5 research outputs found

    Review Paper: The Shape of Phylogenetic Treespace

    Full text link
    Trees are a canonical structure for representing evolutionary histories. Many popular criteria used to infer optimal trees are computationally hard, and the number of possible tree shapes grows super-exponentially in the number of taxa. The underlying structure of the spaces of trees yields rich insights that can improve the search for optimal trees, both in accuracy and in running time, and the analysis and visualization of results. We review the past work on analyzing and comparing trees by their shape as well as recent work that incorporates trees with weighted branch lengths

    Neighborhoods of trees in circular orderings

    Get PDF
    In phylogenetics, a common strategy used to construct an evolutionary tree for a set of species X is to search in the space of all such trees for one that optimizes some given score function (such as the minimum evolution, parsimony or likelihood score). As this can be computationally intensive, it was recently proposed to restrict such searches to the set of all those trees that are compatible with some circular ordering of the set X. To inform the design of efficient algorithms to perform such searches, it is therefore of interest to find bounds for the number of trees compatible with a fixed ordering in the neighborhood of a tree that is determined by certain tree operations commonly used to search for trees: the nearest neighbor interchange (nni), the subtree prune and regraft (spr) and the tree bisection and reconnection (tbr) operations. We show that the size of such a neighborhood of a binary tree associated with the nni operation is independent of the treeā€™s topology, but that this is not the case for the spr and tbr operations. We also give tight upper and lower bounds for the size of the neighborhood of a binary tree for the spr and tbr operations and characterize those trees for which these bounds are attained

    Phylogenetic Trees and Their Analysis

    Full text link
    Determining the best possible evolutionary history, the lowest-cost phylogenetic tree, to fit a given set of taxa and character sequences using maximum parsimony is an active area of research due to its underlying importance in understanding biological processes. As several steps in this process are NP-Hard when using popular, biologically-motivated optimality criteria, significant amounts of resources are dedicated to both both heuristics and to making exact methods more computationally tractable. We examine both phylogenetic data and the structure of the search space in order to suggest methods to reduce the number of possible trees that must be examined to find an exact solution for any given set of taxa and associated character data. Our work on four related problems combines theoretical insight with empirical study to improve searching of the tree space. First, we show that there is a Hamiltonian path through tree space for the most common tree metrics, answering Bryant\u27s Challenge for the minimal such path. We next examine the topology of the search space under various metrics, showing that some metrics have local maxima and minima even with perfect data, while some others do not. We further characterize conditions for which sequences simulated under the Jukes-Cantor model of evolution yield well-behaved search spaces. Next, we reduce the search space needed for an exact solution by splitting the set of characters into mutually-incompatible subsets of compatible characters, building trees based on the perfect phylogenies implied by these sets, and then searching in the neighborhoods of these trees. We validate this work empirically. Finally, we compare two approaches to the generalized tree alignment problem, or GTAP: Sequence alignment followed by tree search vs. Direct Optimization, on both biological and simulated data

    Spaces of phylogenetic networks from generalized nearest-neighbor interchange operations

    Get PDF
    Phylogenetic networks are a generalization of evolutionary or phylogenetic trees that are used to represent the evolution of species which have undergone reticulate evolution. In this paper we consider spaces of such networks defined by some novel local operations that we introduce for converting one phylogenetic network into another. These operations are modeled on the well-studied nearest-neighbor interchange (NNI) operations on phylogenetic trees, and lead to natural generalizations of the tree spaces that have been previously associated to such operations. We present several results on spaces of some relatively simple networks, called level-1 networks, including the size of the neighborhood of a fixed network, and bounds on the diameter of the metric defined by taking the smallest number of operations required to convert one network into another.We expect that our results will be useful in the development of methods for systematically searching for optimal phylogenetic networks using, for example, likelihood and Bayesian approaches

    Neighbourhoods of Phylogenetic Trees: Exact and Asymptotic Counts

    Get PDF
    A central theme in phylogenetics is the reconstruction and analysis of evolutionary trees from a given set of data. To determine the optimal search methods for the reconstruction of trees, it is crucial to understand the size and structure of neighbourhoods of trees under tree rearrangement operations. The diameter and size of the immediate neighbourhood of a tree has been well-studied, however little is known about the number of trees at distance two, three or (more generally) k from a given tree. In this thesis we explore previous results on the size of these neighbourhoods under common tree rearrangement operations (NNI, SPR and TBR). We obtain new results concerning the number of trees at distance k from a given tree under the Robinson-Foulds (RF) metric and the Nearest Neighbour Interchange (NNI) operation, and the number of trees at distance two from a given tree under the Subtree Prune and Regraft (SPR) operation. We also obtain an exact count for the number of pairs of binary phylogenetic trees that share a first RF or NNI neighbour
    corecore