211 research outputs found

    Real-Time Head Gesture Recognition on Head-Mounted Displays using Cascaded Hidden Markov Models

    Full text link
    Head gesture is a natural means of face-to-face communication between people but the recognition of head gestures in the context of virtual reality and use of head gesture as an interface for interacting with virtual avatars and virtual environments have been rarely investigated. In the current study, we present an approach for real-time head gesture recognition on head-mounted displays using Cascaded Hidden Markov Models. We conducted two experiments to evaluate our proposed approach. In experiment 1, we trained the Cascaded Hidden Markov Models and assessed the offline classification performance using collected head motion data. In experiment 2, we characterized the real-time performance of the approach by estimating the latency to recognize a head gesture with recorded real-time classification data. Our results show that the proposed approach is effective in recognizing head gestures. The method can be integrated into a virtual reality system as a head gesture interface for interacting with virtual worlds

    Touché: Data-Driven Interactive Sword Fighting in Virtual Reality

    Get PDF
    VR games offer new freedom for players to interact naturally using motion. This makes it harder to design games that react to player motions convincingly. We present a framework for VR sword fighting experiences against a virtual character that simplifies the necessary technical work to achieve a convincing simulation. The framework facilitates VR design by abstracting from difficult details on the lower “physical” level of interaction, using data-driven models to automate both the identification of user actions and the synthesis of character animations. Designers are able to specify the character's behaviour on a higher “semantic” level using parameterised building blocks, which allow for control over the experience while minimising manual development work. We conducted a technical evaluation, a questionnaire study and an interactive user study. Our results suggest that the framework produces more realistic and engaging interactions than simple hand-crafted interaction logic, while supporting a controllable and understandable behaviour design

    Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition

    Get PDF
    This paper is concerned with the recognition of dynamic hand gestures. A method based on Hidden Markov Models (HMMs) is presented for dynamic gesture trajectory modeling and recognition. Adaboost algorithm is used to detect the user's hand and a contour-based hand tracker is formed combining condensation and partitioned sampling. Cubic B-spline is adopted to approximately fit the trajectory points into a curve. Invariant curve moments as global features and orientation as local features are computed to represent the trajectory of hand gesture. The proposed method can achieve automatic hand gesture online recognition and can successfully reject atypical gestures. The experimental results show that the proposed algorithm can reach better recognition results than the traditional hand recognition method

    HGR-Net: A Fusion Network for Hand Gesture Segmentation and Recognition

    Full text link
    We propose a two-stage convolutional neural network (CNN) architecture for robust recognition of hand gestures, called HGR-Net, where the first stage performs accurate semantic segmentation to determine hand regions, and the second stage identifies the gesture. The segmentation stage architecture is based on the combination of fully convolutional residual network and atrous spatial pyramid pooling. Although the segmentation sub-network is trained without depth information, it is particularly robust against challenges such as illumination variations and complex backgrounds. The recognition stage deploys a two-stream CNN, which fuses the information from the red-green-blue and segmented images by combining their deep representations in a fully connected layer before classification. Extensive experiments on public datasets show that our architecture achieves almost as good as state-of-the-art performance in segmentation and recognition of static hand gestures, at a fraction of training time, run time, and model size. Our method can operate at an average of 23 ms per frame

    Designing racing game controller by image-based hand gesture recognition

    Full text link
    Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Meysam Madadi[en] This thesis is focused on exploring how hand gesture recognition can be used to replace controllers in racing games. The goal is to understand how to develop a system that is accurate, allowing for more responsive control when driving virtual vehicles. The first step of the research project is to analyze existing gesture recognition technologies, such as the Microsoft Kinect, and how they can be used in racing games. By studying existing implementations, the thesis aims to gain key concepts that can help improve the user's experience. The research will also investigate various hardware requirements, such as camera placements and sensors, that would be necessary for the system to function effectively in a racing game environment. Once the research requirements are established, testing will be carried out to evaluate how effective gesture-based control systems are compared to traditional controllers. The results of these tests will be analyzed to evaluate how well the system performs compared to existing controller-based racing games. The ultimate goal of this thesis is to create a more natural form of control that allows players to focus on the thrill of racing without worrying about button presses or joystick movements

    Grasps recognition and evaluation of stroke patients for supporting rehabilitation therapy

    Get PDF
    Copyright © 2014 Beatriz Leon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects' variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients' ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests.Peer reviewedFinal Published versio

    End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

    Get PDF
    The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers, which hinders the natural human-machine communication. On the other hand, vision-based methods are not restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision gesture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using gesture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking. In this thesis, we leverage the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for self-parking system. We propose a 3DCNN gesture model architecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained gesture model on a custom-made data, which significantly improved the proposed system performance in real world environment. We adapt the architecture of the end-to-end solution to expand the state of the art video classifier from a single image as input (fed by monocular camera) to a multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to work on a limited resources embedded platform (Nvidia Jetson TX2) that is used by automakers for vehicle-based features, without sacrificing the accuracy robustness and real time functionality of the system

    In the Presence of Images

    Get PDF
    I capture an image. I forget the image. I attempt to remember. Nothing. The images sole purpose was to help me remember, yet it cant. Has it failed, or have I? I begin to speculate how the forgotten image functions in the present, liberated from its associated past. Through the use of digitally archived images that have been forgotten since their capture, In the Presence of Images is a travelling exhibition that explores the digital revolution and its potential effects on memory. Through the processing of photographs and videos sourced from my personal digital archive, images are created to form a space for discussion, contemplation, and speculation, encouraging the viewer to question the capacities of forgotten imagery and to become cognizant of the technologies we entrust with more and more data everyday
    corecore