2,966 research outputs found

    A Benes Based NoC Switching Architecture for Mixed Criticality Embedded Systems

    Get PDF
    Multi-core, Mixed Criticality Embedded (MCE) real-time systems require high timing precision and predictability to guarantee there will be no interference between tasks. These guarantees are necessary in application areas such as avionics and automotive, where task interference or missed deadlines could be catastrophic, and safety requirements are strict. In modern multi-core systems, the interconnect becomes a potential point of uncertainty, introducing major challenges in proving behaviour is always within specified constraints, limiting the means of growing system performance to add more tasks, or provide more computational resources to existing tasks. We present MCENoC, a Network-on-Chip (NoC) switching architecture that provides innovations to overcome this with predictable, formally verifiable timing behaviour that is consistent across the whole NoC. We show how the fundamental properties of Benes networks benefit MCE applications and meet our architecture requirements. Using SystemVerilog Assertions (SVA), formal properties are defined that aid the refinement of the specification of the design as well as enabling the implementation to be exhaustively formally verified. We demonstrate the performance of the design in terms of size, throughput and predictability, and discuss the application level considerations needed to exploit this architecture

    Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems

    Get PDF

    IRQ Coloring: Mitigating Interrupt-Generated Interference on ARM Multicore Platforms

    Get PDF
    Mixed-criticality systems, which consolidate workloads with different criticalities, must comply with stringent spatial and temporal isolation requirements imposed by safety-critical standards (e.g., ISO26262). This, per se, has proven to be a challenge with the advent of multicore platforms due to the inner interference created by multiple subsystems while disputing access to shared resources. With this work, we pioneer the concept of Interrupt (IRQ) coloring as a novel mechanism to minimize the interference created by co-existing interrupt-driven workloads. The main idea consists of selectively deactivating specific ("colored") interrupts if the QoS of critical workloads (e.g., Virtual Machines) drops below a well-defined threshold. The IRQ Coloring approach encompasses two artifacts, i.e., the IRQ Coloring Design-Time Tool (IRQ DTT) and the IRQ Coloring Run-Time Mechanism (IRQ RTM). In this paper, we focus on presenting the conceptual IRQ coloring design, describing the first prototype of the IRQ RTM on Bao hypervisor, and providing initial evidence about the effectiveness of the proposed approach on a synthetic use case

    Measuring and Controlling Multicore Contention in a RISC-V System-on-Chip

    Get PDF
    [ES] Los procesadores multinúcleo empezaron una revolución en el cómputo moderno cuando fueron introducidos en el espacio de cómputo comercial y de consumidor. Estos procesadores multinúcleo presentaban un aumento significativo en consumo, eficiencia y rendimiento en un periodo de tiempo en el aumento de la frecuencia y el IPC del procesador parecía estar tocando techo. Sin embargo, en sistemas críticos, la introducción de los procesadores multinúcleo ha traído a la luz diferentes dificultades en el proceso de certificación. La principal área que dificulta la caracterización de los sistemas multicore en tiempo real es el uso de recursos compartidos, en específico, los buses compartidos. En este trabajo proveeremos las herramientas necesarias para facilitar la caracterización de sistemas que hacen uso de buses compartidos en sistemas de criticidad mixta. En específico, combinamos las políticas desarrolladas para sistemas con buses con políticas de limitación de ancho de banda basadas en interferencia causada al núcleo principal. Con esta combinación de políticas podemos limitar el WCET de la tarea crítica en el sistema multinúcleo mientras que proveemos un "best effort" para permitir el progreso en los núcleos secundarios.[CAT] Els processadors multinucli van començar una revolució en el còmput modern quan van ser introduïts en l’espai de còmput comercial i de consumidor. Aquests processadors multinucli presentaven un augment significatiu en consum, eficiència i rendiment en un període de temps en l’augment de la freqüència i l’IPC de l’processador semblava estar tocant sostre. No obstant això, en sistemes crítics, la introducció dels processadors multi- nucli ha portat a la llum diferents dificultats en el procés de certificació. La principal àrea que dificulta la caracterització dels sistemes multinucli en temps real és l’ús de recursos compartits, en específic, els busos compartits. En aquest treball proveirem les eines necessàries per facilitar la caracterització de sis- temes que fan ús de busos compartits en sistemes de criticitat mixta. En específic, combi- nem les polítiques desenvolupades per a sistemes amb busos amb polítiques de limitació d’ample de banda basades en interferència causada a el nucli principal. Amb aquesta combinació de polítiques podem limitar l’WCET de la tasca crítica en el sistema multinu- cli mentre que proveïm un "best effort"per permetre el progrés en els nuclis secundaris.[EN] Multicore processors were a revolution when introduced into the commercial computing space, they presented great power efficiency and performance in a time where clock speeds and instruction level parallelism were plateauing. But, on safety critical systems, the introduction of multi-core processors has brought serious difficulties to the certification process. The main trouble spot for multicore characterization is the usage of shared resources, in specific, shared buses. In this work, we provide tools to ease the characterization of shared bus mechanisms timing interference on critical and mixed criticality systems. In particular, we combine shared bus arbitration policies with rate limiting policies based on critical workload interference to bound the WCET of a critical workload on a multi-core system while doing a best effort to let secondary cores progress as much as possible.Andreu Cerezo, P. (2021). Measuring and Controlling Multicore Contention in a RISC-V System-on-Chip. Universitat Politècnica de València. http://hdl.handle.net/10251/173563TFG

