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Abstract

A central theme in phylogenetics is the reconstruction and analysis of evolutionary trees

from a given set of data. To determine the optimal search methods for the reconstruction of

trees, it is crucial to understand the size and structure of neighbourhoods of trees under tree

rearrangement operations. The diameter and size of the immediate neighbourhood of a tree has

been well-studied, however little is known about the number of trees at distance two, three or

(more generally) k from a given tree. In this thesis we explore previous results on the size of

these neighbourhoods under common tree rearrangement operations (NNI, SPR and TBR). We

obtain new results concerning the number of trees at distance k from a given tree under the

Robinson-Foulds (RF) metric and the Nearest Neighbour Interchange (NNI) operation, and the

number of trees at distance two from a given tree under the Subtree Prune and Regraft (SPR)

operation. We also obtain an exact count for the number of pairs of binary phylogenetic trees

that share a first RF or NNI neighbour.
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1 Introduction

Phylogenetics is the study of evolutionary relationships between species. These relationships are rep-

resented as phylogenetic trees, where the leaves correspond to extant species, and interior vertices

correspond to ancestral species. A branch between two species in a tree indicates an evolutionary

relationship between them (Semple and Steel, 2003; Felsenstein, 2004). Central to phylogenetics

is the problem of finding the optimal tree to fit a given data set, with the aim of determining the

evolutionary history of the species being studied. However the number of possible phylogenetic trees

grows rapidly with the number of leaves, so for data sets with a large number of leaves, the optimal

tree is commonly found by searching the set of phylogenetic trees (tree space) via tree rearrangement

operations (Kubatko, 2007; Whelan and Money, 2010). Tree rearrangement operations are also used

to compare phylogenetic trees, by looking at the distance (smallest number of tree rearrangement

operations) between the trees. These could be trees obtained from the same data set using differ-

ent search methods, or from different data sets on the same set of species (DasGupta et al., 1997a,b).

In order to effectively search tree space using tree rearrangement operations it is crucial to under-

stand the size and structure of the neighbourhood (set of trees obtained) of a phylogenetic tree under

these operations. In this thesis we investigate the size of the neighbourhoods of trees arising from

three commonly used tree rearrangement operations; Nearest Neighbour Interchange (NNI), Subtree

Prune and Regraft (SPR), and Tree Bisection and Reconnection (TBR) as well as the Robinson-

Foulds (RF) distance. Fig. 1 shows examples of the RF, NNI and SPR distances between trees.

Expressions for the number of trees at distance one, two or three from a given tree under NNI,

and distance one under SPR and TBR are already known (Robinson, 1971; Allen and Steel, 2001;

Humphries and Wu, 2013). We will consider each of these neighbourhoods in detail, and provide

independent proofs for these expressions. In addition we provide new asymptotic expressions for

the number of trees at distance k from a given tree under NNI and the RF distance, and show that

unlike NNI and RF, the number of trees at distance two from a given tree under SPR is dependent

on the shape of the tree, and cannot be expressed solely in terms of the number of leaves and cherries

of the tree.

The literature on the structure of tree neighbourhoods and tree space has included results regarding

the distribution of distances between trees (Bryant and Steel, 2009), and the smallest number of

NNI operations required to reach every tree in the set (Gordon et al., 2013; Caceres et al., 2013).

Bryant (2004) characterised the splits appearing in trees within a certain distance of a given tree

under the four distance measures we investigate here (RF, NNI, SPR and TBR). Our work on

the number of trees at distance one or two from a given tree produces an exact count for the num-
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Figure 1: Here T1 and T2 are unrooted binary phylogenetic trees with 7 leaves. They are (i) distance

two apart under the RF metric, (ii) distance two apart under the NNI metric, and (iii) distance one

apart under the SPR metric. Tree T is obtained from T1 or T2 by contracting the two internal edges

indicated by dotted lines.

ber of pairs of binary phylogenetic trees with n leaves that share a first neighbour under NNI and RF.

Unless otherwise stated results in this thesis are my own, and in all cases where results were originally

stated elsewhere I have proved them independently, and without reference to the original source.

2 Definitions

A graph G is an ordered pair (V (G), E(G)) consisting of a vertex set V (G) and an edge set E(G). For

any vertices x, y ∈ V (G), x and y are adjacent if there is an edge e ∈ E(G) such that e = {x, y}. We

call x and y the endpoints of e, and x and e are said to be incident. Two distinct edges e, f ∈ E(G)

are adjacent if they have an endpoint in common. Edges e, f ∈ E(G) are parallel edges if they have

the same endpoints. An edge f = {x, x} where x ∈ V (G) is called a loop. A graph is simple if it has

no loops or parallel edges. All of the graphs referred to in this thesis are simple.

