10 research outputs found

    Tree Graphs and Orthogonal Spanning Tree Decompositions

    Get PDF
    Given a graph G, we construct T(G), called the tree graph of G. The vertices of T(G) are the spanning trees of G, with edges between vertices when their respective spanning trees differ only by a single edge. In this paper we detail many new results concerning tree graphs, involving topics such as clique decomposition, planarity, and automorphism groups. We also investigate and present a number of new results on orthogonal tree decompositions of complete graphs

    Subject Index Volumes 1–200

    Get PDF

    Finding Cycles and Trees in Sublinear Time

    Full text link
    We present sublinear-time (randomized) algorithms for finding simple cycles of length at least k3k\geq 3 and tree-minors in bounded-degree graphs. The complexity of these algorithms is related to the distance of the graph from being CkC_k-minor-free (resp., free from having the corresponding tree-minor). In particular, if the graph is far (i.e., Ω(1)\Omega(1)-far) {from} being cycle-free, i.e. if one has to delete a constant fraction of edges to make it cycle-free, then the algorithm finds a cycle of polylogarithmic length in time \tildeO(\sqrt{N}), where NN denotes the number of vertices. This time complexity is optimal up to polylogarithmic factors. The foregoing results are the outcome of our study of the complexity of {\em one-sided error} property testing algorithms in the bounded-degree graphs model. For example, we show that cycle-freeness of NN-vertex graphs can be tested with one-sided error within time complexity \tildeO(\poly(1/\e)\cdot\sqrt{N}). This matches the known Ω(N)\Omega(\sqrt{N}) query lower bound, and contrasts with the fact that any minor-free property admits a {\em two-sided error} tester of query complexity that only depends on the proximity parameter \e. For any constant k3k\geq3, we extend this result to testing whether the input graph has a simple cycle of length at least kk. On the other hand, for any fixed tree TT, we show that TT-minor-freeness has a one-sided error tester of query complexity that only depends on the proximity parameter \e. Our algorithm for finding cycles in bounded-degree graphs extends to general graphs, where distances are measured with respect to the actual number of edges. Such an extension is not possible with respect to finding tree-minors in o(N)o(\sqrt{N}) complexity.Comment: Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sided vs Two-Sided Error Probability Updated versio

    Local properties of graphs

    Get PDF
    We say a graph is locally P if the induced graph on the neighbourhood of every vertex has the property P. Specically, a graph is locally traceable (LT) or locally hamiltonian (LH) if the induced graph on the neighbourhood of every vertex is traceable or hamiltonian, respectively. A locally locally hamiltonian (L2H) graph is a graph in which the graph induced by the neighbourhood of each vertex is an LH graph. This concept is generalized to an arbitrary degree of nesting, to make it possible to work with LkH graphs. This thesis focuses on the global cycle properties of LT, LH and LkH graphs. Methods are developed to construct and combine such graphs to create others with desired properties. It is shown that with the exception of three graphs, LT graphs with maximum degree no greater than 5 are fully cycle extendable (and hence hamiltonian), but the Hamilton cycle problem for LT graphs with maximum degree 6 is NP-complete. Furthermore, the smallest nontraceable LT graph has order 10, and the smallest value of the maximum degree for which LT graphs can be nontraceable is 6. It is also shown that LH graphs with maximum degree 6 are fully cycle extendable, and that there exist nonhamiltonian LH graphs with maximum degree 9 or less for all orders greater than 10. The Hamilton cycle problem is shown to be NP-complete for LH graphs with maximum degree 9. The construction of r-regular nonhamiltonian graphs is demonstrated, and it is shown that the number of vertices in a longest path in an LH graph can contain a vanishing fraction of the vertices of the graph. NP-completeness of the Hamilton cycle problem for LkH graphs for higher values of k is also investigated.Mathematical SciencesD. Phil. (Mathematics

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Hamiltonian and Pancyclic Graphs in the Class of Self-Centered Graphs with Radius Two

    No full text
    The paper deals with Hamiltonian and pancyclic graphs in the class of all self-centered graphs of radius 2. For both of the two considered classes of graphs we have done the following. For a given number n of vertices, we have found an upper bound of the minimum size of such graphs. For n ≤ 12 we have found the exact values of the minimum size. On the other hand, the exact value of the maximum size has been found for every n. Moreover, we have shown that such a graph (of order n and) of size m exists for every m between the minimum and the maximum size. For n ≤ 10 we have found all nonisomorphic graphs of the minimum size, and for n = 11 only for Hamiltonian graphs

    Hamiltonian and Pancyclic Graphs in the Class of Self-Centered Graphs with Radius Two

    No full text
    The paper deals with Hamiltonian and pancyclic graphs in the class of all self-centered graphs of radius 2. For both of the two considered classes of graphs we have done the following. For a given number n of vertices, we have found an upper bound of the minimum size of such graphs. For n ≤ 12 we have found the exact values of the minimum size. On the other hand, the exact value of the maximum size has been found for every n. Moreover, we have shown that such a graph (of order n and) of size m exists for every m between the minimum and the maximum size. For n ≤ 10 we have found all nonisomorphic graphs of the minimum size, and for n = 11 only for Hamiltonian graphs

    Hamiltonian and pancyclic graphs in the class of self-centered graphs with radius two

    No full text

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore