2,239 research outputs found

    Dynamic update of a virtual cell for programming and safe monitoring of an industrial robot

    Get PDF
    A hardware/software architecture for robot motion planning and on-line safe monitoring has been developed with the objective to assure high flexibility in production control, safety for workers and machinery, with user-friendly interface. The architecture, developed using Microsoft Robotics Developers Studio and implemented for a six-dof COMAU NS 12 robot, established a bidirectional communication between the robot controller and a virtual replica of the real robotic cell. The working space of the real robot can then be easily limited for safety reasons by inserting virtual objects (or sensors) in such a virtual environment. This paper investigates the possibility to achieve an automatic, dynamic update of the virtual cell by using a low cost depth sensor (i.e., a commercial Microsoft Kinect) to detect the presence of completely unknown objects, moving inside the real cell. The experimental tests show that the developed architecture is able to recognize variously shaped mobile objects inside the monitored area and let the robot stop before colliding with them, if the objects are not too small

    Leader-Follower type Motion Control Algorithm of Multiple Mobile Robots with Dual Manipulators for Handling a Single Object in Coordination

    Get PDF
    Proceedings of the 2004 lntemational Conference on Intelligent Mechatronics and Automation, Chengdu, China, August 200

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    Cooperative impedance control with time-varying stiffness

    Get PDF
    The focus of much automation research has been to design controllers and robots that safely interact with the environment. One approach is to use impedance control to specify a relationship between a robot\u27s motion and force and control a grasped object\u27s apparent stiffness, damping, and inertia. Conventional impedance control practices have focused on position-based manipulators - which are inherently non-compliant - using constant, task-dependent impedances. In the event of large trajectory tracking errors, this implementation method generates large interaction forces that can damage the workcell. Additionally, these position-based devices require dedicated force/torque sensors to measure and apply forces. In this paper, we present an alternative impedance controller implemented on cooperating torque-based manipulators. Through the use of time-varying impedance parameters, this controller limits the interaction forces to ensure harmless manipulation. Successful completion of transport and insertion tasks demonstrated the effectiveness of the controller

    Mobile Manipulation: A Case Study

    Get PDF

    Multi-robot cooperation

    Get PDF
    Abstract. This bachelor’s thesis familiarizes with multi-robot cooperation. The main interest is in two robot manipulators. This thesis is a literature review. The operation of the robot and the phenomena that act on them while in operation are investigated from kinematics and command architecture point of view. This thesis is based on manuals from two KUKA robots from University of Oulu, so in the future the use and understanding of their cooperation would be easier. The results gave good understanding of robot software calculations for trajectories and geometrics and what other has to consider when controlling a multi-robot system. This is a good base for deeper theoretical research for robot system software and practical testing.Usean robotin yhteiskäyttö. Tiivistelmä. Tässä opinnäytetyössä perehdytään usean robotin yhteiskäyttöön, jossa mielenkiinnon kohteena on kahden robottikäden yhteistoiminta. Työ on kirjallisuuskatsaus. Robottien toimintaa ja niihin vaikuttavia asioita tarkastellaan niin kinematiikan, kuin ohjelmisto- ja käskyarkkitehtuurin kautta. Työn pohjana käytettiin yliopistolla olevien KUKA robottikäsien oppaita, jotta jatkossa niiden yhteiskäyttö olisi helpommin ymmärrettävissä. Työn tulokset avasivat sitä, miten robottien ohjelmisto ohjaa ja laskee tarvittavat liikeradat ja geometriat ja mitä kaikkea usean robotin ohjauksessa pitää ottaa huomioon. Tämä on hyvä pohja syvemmälle teoreettiselle robottiohjelmistolle tai käytännön testaamiselle
    corecore