349 research outputs found

    Identification of Nonlinear Systems From the Knowledge Around Different Operating Conditions: A Feed-Forward Multi-Layer ANN Based Approach

    Full text link
    The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.Comment: "6 pages, 9 figures; The Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC-2012), December 2012, Solan

    Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization.

    Full text link
    [ES] En muchos campos de la ingeniería los modelos matemáticos son utilizados para describir el comportamiento de los sistemas, procesos o fenómenos. Hoy en día, existen varias técnicas o métodos que pueden ser usadas para obtener estos modelos. Debido a su versatilidad y simplicidad, a menudo se prefieren los métodos de identificación de sistemas. Por lo general, estos métodos requieren la definición de una estructura y la estimación computacional de los parámetros que la componen utilizando un conjunto de procedimientos y mediciones de las señales de entrada y salida del sistema. En el contexto de la identificación de sistemas no lineales, un desafío importante es la selección de la estructura. En el caso de que el sistema a identificar presente una no linealidad de tipo estático, los modelos orientados a bloques, pueden ser útiles para definir adecuadamente una estructura. Sin embargo, el diseñador puede enfrentarse a cierto grado de incertidumbre al seleccionar el modelo orientado a bloques adecuado en concordancia con el sistema real. Además de este inconveniente, se debe tener en cuenta que la estimación de algunos modelos orientados a bloques no es sencilla, como es el caso de los modelos de Wiener-Hammerstein que consisten en un bloque NL en medio de dos subsistemas LTI. La presencia de dos subsistemas LTI en los modelos de Wiener-Hammerstein es lo que principalmente dificulta su estimación. Generalmente, el procedimiento de identificación comienza con la estimación de la dinámica lineal, y el principal desafío es dividir esta dinámica entre los dos bloques LTI. Por lo general, esto implica una alta interacción del usuario para desarrollar varios procedimientos, y el modelo final estimado depende principalmente de estas etapas previas. El objetivo de esta tesis es contribuir a la identificación de los modelos de Wiener-Hammerstein. Esta contribución se basa en la presentación de dos nuevos algoritmos para atender aspectos específicos que no han sido abordados en la identificación de este tipo de modelos. El primer algoritmo, denominado WH-EA, permite estimar todos los parámetros de un modelo de Wiener-Hammerstein con un solo procedimiento a partir de un modelo dinámico lineal. Con WH-EA, una buena estimación no depende de procedimientos intermedios ya que el algoritmo evolutivo simultáneamente busca la mejor distribución de la dinámica, ajusta con precisión la ubicación de los polos y los ceros y captura la no linealidad estática. Otra ventaja importante de este algoritmo es que bajo consideraciones específicas y utilizando una señal de excitación adecuada, es posible crear un enfoque unificado que permite también la identificación de los modelos de Wiener y Hammerstein, que son casos particulares del modelo de Wiener-Hammerstein cuando uno de sus bloques LTI carece de dinámica. Lo interesante de este enfoque unificado es que con un mismo algoritmo es posible identificar los modelos de Wiener, Hammerstein y Wiener-Hammerstein sin que el usuario especifique de antemano el tipo de estructura a identificar. El segundo algoritmo llamado WH-MOEA, permite abordar el problema de identificación como un Problema de Optimización Multiobjetivo (MOOP). Sobre la base de este algoritmo se presenta un nuevo enfoque para la identificación de los modelos de Wiener-Hammerstein considerando un compromiso entre la precisión alcanzada y la complejidad del modelo. Con este enfoque es posible comparar varios modelos con diferentes prestaciones incluyendo como un objetivo de identificación el número de parámetros que puede tener el modelo estimado. El aporte de este enfoque se sustenta en el hecho de que en muchos problemas de ingeniería los requisitos de diseño y las preferencias del usuario no siempre apuntan a la precisión del modelo como un único objetivo, sino que muchas veces la complejidad es también un factor predominante en la toma de decisiones.