The degree of a vertex v ∈ V (G) is the number of vertices in V (G) that are adjacent to v, and

is denoted deg(v). The Handshaking Lemma is a well-known result stating that for a graph G,∑
v∈V (G) deg(v) = 2|E(G)| (Bollobas, 1998).

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (H) ⊂ V (G) or E(H) ⊂ E(G)

then H is a proper subgraph of G. A path P in G of length k is a subgraph of G which consists

of a sequence of distinct vertices v0, v1, ..., vk such that for all i ∈ {0, 1, ..., k − 1}, vi and vi+1 are

adjacent in P . We may also refer to P as a (v0−vk)-path or an (e−f)-path where e = {v0, v1} and

f = {vk−1, vk}. A cycle is a path in which the first and last vertices are the same, that is, v0 = vk.

The subgraph of a graph G induced by the vertex set V ⊆ V (G) is the subgraph with vertex set V ,
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and edge set E ⊆ E(G) where E consists of all the edges of G that have both endpoints in V .

Two vertices x, y ∈ V (G) are connected if there is an (x−y)-path in G. A graph G is connected, if all

pairs of vertices x, y ∈ V (G) are connected. A component of G is a maximal connected subgraph of G.

The distance between two vertices x, y ∈ V (G), denoted dG(x, y), is the length of the shortest (x−y)-

path in G. We define the distance between two vertex sets, U = {u1, u2, ...} and V = {v1, v2, ...} to

be dG(U, V ) where

dG(U, V ) = min{dG(ui, vj) : 1 ≤ i ≤ |U |, 1 ≤ j ≤ |V |}.

The diameter M of G is given by

M = max{dG(vi, vj) : vi, vj ∈ V (G)}.

Two graphs G and G′ are isomorphic if there is a bijection σ : V (G)→ V (G′) such that for all pairs

of vertices x, y ∈ V (G), x and y are adjacent in G if and only if σ(x) and σ(y) are adjacent in G′.

2.1 Trees

A tree T is a connected graph containing no cycles. A forest is a graph whose components are trees.

A tree is rooted if it has a distinguished root vertex, otherwise it is unrooted. A leaf of a tree T is a

vertex of T that has degree one. The leaf set L(T ) ⊆ V (T ) of a tree T is the set of all leaves in T .

Vertices of T that are not leaves, are called internal vertices. If an edge of T is incident to a leaf we

call it a pendant edge of T , otherwise it is an internal edge of T .

A binary tree is a tree in which all internal vertices have degree three. A binary phylogenetic tree T

is a tree with a bijection φ : X → L(T ) where X is a set of n labels (see Fig. 1). Let UB(n) be

the set of all unrooted binary phylogenetic trees with n leaves. In this thesis we shall restrict our

attention to unrooted binary phylogenetic trees unless otherwise stated.

A cherry in a tree T is a path of length two in which both end points are leaves of T . Let UB(n, c)

be the set of all unrooted binary phylogenetic trees with n leaves and c cherries. For example, in

Fig. 1, T1 ∈ UB(7, 3) and T2 ∈ UB(7, 2), while T is not a binary tree.

For trees T1, T2 ∈ UB(n), we say that T1 and T2 are equal (T1 = T2) if they are isomorphic by a

map that preserves the leaf labelling.
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2.2 Subtrees

A subtree of a graph G is a subgraph of G that is a tree. All connected subgraphs of a tree T are sub-

trees. The distance in T between a subtree T ′ of T and a set of vertices V ⊆ V (T ) is dT (V (T ′), V ).

Throughout this thesis, we will simply write this as dT (T ′, V ). Throughout this thesis we assume

that all subtrees are proper subtrees, and have the property that if T ′ is a subtree of T ∈ UB(n)

then L(T ′) ⊆ L(T ). This ensures that T ′ has at least one vertex of degree two. If T ′ has exactly

one vertex of degree two then it is a pendant subtree, else it is an internal subtree. An edge e in

a tree T is incident to a subtree T ′ of T if e is incident to a vertex of degree two in T . Unless

otherwise specified, we use the term ‘subtree’ to mean ‘pendant subtree’. All subtrees in this thesis

are maximal unless otherwise stated.

