373 research outputs found

    A Hand-Based Biometric Verification System Using Ant Colony Optimization

    Get PDF
    This paper presents a novel personal authentication system using hand-based biometrics, which utilizes internal (beneath the skin) structure of veins on the dorsal part of the hand and the outer shape of the hand. The hand-vein and the hand-shape images can be simultaneously acquired by using infrared thermal and digital camera respectively. A claimed identity is authenticated by integrating these two traits based on the score-level fusion in which four fusion rules are used for the integration. Before their fusion, each modality is evaluated individually in terms of error rates and weights are assigned according to their performance. In order to achieve an adaptive security in the proposed bimodal system, an optimal selection of fusion parameters is required. Hence, Ant Colony Optimization (ACO) is employed in the bimodal system to select the weights and also one out of the four fusion rules optimally for the adaptive fusion of the two modalities to meet the user defined security levels. The databases of hand-veins and the hand-shapes consisting of 150 users are acquired using the peg-free imaging setup. The experimental results show genuine acceptance rate (GAR) of 98% at false acceptance rate (FAR) of 0.001% and the system has the potential for any online personal authentication based application.

    Handbook of Vascular Biometrics

    Get PDF

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Multimodal Biometrics for Person Authentication

    Get PDF
    Unimodal biometric systems have limited effectiveness in identifying people, mainly due to their susceptibility to changes in individual biometric features and presentation attacks. The identification of people using multimodal biometric systems attracts the attention of researchers due to their advantages, such as greater recognition efficiency and greater security compared to the unimodal biometric system. To break into the biometric multimodal system, the intruder would have to break into more than one unimodal biometric system. In multimodal biometric systems: The availability of many features means that the multimodal system becomes more reliable. A multimodal biometric system increases security and ensures confidentiality of user data. A multimodal biometric system realizes the merger of decisions taken under individual modalities. If one of the modalities is eliminated, the system can still ensure security, using the remaining. Multimodal systems provide information on the “liveness” of the sample being introduced. In a multimodal system, a fusion of feature vectors and/or decisions developed by each subsystem is carried out, and then the final decision on identification is made on the basis of the vector of features thus obtained. In this chapter, we consider a multimodal biometric system that uses three modalities: dorsal vein, palm print, and periocular

    Biometric Person Identification Using Near-infrared Hand-dorsa Vein Images

    Get PDF
    Biometric recognition is becoming more and more important with the increasing demand for security, and more usable with the improvement of computer vision as well as pattern recognition technologies. Hand vein patterns have been recognised as a good biometric measure for personal identification due to many excellent characteristics, such as uniqueness and stability, as well as difficulty to copy or forge. This thesis covers all the research and development aspects of a biometric person identification system based on near-infrared hand-dorsa vein images. Firstly, the design and realisation of an optimised vein image capture device is presented. In order to maximise the quality of the captured images with relatively low cost, the infrared illumination and imaging theory are discussed. Then a database containing 2040 images from 102 individuals, which were captured by this device, is introduced. Secondly, image analysis and the customised image pre-processing methods are discussed. The consistency of the database images is evaluated using mean squared error (MSE) and peak signal-to-noise ratio (PSNR). Geometrical pre-processing, including shearing correction and region of interest (ROI) extraction, is introduced to improve image consistency. Image noise is evaluated using total variance (TV) values. Grey-level pre-processing, including grey-level normalisation, filtering and adaptive histogram equalisation are applied to enhance vein patterns. Thirdly, a gradient-based image segmentation algorithm is compared with popular algorithms in references like Niblack and Threshold Image algorithm to demonstrate its effectiveness in vein pattern extraction. Post-processing methods including morphological filtering and thinning are also presented. Fourthly, feature extraction and recognition methods are investigated, with several new approaches based on keypoints and local binary patterns (LBP) proposed. Through comprehensive comparison with other approaches based on structure and texture features as well as performance evaluation using the database created with 2040 images, the proposed approach based on multi-scale partition LBP is shown to provide the best recognition performance with an identification rate of nearly 99%. Finally, the whole hand-dorsa vein identification system is presented with a user interface for administration of user information and for person identification

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Robust thermal face recognition using region classifiers

    Get PDF
    This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature
    • …
    corecore