[CA] En molts camps de l'enginyeria els models matemàtics són utilitzats per a descriure el comportament dels sistemes, processos o fenòmens. Hui dia, existeixen diverses tècniques o mètodes que poden ser usades per a obtindre aquests models. A causa de la seua versatilitat i simplicitat, sovint es prefereixen els mètodes d'identificació de sistemes. En general, aquests mètodes requereixen la definició d'una estructura i l'estimació computacional dels paràmetres que la componen utilitzant un conjunt de procediments i mesuraments dels senyals d'entrada i eixida del sistema. En el context de la identificació de sistemes no lineals, un desafiament important és la selecció de l'estructura. En el cas que el sistema a identificar presente una no linealitat de tipus estàtic, els models orientats a blocs, poden ser útils per a definir adequadament una estructura. No obstant això, el dissenyador pot enfrontar-se a cert grau d'incertesa en seleccionar el model orientat a blocs adequat en concordança amb el sistema real. A més d'aquest inconvenient, s'ha de tindre en compte que l'estimació d'alguns models orientats a blocs no és senzilla, com és el cas dels models de Wiener-Hammerstein que consisteixen en un bloc NL enmig de dos subsistemes LTI. La presència de dos subsistemes LTI en els models de Wiener-Hammerstein és el que principalment dificulta la seua estimació. Generalment, el procediment d'identificació comença amb l'estimació de la dinàmica lineal, i el principal desafiament és dividir aquesta dinàmica entre els dos blocs LTI. En general, això implica una alta interacció de l'usuari per a desenvolupar diversos procediments, i el model final estimat depén principalment d'aquestes etapes prèvies. L'objectiu d'aquesta tesi és contribuir a la identificació dels models de Wiener-Hammerstein. Aquesta contribució es basa en la presentació de dos nous algorismes per a atendre aspectes específics que no han sigut adreçats en la identificació d'aquesta mena de models. El primer algorisme, denominat WH-EA (Algorisme Evolutiu per a la identificació de sistemes de Wiener-Hammerstein), permet estimar tots els paràmetres d'un model de Wiener-Hammerstein amb un sol procediment a partir d'un model dinàmic lineal. Amb WH-EA, una bona estimació no depén de procediments intermedis ja que l'algorisme evolutiu simultàniament busca la millor distribució de la dinàmica, afina la ubicació dels pols i els zeros i captura la no linealitat estàtica. Un altre avantatge important d'aquest algorisme és que sota consideracions específiques i utilitzant un senyal d'excitació adequada, és possible crear un enfocament unificat que permet també la identificació dels models de Wiener i Hammerstein, que són casos particulars del model de Wiener-Hammerstein quan un dels seus blocs LTI manca de dinàmica. L'interessant d'aquest enfocament unificat és que amb un mateix algorisme és possible identificar els models de Wiener, Hammerstein i Wiener-Hammerstein sense que l'usuari especifique per endavant el tipus d'estructura a identificar. El segon algorisme anomenat WH-MOEA (Algorisme evolutiu multi-objectiu per a la identificació de models de Wiener-Hammerstein), permet abordar el problema d'identificació com un Problema d'Optimització Multiobjectiu (MOOP). Sobre la base d'aquest algorisme es presenta un nou enfocament per a la identificació dels models de Wiener-Hammerstein considerant un compromís entre la precisió aconseguida i la complexitat del model. Amb aquest enfocament és possible comparar diversos models amb diferents prestacions incloent com un objectiu d'identificació el nombre de paràmetres que pot tindre el model estimat. L'aportació d'aquest enfocament se sustenta en el fet que en molts problemes d'enginyeria els requisits de disseny i les preferències de l'usuari no sempre apunten a la precisió del model com un únic objectiu, sinó que moltes vegades la complexitat és també un factor predominant en la presa de decisions.[EN] In several engineering fields, mathematical models are used to describe the behaviour of systems, processes or phenomena. Nowadays, there are several techniques or methods for obtaining mathematical models. Because of their versatility and simplicity, system identification methods are often preferred. Generally, systems identification methods require defining a structure and estimating computationally the parameters that make it up, using a set of procedures y measurements of the system's input and output signals. In the context of nonlinear system identification, a significant challenge is the structure selection. In the case that the system to be identified presents a static type of nonlinearity, block-oriented models can be useful to define a suitable structure. However, the designer may face a certain degree of uncertainty when selecting the block-oriented model in accordance with the real system. In addition to this inconvenience, the estimation of some block-oriented models is not an easy task, as is the case with the Wiener-Hammerstein models consisting of a NL block in the middle of two LTI subsystems. The presence of two LTI subsystems in the Wiener-Hammerstein models is what mainly makes their estimation difficult. Generally, the identification procedure begins with the estimation of the linear dynamics, and the main challenge is to split this dynamic between the two LTI block. Usually, this implies a high user interaction to develop several procedures, and the final model estimated mostly depends on these previous stages. The aim of this thesis is to contribute to the identification of the Wiener-Hammerstein models. This contribution is based on the presentation of two new algorithms to address specific aspects that have not been addressed in the identification of this type of model. The first algorithm, called WH-EA (An Evolutionary Algorithm for Wiener-Hammerstein System Identification), allows estimating all the parameters of a Wiener-Hammerstein model with a single procedure from a linear dynamic model. With WH-EA, a good estimate does not depend on intermediate procedures since the evolutionary algorithm looks for the best dynamic division, while the locations of the poles and zeros are fine-tuned, and nonlinearity is captured simultaneously. Another significant advantage of this algorithm is that under specific considerations and using a suitable excitation signal; it is possible to create a unified approach that also allows the identification of Wiener and Hammerstein models which are particular cases of the Wiener-Hammerstein model when one of its LTI blocks lacks dynamics. What is interesting about this unified approach is that with the same algorithm, it is possible to identify Wiener, Hammerstein, and Wiener-Hammerstein models without the user specifying in advance the type of structure to be identified. The second algorithm called WH-MOEA (Multi-objective Evolutionary Algorithm for Wiener-Hammerstein identification), allows to address the identification problem as a Multi-Objective Optimisation Problem (MOOP). Based on this algorithm, a new approach for the identification of Wiener-Hammerstein models is presented considering a compromise between the accuracy achieved and the model complexity. With this approach, it is possible to compare several models with different performances, including as an identification target the number of parameters that the estimated model may have. The contribution of this approach is based on the fact that in many engineering problems the design requirements and user's preferences do not always point to the accuracy of the model as a single objective, but many times the complexity is also a predominant factor in decision-making.Zambrano Abad, JC. (2021). Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171739TESI

    System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica)

    Get PDF
    La ingeniería de sistemas, definida generalmente como arte y ciencia de crear soluciones integrales a problemas complejos, se aplica en el presente documento a dos sistemas naturales, a saber, un sistema acuífero kárstico y un sistema glaciar, desde una perspectiva hidrológica. Las técnicas de identificación, desarrolladas típicamente en ingeniería para representar sistemas artificiales por medio de modelos lineales y no lineales, pueden aplicarse en el estudio de los sistemas naturales donde se producen fenómenos de acoplamiento entre el clima y la hidrosfera. Los métodos evolucionan para afrontar nuevos campos de identificación donde se requieren estrategias para encontrar el modelo idóneo adaptado a las peculiaridades del sistema. En este sentido, se han considerado especialmente las herramientas basadas en la transformada wavelet utilizadas en la preparación de series temporales, suavizado de señales, análisis espectral, correlación cruzada y predicción, entre otros. Bajo este enfoque, una aplicación a mencionar entre las tratadas en esta tesis, es la determinación analítica del núcleo efectivo estacional (SEC) a través del estudio de la coherencia wavelet entre temperatura del aire y la descarga del glaciar, que establece un conjunto de períodos de muestreo aceptablemente coherentes, a partir del cual se crearán los modelos del sistema glacial. El estudio está dirigido específicamente a estimar la influencia de la precipitación sobre la descarga del acuífero kárstico de Fuenmayor, en San Julián de Banzo, Huesca, España. De la misma manera, se ocupa de las consecuencias de la temperatura del aire en la fusión del hielo glaciar, que se manifiesta en la corriente de drenaje del glaciar Collins, isla King George, Antártida. En el proceso de identificación paramétrica y no paramétrica se buscan los modelos que mejor representen la dinámica interna del sistema. Eso conduce a pruebas iterativas, donde se van creando modelos que se verifican sistemáticamente con los datos reales del muestreo, de acuerdo a un criterio de eficiencia dado. La solución mejor valorada según los resultados obtenidos en los casos tratados apuntan a estructuras de modelos en bloques. Esta tesis significa una exposición formal de la metodología de identificación de sistemas propios de la ingeniería en el contexto de los sistemas naturales, que mejoran los resultados obtenidos en muchos casos de la hidrología kárstica que comúnmente usaban métodos ad hoc ocasionales de carácter estadístico; así mismo, los enfoques propuestos en los casos de glaciología con el análisis wavelet y los modelos orientados a datos raramente considerados en la literatura, revelan información esencial ante la imposibilidad de precisar la totalidad de la física que rige el sistema. Notables resultados se derivan en la caracterización de la respuesta del manantial de Fuenmayor y su correlación con la precipitación, desde la perspectiva de un sistema lineal, que se complementa con los métodos de identificación basados en técnicas no lineales. Así mismo, la implementación del modelo para el glaciar Collins, obtenido también mediante métodos de identificación de caja negra, puede revelar una inestabilidad de los límites de los periodos activos de la descarga, y consecuentemente la variabilidad en la tendencia actual en el cambio climático global

    Continuous-time block-oriented nonlinear modeling with complex input noise structure

    Get PDF
    The continuous-time closed-form algorithms to sinusoidal input changes are proposed and presented for single-input, single-output (SISO) Hammerstein and Wiener systems with the first-order, second-order, and second-order plus lead dynamics. By simulation on theoretical Hammerstein and Wiener systems, the predicted responses agree exactly with the true process values. They depend on only the most recent input change. The algorithms to SISO Hammerstein and Wiener systems can be conveniently extended to the multiple-input, multiple-output (MIMO) systems as shown by the two-input, two-output examples and demonstrated by the simulated seven-input, five-output continuous stirred tank reactor (CSTR). The predictions and the simulated theoretical responses agree exactly and the predicted multiple CSTR outputs are close to the true process outputs. The proposed algorithms can predict the responses closer to the true values when comparing with the piece-wise step input approximation of the sinusoidal input changes on a simulated MIMO CSTR. In addition, as the noisy process input could be decomposed as summation of sinusoidal signals imposed on a step input change; the proposed algorithms can be employed to predict outputs for the noisy process inputs once the decomposition is done and the predicted noisy process outputs are shown to be close to the true ones, and are much better than the predictions based on the perfect filtering of the input signals.;The estimating equations based on the moment method are proposed for the Wiener dynamic process with stochastically correlated process input disturbances or noises and they work well for the parameter estimation. No one has ever proposed such method before. This approach has led to stable and robust estimators that have reasonable estimation errors and there is no need to measure the input disturbances or noises, or to calculate the time derivative of the observed output variable. Only the original process output observations over time are needed. The original model can be shifted to an approximate model under some conditions. This approximation is acceptable based on some analysis and derivation. The estimating equation methodology was shown to work well for the approximate model, while other existing methods do not work at all

    Mixed time and frequency-domain identification of Radio Frequency Power Amplifiers

    No full text
    International audienceThis paper presents a modeling and identification procedure for Radio Frequency Power Amplifier (PA) in continuous time representation. The proposed method is based on a combined approach using time and frequency domain. The microwave PA dynamics are described by the continuous Hammerstein model. The distortion function coefficients were estimated using Least Mean Squares (LMS) method that minimizes the squared error based on baseband output data. The coefficients of dynamic block are extracted using an iterative instrumental variable applied to experimental PA frequency responses. To demonstrate the feasibility of the identification method in experimental results we used a standard mobile PA at 1.85GHz
    corecore