574 research outputs found

    Handwritten Word Spotting with Corrected Attributes

    Get PDF
    International audienceWe propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results

    Querying out-of-vocabulary words in lexicon-based keyword spotting

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2197-8[EN] Lexicon-based handwritten text keyword spotting (KWS) has proven to be a faster and more accurate alternative to lexicon-free methods. Nevertheless, since lexicon-based KWS relies on a predefined vocabulary, fixed in the training phase, it does not support queries involving out-of-vocabulary (OOV) keywords. In this paper, we outline previous work aimed at solving this problem and present a new approach based on smoothing the (null) scores of OOV keywords by means of the information provided by ``similar'' in-vocabulary words. Good results achieved using this approach are compared with previously published alternatives on different data sets.This work was partially supported by the Spanish MEC under FPU Grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMA-MATER, and through the EU Projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).Puigcerver, J.; Toselli, AH.; Vidal, E. (2016). Querying out-of-vocabulary words in lexicon-based keyword spotting. Neural Computing and Applications. 1-10. https://doi.org/10.1007/s00521-016-2197-8S110Almazan J, Gordo A, Fornes A, Valveny E (2013) Handwritten word spotting with corrected attributes. In: 2013 IEEE international conference on computer vision (ICCV), pp 1017–1024. doi: 10.1109/ICCV.2013.130Amengual JC, Vidal E (2000) On the estimation of error-correcting parameters. In: Proceedings 15th international conference on pattern recognition, 2000, vol 2, pp 883–886Fernández D, Lladós J, Fornés A (2011) Handwritten word spotting in old manuscript images using a pseudo-structural descriptor organized in a hash structure. In: Vitri'a J, Sanches JM, Hern'andez M (eds) Pattern recognition and image analysis: Proceedings of 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10. Springer, Berlin, Heidelberg, pp 628–635. doi: 10.1007/978-3-642-21257-4_78Fischer A, Keller A, Frinken V, Bunke H (2012) Lexicon-free handwritten word spotting using character HMMs. Pattern Recognit Lett 33(7):934–942. doi: 10.1016/j.patrec.2011.09.009 Special Issue on Awards from ICPR 2010Fornés A, Frinken V, Fischer A, Almazán J, Jackson G, Bunke H (2011) A keyword spotting approach using blurred shape model-based descriptors. In: Proceedings of the 2011 workshop on historical document imaging and processing, pp 83–90. ACMFrinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224. doi: 10.1109/TPAMI.2011.113Gatos B, Pratikakis I (2009) Segmentation-free word spotting in historical printed documents. In: 10th International conference on document analysis and recognition, 2009. ICDAR’09, pp 271–275. IEEEJelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer Society, Los Alamitos, CA, USA. doi: http://doi.ieeecomputersociety.org/10.1109/ICASSP.1995.479394Kolcz A, Alspector J, Augusteijn M, Carlson R, Popescu GV (2000) A line-oriented approach to word spotting in handwritten documents. Pattern Anal Appl 3:153–168. doi: 10.1007/s100440070020Konidaris T, Gatos B, Ntzios K, Pratikakis I, Theodoridis S, Perantonis SJ (2007) Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. Int J Doc Anal Recognit 9(2–4):167–177Kumar G, Govindaraju V (2014) Bayesian active learning for keyword spotting in handwritten documents. In: 2014 22nd International conference on pattern recognition (ICPR), pp 2041–2046. IEEELevenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10(8):707–710Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMarti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46. doi: 10.1007/s100320200071Puigcerver J, Toselli AH, Vidal E (2014) Word-graph and character-lattice combination for KWS in handwritten documents. In: 14th International conference on frontiers in handwriting recognition (ICFHR), pp 181–186Puigcerver J, Toselli AH, Vidal E (2014) Word-graph-based handwriting keyword spotting of out-of-vocabulary queries. In: 22nd International conference on pattern recognition (ICPR), pp 2035–2040Puigcerver J, Toselli AH, Vidal E (2015) A new smoothing method for lexicon-based handwritten text keyword spotting. In: 7th Iberian conference on pattern recognition and image analysis. SpringerRath T, Manmatha R (2007) Word spotting for historical documents. Int J Doc Anal Recognit 9:139–152Robertson S. (2008) A new interpretation of average precision. In: Proceedings of the international. ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACM, New York, NY, USA. doi: http://doi.acm.org/10.1145/1390334.1390453Rodriguez-Serrano JA, Perronnin F (2009) Handwritten word-spotting using hidden markov models and universal vocabularies. Pattern Recognit 42(9):2106–2116. doi: 10.1016/j.patcog.2009.02.005 . http://www.sciencedirect.com/science/article/pii/S0031320309000673Rusinol M, Aldavert D, Toledo R, Llados J (2011) Browsing heterogeneous document collections by a segmentation-free word spotting method. In: International conference on document analysis and recognition (ICDAR), pp 63–67. doi: 10.1109/ICDAR.2011.22Shang H, Merrettal T (1996) Tries for approximate string matching. IEEE Trans Knowl Data Eng 8(4):540–547Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR), pp 501–505Toselli AH, Vidal E (2014) Word-graph based handwriting key-word spotting: impact of word-graph size on performance. In: 11th IAPR international workshop on document analysis systems (DAS), pp 176–180. IEEEToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politécnica de ValénciaVidal E, Toselli AH, Puigcerver J (2015) High performance query-by-example keyword spotting using query-by-string techniques. In: 2015 13th International conference on document analysis and recognition (ICDAR), pp 741–745. IEEEWoodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76. doi: 10.1109/ICASSP.1995.479276Wshah S, Kumar G, Govindaraju V (2012) Script independent word spotting in offline handwritten documents based on hidden markov models. In: 2012 International conference on frontiers in handwriting recognition (ICFHR), pp 14–19. doi: 10.1109/ICFHR.2012.26

