-square (RMS) trajectory tracking error. Data demonstrate that the new system, in comparison to the original TheraDrive, produces a larger change in normalized trajectory tracking error when assistance/resistance is added to exercises and has the potential to support stroke survivors at all functioning levels

    Upper extremity rehabilitation using interactive virtual environments

    Get PDF
    Stroke affects more than 700,000 people annually in the U.S. It is the leading cause of major disability. Recovery of upper extremity function remains particularly resistant to intervention, with 80% to 95% of persons demonstrating residual upper extremity impairments lasting beyond six months after the stroke. The NJIT Robot Assistive Virtual Rehabilitation (NJIT-RAVR) system has been developed to study optimal strategies for rehabilitation of arm and hand function. Several commercial available devices, such as HapticMasterâ„¢, Cybergloveâ„¢, trakSTARâ„¢ and Cybergraspâ„¢, have been integrated and 11 simulations were developed to allow users to interact with virtual environments. Visual interfaces used in these simulations were programmed either in Virtools or in C++ using the Open GL library. Stereoscopic glasses were used to enhance depth perception and to present movement targets to the subjects in a 3-dimensional stereo working space. Adaptive online and offline algorithms were developed that provided appropriate task difficulty to optimize the outcomes. A pilot study was done on four stroke patients and two children with cerebral palsy to demonstrate the usability of this robot-assisted VR system. The RAVR system performed well without unexpected glitches during two weeks of training. No subjects experienced side effects such as dizziness, nausea or disorientation while interacting with the virtual environment. Each subject was able to finish the training, either with or without robotic adaptive assistance. To investigate optimal therapeutic approaches, forty stroke subjects were randomly assigned to two groups: Hand and Arm training Together (HAT) and Hand and Arm training Separately (HAS). Each group was trained in similar virtual reality training environments for three hours a day, four days a week for two weeks. In addition, twelve stroke subjects participated as a control group. They received conventional rehabilitation training of similar intensity and duration as the HAS and HAT groups. Clinical outcome measurements included the Jebsen Test of Hand Function, the Wolf Motor Function Test, and the ReachGrasp test. Secondary outcome measurements were calculated from kinematic and kinetic data collected during training in real time at 100 Hz. Both HAS and HAT groups showed significant improvement in clinical and kinematic outcome measurements. Clinical improvement compared favorably to the randomized clinical trials reported in the literature. However, there was no significant improvement difference between the two groups. Subjects from the control group improved in clinical measurements and in the ReachGrasp test. Compared to the control group, the ReachGrasp test showed a larger increase in movement speed during reaching and in the efficiency of lifting an object from the table in the combined HAS and HAT group. The NJIT-RAVR system was further modified to address the needs of children with hemiplegia due to Cerebral Palsy. Thirteen children with cerebral palsy participated in the total of nine sessions of one hour training that lasted for three weeks. Nine of the children were trained using the RAVR system alone, and another four had training with the combined Constraint-Induced Movement therapy and RAVR therapy. As a group, the children demonstrated improved performance across measurements of the Arm Range of Motion (AROM), motor function, kinematics and motor control. While subjects\u27 responses to the games varied, they performed each simulation while maintaining attention sufficient to improve in both robotic task performance and in measures of motor function

    Assessment of a hand exoskeleton on proximal and distal training in virtual environments for robot mediated upper extremity rehabilitation

    Get PDF
    Stroke is the leading cause of disability in the United States with approximately 800,000 cases per year. This cerebral vascular accident results in neurological impairments that reduce limb function and limit the daily independence of the individual. Evidence suggests that therapeutic interventions with repetitive motor training can aid in functional recovery of the paretic limb. Robotic rehabilitation may present an exercise intervention that can improve training and induce motor plasticity in individuals with stroke. An active (motorized) hand exoskeleton that provides support for wrist flexion/extension, abduction/adduction, pronation/supination, and finger pinch is integrated with a pre-existing 3-Degree of Freedom (DOF) haptic robot (Haptic Master, FCS Moog) to determine the efficacy of increased DOF during proximal and distal training in Upper Extremity (UE) rehabilitation. Subjects are randomly assigned into four groups to evaluate the significance of increased DOF during virtual training: Haptic Master control group (HM), Haptic Master with Gripper (HMG), Haptic Master with Wrist (HMW), and Haptic Master with Gripper and Wrist (HMWG). Each subject group performs a Pick and Place Task in a virtual environment where the distal hand exoskeleton is mapped to the virtual representation of the hand. Subjects are instructed to transport as many virtual cubes as possible to a specified target in the allotted time period of 120s. Three cube sizes are assessed to determine efficacy of the assistive end-effector. An additional virtual task, Mailbox Task, is performed to determine the effect of training and the ability to transfer skills between virtual settings in an unfamiliar environment. The effects of viewing mediums are also investigated to determine the effect of immersion on performance using an Oculus Rift as an HMD compared to conventional projection displays. It is hypothesized that individuals with both proximal and complete distal hand control (HMWG) will see increased benefit during the Pick and Place Task than individuals without the complete distal attachment, as assisted daily living tasks are often accomplished with coordinated arm and hand movement. The purpose of this study is to investigate the additive effect of increased degrees of freedom at the hand through task-specific training of the upper arm in a virtual environment, validate the ability to transfer skills obtained in a virtual environment to an untrained task, and determine the effects of viewing mediums on performance. A feasibility study is conducted in individuals with stroke to determine if the modular gripper can assist pinch movements. These investigations represent a comprehensive investigation to assess the potential benefits of assistive devices in a virtual reality setting to retrain lost function and increase efficacy in motor control in populations with motor impairments

    Robotic Exoskeletons for Upper Extremity Rehabilitation

    Get PDF

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario

    Get PDF
    Virtual Reality (VR) environments can be applied to assistive robotics to improve the effectiveness and the user experience perception in the rehabilitation process due to its innovative nature, getting to entertain patients while they recover their motor functions. This literature review pretends to analyze some design principles of VR environments developed for upper limb rehabilitation processes. The idea is to identify features related to peripheral and central nervous systems, types of information included as feedback to increase the user's levels of immersion having a positive impact on the user's performance and experience during the treatment. A total of 32 articles published in Scopus, IEEE, PubMed, and Web of Science in the last four years were reviewed. We present the article selection process, the division by concepts presented previously, and the guidelines that can be considered for the design of VR environments applicable to assistive robots for upper limbs rehabilitation processes.Los entornos de Realidad Virtual (RV) aplicables a sistemas de robótica asistencial pueden ser diseñados de manera que mejoren la efectividad y la experiencia de usuario de los procesos de rehabilitación debido a su naturaleza novedosa, logrando entretener a los pacientes mientras recuperan sus funciones motoras. Esta revisión literaria pretende analizar los criterios de diseño de entornos de RV utilizados en procesos de rehabilitación de miembro superior, identificando las características de entornos para rehabilitación de problemas asociados el sistema nervioso central y periféricos, los tipos de información que se realimenta al usuario para beneficiar los niveles de inmersión y su impacto en términos del desempeño y la experiencia del usuario en tratamiento. Un total de 32 artículos publicados en revistas indexadas de Scopus, IEEE, PubMed y Web of Science en los últimos cuatro años fueron revisados. Se presenta el proceso de selección de artículos, la división por las temáticas presentadas anteriormente y los lineamientos generales que pueden ser considerados para el diseño de entornos de RV aplicables a robots asistenciales en procesos de rehabilitación de miembro superior

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions
    • …
    corecore