    A Perspective on Safety and Real-Time Issues for GPU Accelerated ADAS

    Get PDF
    The current trend in designing Advanced Driving Assistance System (ADAS) is to enhance their computing power by using modern multi/many core accelerators. For many critical applications such as pedestrian detection, line following, and path planning the Graphic Processing Unit (GPU) is the most popular choice for obtaining orders of magnitude increases in performance at modest power consumption. This is made possible by exploiting the general purpose nature of today's GPUs, as such devices are known to express unprecedented performance per watt on generic embarrassingly parallel workloads (as opposed of just graphical rendering, as GPUs where only designed to sustain in previous generations). In this work, we explore novel challenges that system engineers have to face in terms of real-time constraints and functional safety when the GPU is the chosen accelerator. More specifically, we investigate how much of the adopted safety standards currently applied for traditional platforms can be translated to a GPU accelerated platform used in critical scenarios

    Achieving Performance Balance for Dual-Criticality System Based on ARM TrustZone

    Get PDF
    Many mixed-criticality systems are composed of a RTOS (Real-Time Operating System) and a GPOS (General Purpose Operating System), and we define this as a mixed-timesensitive system. Complexity, isolation, real-time latency, and overhead are the main metrics to design such a mixed-timesensitive system. These metrics may conflict with each other, so it is difficult for them to be consistently optimized. Most existing implementations only optimize with part of the above metrics but not all. As the first contribution, this paper provides a detailed analysis of performance influencing factors which are exerted by various runtime mechanisms of existing mixed-time-sensitive systems. We figure out the difference in performance across system designs such as task switching, memory management, interrupt handling, and resource isolation. We propose the philosophy of utilizing TrustZone characteristics to optimize various mechanisms in mixed-time-sensitive systems. The second contribution of the paper is to propose a Trustzonebased solution - termed TZDKS - for mixed-time sensitive system. Appropriate utilization of TrustZone extensions helps TZDKS to implements (i) virtualization environment for GPOS and RTOS, (ii) high efficiency task switching, memory accessing, interrupt handling and device accessing which are verified by experiments. Therefore, TZDKS can achieve a full-scale balance amongst aforementioned metrics

    Towards a RISC-V Open Platform for Next-generation Automotive ECUs

    Full text link
    The complexity of automotive systems is increasing quickly due to the integration of novel functionalities such as assisted or autonomous driving. However, increasing complexity poses considerable challenges to the automotive supply chain since the continuous addition of new hardware and network cabling is not considered tenable. The availability of modern heterogeneous multi-processor chips represents a unique opportunity to reduce vehicle costs by integrating multiple functionalities into fewer Electronic Control Units (ECUs). In addition, the recent improvements in open-hardware technology allow to further reduce costs by avoiding lock-in solutions. This paper presents a mixed-criticality multi-OS architecture for automotive ECUs based on open hardware and open-source technologies. Safety-critical functionalities are executed by an AUTOSAR OS running on a RISC-V processor, while the Linux OS executes more advanced functionalities on a multi-core ARM CPU. Besides presenting the implemented stack and the communication infrastructure, this paper provides a quantitative gap analysis between an HW/SW optimized version of the RISC-V processor and a COTS Arm Cortex-R in terms of real-time features, confirming that RISC-V is a valuable candidate for running AUTOSAR Classic stacks of next-generation automotive MCUs.Comment: 8 pages, 2023 12th Mediterranean Conference on Embedded Computing (MECO

    A first look at RISC-V virtualization from an embedded systems perspective

    Get PDF
    This article describes the first public implementation and evaluation of the latest version of the RISC-V hypervisor extension (H-extension v0.6.1) specification in a Rocket chip core. To perform a meaningful evaluation for modern multi-core embedded and mixedcriticality systems, we have ported Bao, an open-source static partitioning hypervisor, to RISC-V. We have also extended the RISC-V platformlevel interrupt controller (PLIC) to enable direct guest interrupt injection with low and deterministic latency and we have enhanced the timer infrastructure to avoid trap and emulation overheads. Experiments were carried out in FireSim, a cycle-accurate, FPGA-accelerated simulator, and the system was also successfully deployed and tested in a Zynq UltraScale+ MPSoC ZCU104. Our hardware implementation was opensourced and is currently in use by the RISC-V community towards the ratification of the H-extension specification.This work has been supported by FCT - undação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has also been supported by FCT within the PhD Scholarship Project Scope: SFRH/BD/138660/2018

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen
    • …
    corecore