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    An end-to-end, interactive Deep Learning based Annotation system for cursive and print English handwritten text

    Full text link
    With the surging inclination towards carrying out tasks on computational devices and digital mediums, any method that converts a task that was previously carried out manually, to a digitized version, is always welcome. Irrespective of the various documentation tasks that can be done online today, there are still many applications and domains where handwritten text is inevitable, which makes the digitization of handwritten documents a very essential task. Over the past decades, there has been extensive research on offline handwritten text recognition. In the recent past, most of these attempts have shifted to Machine learning and Deep learning based approaches. In order to design more complex and deeper networks, and ensure stellar performances, it is essential to have larger quantities of annotated data. Most of the databases present for offline handwritten text recognition today, have either been manually annotated or semi automatically annotated with a lot of manual involvement. These processes are very time consuming and prone to human errors. To tackle this problem, we present an innovative, complete end-to-end pipeline, that annotates offline handwritten manuscripts written in both print and cursive English, using Deep Learning and User Interaction techniques. This novel method, which involves an architectural combination of a detection system built upon a state-of-the-art text detection model, and a custom made Deep Learning model for the recognition system, is combined with an easy-to-use interactive interface, aiming to improve the accuracy of the detection, segmentation, serialization and recognition phases, in order to ensure high quality annotated data with minimal human interaction.Comment: 17 pages, 8 figures, 2 table

    Graph-based word spotting by inexact matching techniques

    Get PDF
    Al llarg d'aquest projecte s'ha desenvolupat un nou mètode de word spotting (localització de paraules) en què es té molt en compte l'estructura de les paraules a buscar. Aquestes tècniques consisteixen a trobar paraules escrites a mà, a partir d'un exemple. La tècnica presentada s'ha desenvolupat per utilitzar-la en documents antics. Seguidament, es presenta una indexació per tal d'accelerar el procés de cerca. Aquesta indexació consisteix a trobar ràpidament un conjunt de candidats on aplicar tècniques de word spotting en grans col·leccions de documents. Finalment, es mostra un exemple d'aplicació de les tècniques desenvolupades en una aplicació per a dispositius Android.A lo largo del proyecto se ha desarrollado un nuevo método de word spotting (localización de palabras) en el cual se tiene muy en consideración la estructura de las palabras a buscar. Estas técnicas consisten en encontrar palabras escritas a mano partiendo de un ejemplo. La técnica presentada se ha desarrollado utilizándola en documentos antiguos. Seguidamente, se presenta una indexación con el objetivo de acelerar el proceso de búsqueda. Esta indexación consiste en encontrar rápidamente un conjunto de candidatos donde aplicar técnicas de word spotting en grandes colecciones de documentos. Finalmente, se muestra un ejemplo de aplicación de la técnica desarrollada en una aplicación para dispositivos Android.Along this project a new method for word spotting (location of words) has been developed. This method has in mind the structure of the words to search. These techniques consist in finding handwritten words from a given example. The presented technique has been meant to be used in old documents. Afterwards an indexation process is presented to speed up the search step. This indexation is used to find a set of candidates in large document collections in order to apply word spotting techniques. Finally, an example application of the developed techniques is proposed for Android devices

    Keyword spotting in historical handwritten documents based on graph matching

    Get PDF
    In the last decades historical handwritten documents have become increasingly available in digital form. Yet, the accessibility to these documents with respect to browsing and searching remained limited as full automatic transcription is often not possible or not sufficiently accurate. This paper proposes a novel reliable approach for template-based keyword spotting in historical handwritten documents. In particular, our framework makes use of different graph representations for segmented word images and a sophisticated matching procedure. Moreover, we extend our method to a spotting ensemble. In an exhaustive experimental evaluation on four widely used benchmark datasets we show that the proposed approach is able to keep up or even outperform several state-of-the-art methods for template- and learning-based keyword spotting.The Hasler Foundation Switzerlandhttp://www.elsevier.com/locate/patcog2019-09-01hj2018Informatic

    Spotting Keywords in Offline Handwritten Documents Using Hausdorff Edit Distance

    Get PDF
    Keyword spotting has become a crucial topic in handwritten document recognition, by enabling content-based retrieval of scanned documents using search terms. With a query keyword, one can search and index the digitized handwriting which in turn facilitates understanding of manuscripts. Common automated techniques address the keyword spotting problem through statistical representations. Structural representations such as graphs apprehend the complex structure of handwriting. However, they are rarely used, particularly for keyword spotting techniques, due to high computational costs. The graph edit distance, a powerful and versatile method for matching any type of labeled graph, has exponential time complexity to calculate the similarities of graphs. Hence, the use of graph edit distance is constrained to small size graphs. The recently developed Hausdorff edit distance algorithm approximates the graph edit distance with quadratic time complexity by efficiently matching local substructures. This dissertation speculates using Hausdorff edit distance could be a promising alternative to other template-based keyword spotting approaches in term of computational time and accuracy. Accordingly, the core contribution of this thesis is investigation and development of a graph-based keyword spotting technique based on the Hausdorff edit distance algorithm. The high representational power of graphs combined with the efficiency of the Hausdorff edit distance for graph matching achieves remarkable speedup as well as accuracy. In a comprehensive experimental evaluation, we demonstrate the solid performance of the proposed graph-based method when compared with state of the art, both, concerning precision and speed. The second contribution of this thesis is a keyword spotting technique which incorporates dynamic time warping and Hausdorff edit distance approaches. The structural representation of graph-based approach combined with statistical geometric features representation compliments each other in order to provide a more accurate system. The proposed system has been extensively evaluated with four types of handwriting graphs and geometric features vectors on benchmark datasets. The experiments demonstrate a performance boost in which outperforms individual systems

    A survey on methods, datasets and implementations for scene text spotting

    Get PDF
    [EN] Text Spotting is the union of the tasks of detection and transcription of the text that is present in images. Due to the various problems often found when retrieving text, such as orientation, aspect ratio, vertical text or multiple languages in the same image, this can be a challenging task. In this paper, the most recent methods and publications in this field are analysed and compared. Apart from presenting features already seen in other surveys, such as their architectures and performance on different datasets, novel perspectives for comparison are also included, such as the hardware, software, backbone architectures, main problems to solve, or programming languages of the algorithms. The review highlights information often omitted in other studies, providing a better understanding of the current state of research in Text Spotting, from 2016 to 2022, current problems and future trends, as well as establishing a baseline for future methods development, comparison of results and serving as guideline for choosing the most appropriate method to solve a particular problemSIInstituto Nacional de CiberseguridadThis work was supported by the grant “Ayudas para la realización de estudios de doctorado en el marco del programa propio de investigación de la Universidad de León Convocatoria 2018” and also by the framework agreements between the Universidad de León and INCIBE (Spanish National Cybersecurity Institute) under Addendum 22 and Addendum 01. The authors acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research
    corecore