A tree T is a caterpillar if the subtree T ′ induced by the internal vertices of T is a path. A balanced

tree is a tree in which all leaves are equidistant from a single vertex or edge. Fig. 2 shows a caterpillar

and the two structures for a balanced tree.

(a)

(b) (c)

Figure 2: Examples of (a) a caterpillar and (b), (c) balanced trees.

Define Pk(T ) to be the number of paths of length k in T . An internal path P of a tree T is a path in

which all vertices of P are internal vertices of T . We denote by pk(T ) the number of internal paths

of length k in T .

2.3 Edge and Vertex Operations

Given a tree T , if we delete an edge e ∈ E(T ), we obtain the forest T \ e where V (T \ e) = V (T )

and E(T \ e) = E(T )− {e}. We contract an edge e = {x, y} of T to obtain a new non-binary tree,

denoted T/e, by deleting e and combining x and y into a single vertex w, such that all vertices

adjacent to x or y in T are adjacent to w in T/e. Fig. 1 shows the tree T resulting from the
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contraction of two internal edges of a tree T1.

Let T be a tree with edge e = {x, y}. We subdivide e, by deleting e and inserting a vertex u and edges

e1 = {x, u} and e2 = {u, y} to obtain a non-binary tree T ′. We suppress a vertex u in a non-binary

tree T where deg(u) = 2, by deleting u and its incident edges e1 = {x, u} and e2 = {u, y}, and

inserting a single edge e′ = {x, y} to obtain a tree T ′. Edge subdivision and vertex suppression are

inverse operations.

In this thesis, when we perform any of the operations detailed in this subsection, we assume that

all edge and vertex labels in the original tree are preserved by the operation, except those explicitly

deleted or inserted.

2.4 Splits

Given a set X, a partition of X is a set of disjoint, non-empty subsets {X1, X2, ..., Xm}, m ≥ 1,

such that X = ∪mk=1Xk. A partition of X is a bipartition if m = 2. Consider a tree T ∈ UB(n).

A bipartition {L1, L2} of L(T ) is a split if there exists an edge e ∈ E(T ) such that T \ e has

components T1 and T2 with L(T1) = L1 and L(T2) = L2. We define S(T, e) = {L1, L2} as the

split of T associated with e. A split S(T, e) is trivial if e is a pendant edge of T . We define

Σ(T ) = {S(T, e) : where e is an internal edge of T} as the set of all non-trivial splits of T . Two

trees T1 and T2 are equal if and only if Σ(T1) = Σ(T2) (Buneman, 1971).

We are now able to determine expressions for the number of internal edges of a tree T ∈ UB(n), and

for |UB(n)|. We provide independent proofs of these well known results (Semple and Steel, 2003).

Lemma 2.1. Let T ∈ UB(n), n ≥ 3. Then T has n− 3 internal edges.

Proof. We proceed by induction on the number of leaves. The only possible unrooted binary tree

with three leaves has precisely one internal vertex and three edges, all of which are pendant edges.

Therefore there are n−3 = 0 internal edges. Assume that the lemma holds for some n ≥ 3. Consider

T ∈ UB(n+1). We delete a leaf ` of T and its incident pendent edge e, and suppress the resulting

vertex of degree 2, to obtain a tree T ′. There are two cases to consider. Either the two edges adja-

cent to e in T are both internal edges, or one of them is a pendant edge and the other an internal edge.

1. If both of the edges adjacent to e in T are internal edges then in T ′ they have been replaced

with a single internal edge f . Therefore T ′ ∈ UB(n). By our induction assumption, T ′ has

n−3 internal edges. In order to insert e (and incident leaf `) into T ′ at f , we subdivide f

with a vertex x into the two internal edges f1 and f2, as well as inserting e as a pendant edge
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incident to x. Therefore there are n−3+1 = n−2 internal edges.

2. If exactly one of the edges adjacent to e in T is a pendant edge and the other is an internal

edge, then in T ′ they have been replaced with a single pendant edge p. Therefore T ′ ∈ UB(n).

Again, by the induction assumption T ′ has n−3 internal edges. In order to insert e (and

incident leaf `) into T ′ at p we subdivide p with a vertex x into an internal edge g and a

pendant edge p′, as well as inserting e as a pendant edge incident to x. Therefore there are

n−3+1 = n−2 internal edges.

Therefore all unrooted binary trees on n+1 leaves have n−2 internal edges, and the induction

assumption holds for all n.

Lemma 2.2. For all n ∈ Z+, n ≥ 3 we have

|UB(n)| = (2n− 4)!

