599 research outputs found

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    A cache framework for nomadic clients of web services

    Get PDF
    This research explores the problems associated with caching of SOAP Web Service request/response pairs, and presents a domain independent framework enabling transparent caching of Web Service requests for mobile clients. The framework intercepts method calls intended for the web service and proceeds by buffering and caching of the outgoing method call and the inbound responses. This enables a mobile application to seamlessly use Web Services by masking fluctuations in network conditions. This framework addresses two main issues, firstly how to enrich the WS standards to enable caching and secondly how to maintain consistency for state dependent Web Service request/response pairs

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF

    Systems for Challenged Network Environments.

    Full text link
    Developing regions face significant challenges in network access, making even simple network tasks unpleasant and rich media prohibitively difficult to access. Even as cellular network coverage is approaching a near-universal reach, good network connectivity remains scarce and expensive in many emerging markets. The underlying theme in this dissertation is designing network systems that better accommodate users in emerging markets. To do so, this dissertation begins with a nuanced analysis of content access behavior for web users in developing regions. This analysis finds the personalization of content access---and the fragmentation that results from it---to be significant factors in undermining many existing web acceleration mechanisms. The dissertation explores content access behavior from logs collected at shared internet access sites, as well as user activity information obtained from a commercial social networking service with over a hundred million members worldwide. Based on these observations, the dissertation then discusses two systems designed for improving end-user experience in accessing and using content in constrained networks. First, it deals with the challenge of distributing private content in these networks. By leveraging the wide availability of cellular telephones, the dissertation describes a system for personal content distribution based on user access behavior. The system enables users to request future data accesses, and it schedules content transfers according to current and expected capacity. Second, the dissertation looks at routing bulk data in challenged networks, and describes an experimentation platform for building systems for challenged networks. This platform enables researchers to quickly prototype systems for challenged networks, and iteratively evaluate these systems using mobility and network emulation. The dissertation describes a few data routing systems that were built atop this experimentation platform. Finally, the dissertation discusses the marketplace and service discovery considerations that are important in making these systems viable for developing-region use. In particular, it presents an extensible, auction-based market platform that relies on widely available communication tools for conveniently discovering and trading digital services and goods in developing regions. Collectively, this dissertation brings together several projects that aim to understand and improve end-user experience in challenged networks endemic to developing regions.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91401/1/azarias_1.pd

    Vital signs monitoring and management using mobile devices

    Get PDF
    Constant breakthroughs in medical sensor technology and mobile devices fields, combined with growing wireless communication capabilities, have made possible the emergence of new health monitoring paradigms. The ever-increasing features of PDAs and smartphones make them a vital component in innovative health monitoring systems. In this paper, we introduce a handset mobile monitoring and management system, developed as complement to a complete vital signs monitoring project (MOHLL). The main purpose of this system is to provide physicians with real-time visualization of the patients’ vital parameters, namely the ECG trace, heart rate, and body temperature, through an Internet-connected PDA.Clinical and financial support for the case-study has been provided by Grupo AMI - Assistencia Medica Integral (Casa de Saude de Guimaraes, SA), Portugal, under the partnership established between this healthcare company and the University of Minho

    Multi-technology router for mobile networks : layer 2 overlay network over private and public wireless links

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore