672 research outputs found

    The bilinear-biquadratic model on the complete graph

    Full text link
    We study the spin-1 bilinear-biquadratic model on the complete graph of N sites, i.e., when each spin is interacting with every other spin with the same strength. Because of its complete permutation invariance, this Hamiltonian can be rewritten as the linear combination of the quadratic Casimir operators of su(3) and su(2). Using group representation theory, we explicitly diagonalize the Hamiltonian and map out the ground-state phase diagram of the model. Furthermore, the complete energy spectrum, with degeneracies, is obtained analytically for any number of sites

    Combinatorial properties of the G-degree

    Get PDF
    A strong interaction is known to exist between edge-colored graphs (which encode PL pseudo-manifolds of arbitrary dimension) and random tensor models (as a possible approach to the study of Quantum Gravity). The key tool is the "G-degree" of the involved graphs, which drives the 1/N expansion in the tensor models context. In the present paper - by making use of combinatorial properties concerning Hamiltonian decompositions of the complete graph - we prove that, in any even dimension d greater or equal to 4, the G-degree of all bipartite graphs, as well as of all (bipartite or non-bipartite) graphs representing singular manifolds, is an integer multiple of (d-1)!. As a consequence, in even dimension, the terms of the 1/N expansion corresponding to odd powers of 1/N are null in the complex context, and do not involve colored graphs representing singular manifolds in the real context. In particular, in the 4-dimensional case, where the G-degree is shown to depend only on the regular genera with respect to an arbitrary pair of "associated" cyclic permutations, several results are obtained, relating the G-degree or the regular genus of 5-colored graphs and the Euler characteristic of the associated PL 4-manifolds

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Decomposition of product graphs into sunlet graphs of order eight

    Get PDF
    For any integer k≥3k\geq 3 , we define sunlet graph of order 2k2k, denoted by L2kL_{2k}, as the graph consisting of a cycle of length kk together with kk pendant vertices, each adjacent to exactly one vertex of the cycle. In this paper, we give necessary and sufficient conditions for the existence of L8L_{8}-decomposition of tensor product and wreath product of complete graphs

    Entanglement and Frustration in Ordered Systems

    Get PDF
    This article reviews and extends recent results concerning entanglement and frustration in multipartite systems which have some symmetry with respect to the ordering of the particles. Starting point of the discussion are Bell inequalities: their relation to frustration in classical systems and their satisfaction for quantum states which have a symmetric extension. It is then discussed how more general global symmetries of multipartite systems constrain the entanglement between two neighboring particles. We prove that maximal entanglement (measured in terms of the entanglement of formation) is always attained for the ground state of a certain nearest neighbor interaction Hamiltonian having the considered symmetry with the achievable amount of entanglement being a function of the ground state energy. Systems of Gaussian states, i.e. quantum harmonic oscillators, are investigated in more detail and the results are compared to what is known about ordered qubit systems.Comment: 13 pages, for the Proceedings of QIT-EQIS'0

    A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

    Get PDF
    For even kk, the matchings connectivity matrix Mk\mathbf{M}_k encodes which pairs of perfect matchings on kk vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk\mathbf{M}_k over Z2\mathbb{Z}_2 is Θ(2k)\Theta(\sqrt 2^k) and used this to give an O∗((2+2)pw)O^*((2+\sqrt{2})^{\mathsf{pw}}) time algorithm for counting Hamiltonian cycles modulo 22 on graphs of pathwidth pw\mathsf{pw}. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within Mk\mathbf{M}_k, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of Mk\mathbf{M}_k is given; no stronger structural insights such as the existence of large permutation submatrices in Mk\mathbf{M}_k are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes pp) parameterized by pathwidth. To apply this technique, we prove that the rank of Mk\mathbf{M}_k over the rationals is 4k/poly(k)4^k / \mathrm{poly}(k). We also show that the rank of Mk\mathbf{M}_k over Zp\mathbb{Z}_p is Ω(1.97k)\Omega(1.97^k) for any prime p≠2p\neq 2 and even Ω(2.15k)\Omega(2.15^k) for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time O∗((6−ϵ)pw)O^*((6-\epsilon)^{\mathsf{pw}}) for any ϵ>0\epsilon>0 unless SETH fails. This bound is tight due to a O∗(6pw)O^*(6^{\mathsf{pw}}) time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes p≠2p\neq 2 in time O∗(3.97pw)O^*(3.97^\mathsf{pw}), indicating that the modulus can affect the complexity in intricate ways.Comment: improved lower bounds modulo primes, improved figures, to appear in SODA 201

    Tree tensor network state with variable tensor order: an efficient multireference method for strongly correlated systems

    Get PDF
    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement
    • …
    corecore