(n− 2)!2n−2
.

Proof. We proceed by induction. When n = 3 there is only one unrooted binary tree, so the base

case holds. Assume the lemma holds for some n ≥ 3. Consider a tree T ∈ UB(n+ 1) and label the

leaves from 1 to n + 1 in any order. If we delete the leaf labelled n + 1 and its incident pendant

edge, and suppress the resulting vertex of degree 2, we obtain a tree T ′ ∈ UB(n).

Given any tree T ′′ ∈ UB(n), by Lemma 2.1 there are 2n − 3 different locations at which we could

insert an edge e, and incident leaf `, to obtain a tree in UB(n + 1). It is easy to see that each

of these locations produces a different tree. What is less obvious is that inserting an edge (and

incident leaf) into two different trees in UB(n) never produces the same tree in UB(n + 1). To

see this, consider two distinct trees T1, T2 ∈ UB(n). Let e′ be an internal edge of T1. Suppose

that S(T1, e
′) = {A,B} is not a split of T2. Insert an edge e and incident leaf ` into T1 and T2

to obtain trees T ′1, T
′
2 ∈ UB(n + 1) respectively. Clearly S′ = {A ∪ `, B} or S′′ = {A,B ∪ `} is a

split of T ′1 (or both are). Since S(T1, e
′) is not a split of T2, neither S′ or S′′ is a split of T ′2, so T ′1 6= T ′2.
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Therefore, by the induction assumption we have

|UB(n+ 1)| = (2n− 4)!

(n− 2)!2n−2
(2n− 3)

=
(2n− 2)!

(n− 1)!2n−1

=
(2(n+ 1)− 4)!

((n+ 1)− 2)!2(n+1)−2
,

and so the assumption holds for all n.

2.5 Neighbourhoods

In this thesis we consider four metrics: Robinson-Foulds (RF), Nearest Neighbour Interchange (NNI),

Subtree Prune and Regraft (SPR), and Tree Bisection and Reconnection (TBR), which are defined

in their respective sections.

Given one of these four metrics δθ, θ ∈ {RF, NNI, SPR, TBR}, on UB(n), the kth neighbourhood of

a tree T , denoted Nk
θ (T ), is given by

Nk
θ (T ) = {T ′ ∈ UB(n) : δθ(T, T

′) = k}.

A tree T ′ ∈ Nk
θ (T ) is called a kth neighbour of T . Note that T is also a kth neighbour of T ′.

3 Robinson-Foulds Metric

The Robinson-Foulds (RF) distance between two trees T1, T2 ∈ UB(n) is defined by

δRF (T1, T2) =
1

2
|Σ(T1)− Σ(T2)|+ 1

2
|Σ(T2)− Σ(T1)|.

Alternatively the Robinson-Foulds distance between T1 and T2 can be seen as the minimum m for

which there exist E1 ⊆ E(T1) and E2 ⊆ E(T2) where |E1| = |E2| = m, such that T1/E1 = T2/E2.

This is illustrated in Fig. 1, where δRF (T1, T2) = 2.

The kth RF neighbourhood of a tree T ∈ UB(n) is the set of trees in UB(n) that are exactly RF dis-

tance k from T . So in terms of edge contraction, this neighbourhood consists of all trees T ′ ∈ UB(n)

such that the minimum j for which we could contract j edges of T and j edges of T ′ and obtain the

same (non-binary) tree, is k.
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The RF distance was originally introduced by Bourque (1978) and was generalised by Robinson and

Foulds (1981). Unlike the metrics induced by NNI, SPR, and TBR that we will see in later sections,

the RF distance between two trees is computationally easy to calculate. (Day (1985) provided a

linear-time algorithm.) Much of the literature on the RF distance has focused on calculating the

RF distance between two trees, and on the distribution of the distances between trees. There has

been little work on the size of the neighbourhood of a tree under RF. Bryant and Steel (2009) gave

a polynomial-time algorithm for finding the distribution of trees around a given tree T , and showed

that this distribution can be approximated by a Poisson distribution determined by the proportion

of leaves of T that are in cherries. In this section we investigate the size of the first, second and

kth RF neighbourhood. Our main result is an asymptotic expression for the size of the kth RF

neighbourhood, which is presented in Theorem 3.1.

Theorem 3.1. Let T ∈ UB(n) (n ≥ 4). Then for each fixed k ∈ Z+ there exists a constant CT,k

such that,

Nk
RF (T ) =

2knk

k!

(
1 + CT,kn

−1 +O(n−2)
)

(1)

where

−5k2 + 7k

4
≤ CT,k ≤ 4k2 − 7k.

The proof of Theorem 3.1 comprises two steps. First, given a tree T ∈ UB(n) we determine the

number of binary phylogenetic trees whose splits differ from Σ(T ) by exactly the k splits associated

with a given subset of k internal edges of T . Then we determine the number of subsets of k internal

edges in T . We consider three cases:

1. The k edges are pairwise non-adjacent.

2. Exactly two of the k edges are adjacent.

3. More than two of the k edges are adjacent.

The term of order nk in Equation (1) is completely determined by Case 1 above, while the term of

order nk−1 is determined by Cases 1 and 2. We show that all other possibilities for the k edges,

(covered by Case 3) only contribute to terms of order nk−2 or lower.

Neighbours with Different Splits over k Given Edges

Let Σk be a given set of k splits of T ∈ UB(n) (k ≥ 1). We define

∆(T,Σk) = |{T ′ ∈ UB(n) : (Σ(T )− Σk) ⊂ Σ(T ′)}|,
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as the number of trees containing the splits Σ(T )− Σk; and

◦
∆(T,Σk) = |{T ′ ∈ UB(n) : (Σ(T ) ∩ Σ(T ′)) = Σ(T )− Σk}|,

as the number of trees containing the splits Σ(T )− Σk, and no other splits of T .

In Lemma 3.2 we obtain an expression for ∆(T,Σk) and show that once T and Σk are specified,
◦
∆(T,Σk) is independent of n.

Lemma 3.2. Let T ∈ UB(n) (n ≥ 4), let e1, ..., ek (1 ≤ k ≤ n− 3) be distinct internal edges of T ,

and let Σk be the set of k splits of T associated with these edges. Define F to be the subgraph of T

consisting of the edges e1,..., ek. Then

(i)

∆(T,Σk) =
k∏

m=1

(
(2m+ 2)!

(m+ 1)!2m+1

)Cm

where Cm is the number of components with exactly m edges of F , and

(ii) once T and Σk are specified,
◦
∆(T,Σk) is constant with respect to n.

Proof.

(i) We determine the number of unrooted binary trees with at least the splits Σ(T ) − Σk by

considering the edge contraction definition of RF. Let C be a component of F with m edges,

and let A be the (possibly internal) subtree of T consisting of the corresponding m edges and

their adjacent edges in T . Then A has m + 3 leaves. Contracting the m internal edges of A

produces a tree Tm with a single internal vertex of degree m+ 3. The set of unrooted binary

trees where it is possible to contract m internal edges and obtain Tm is UB(m+3). By Lemma

2.2

|UB(m+ 3)| = (2(m+ 3)− 4)!

((m+ 3)− 2)!2(m+3)−2
=

(2m+ 2)!

(m+ 1)!2m+1
.

The choice of tree for one component does not restrict the number of choices for any other

component, so applying the same principle to every component in F , we obtain

∆(T,Σk) =
k∏

m=1

(
(2m+ 2)!

(m+ 1)!2m+1

)Cm

.

(ii) This is similar to (i), except that none of the splits in Σk can be in any of the trees in
◦
∆(T,Σk).

We consider again A and Tm. Some number of the (2m+2)!
(m+1)!2m+1 trees in UB(m+ 3) have some

splits in common with A, and hence are not counted by
◦
∆(T,Σk). However, the number of

such trees is dependent on the shape and size of A, which itself depends on the choice of the

k edges of T and not on the shape or number of leaves of T . Hence given T and Σk,
◦
∆(T,Σk)

is constant with respect to n.
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We can use Lemma 3.2 to find expressions for the sizes of the first and second RF neighbourhood

of a tree T ∈ UB(n). However, first we need to know how many pairs of adjacent and non-adjacent

edges there are in T .

Lemma 3.3. Let T ∈ UB(n, c) with n ≥ 4. Then T has

1. n− 2 internal vertices,

2. c internal vertices that have exactly one incident internal edge,

3. n− 2c internal vertices that have exactly two incident internal edges, and

4. c− 2 internal vertices that have three incident internal edges.

Proof.

1. By Lemma 2.1, T has n− 3 internal edges, so in total T has 2n− 3 edges. Therefore, by the

Handshaking Lemma, the sum of the degrees of all the vertices in T is 2(2n − 3) = 4n − 6.

Since there are n leaves, the sum of the degrees of the internal vertices is 4n−6−n = 3(n−2).

Every internal vertex of T has degree three, so there are n− 2 internal vertices.

2. If an internal vertex has only one incident internal edge, then it has two incident pendant

edges. These pendant edges are adjacent to each other, and therefore form part of a cherry.

Since T has c cherries, it has at most c internal vertices with exactly one incident internal edges.

A cherry in T has an internal vertex with at most one incident internal edge in T . For n ≥ 4,

T has no internal vertices that are incident to zero internal edges. Therefore, every cherry in

T has an internal vertex with exactly one incident internal edge in T . Therefore, there are c

internal vertices in T that have exactly one incident internal edge.

3. Given that there are c cherries, and each cherry contains two leaves of T , there are n − 2c

leaves in T that are not part of a cherry. Each of these leaves is incident to a pendant edge.

These pendant edges must each be adjacent to two internal edges in T , else they would be

part of a cherry. Therefore there are exactly n − 2c internal vertices in T with two incident

internal edges.

4. Since n ≥ 4 there are no internal vertices in T that are incident to zero internal edges. Therefore

all remaining internal vertices of T have three incident internal edges. There are

(n− 2)− c− (n− 2c) = c− 2

of these vertices in T .
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Corollary 3.4. A tree T ∈ UB(n, c) (n ≥ 4) has n + c − 6 pairs of adjacent internal edges and

1
2(n2 − 9n+ 24)− c pairs of non-adjacent internal edges.

Proof. For a pair of internal edges to be adjacent, they must both be incident to the same internal

vertex. Therefore an internal vertex with two incident internal edges will result in one pair of adjacent

internal edges, an internal vertex with three incident internal edges will result in three pairs, and an

internal vertex with less than two incident internal edges will result in none. Therefore, by Lemma

3.3, T has

(n− 2c) + 3(c− 2) = n+ c− 6

pairs of adjacent internal edges.

All remaining pairs of internal edges must be non-adjacent. In total, T has n−3 internal edges, and

the number of pairs of these edges is

n−4∑
k=1

k =
1

2
(n− 4)(n− 3).

Therefore the number of pairs of non-adjacent internal edges in T is

1

2
(n− 4)(n− 3)− (n+ c− 6) =

1

2
(n2 − 9n+ 24)− c.

Lemma 3.5. Let T ∈ UB(n, c) (n ≥ 3) and suppose that T has c cherries. Then

(i) |NRF (T )| = 2(n− 3), and

(ii) |N2
RF (T )| = 2n2 − 8n+ 6c− 12.

Proof.

(i) For n = 3, T has no internal edges, and so the result is trivially true. Now assume that n ≥ 4.

Then

|NRF (T )| =
∑

Σ1⊆Σ(T )
|Σ1|=1

◦
∆(T,Σ1).

Let Σ1 = {S(T, e)} where e is an internal edge of T . By Lemma 3.2, ∆(T,Σ1) = 3, so there

are three trees in UB(n) with the splits Σ(T )−Σ1. However, one of these trees is T , so there

are two trees T ′ and T ′′ in UB(n), aside from T , with the splits Σ(T )−Σ1. Since T ′ 6= T and

T ′′ 6= T , S(T, e1) is not a split of T ′ or T ′′. Therefore
◦
∆(T,Σ1) = 2. Hence if we sum over all

internal edges of T , we obtain |NRF (T )| = 2(n− 3), by Lemma 2.1.

13



(ii) For n = 3 and n = 4, T has fewer than two internal edges, and so the result is trivially true.

Now assume that n ≥ 5. Similarly to (i),

|N2
RF (T )| =

∑
Σ2⊆Σ(T )
|Σ2|=2

◦
∆(T,Σ2).

Let Σ2 = {S(T, e1), S(T, e2)}, where e1 and e2 are internal edges of T . Similarly to the proof

of (i), the set of trees counted by ∆(T,Σ2) includes some trees with one or more of the splits

in Σ2 in common with T . So to obtain
◦
∆(T,Σ2), we subtract from ∆(T,Σ2) the number of

trees in UB(n) that have exactly one split different to T associated with either e1 or e2, or the

same splits as T . Hence

◦
∆(T,Σ2) = ∆(T,Σ2)−

◦
∆(T, S(T, e1))−

◦
∆(T, S(T, e2))− 1.

Therefore, by Lemma 3.2, if e1 and e2 are not adjacent,
◦
∆(T,Σ2) = 9 − 5 = 4, and if e1 and

e2 are adjacent then
◦
∆(T,Σ2) = 15− 5 = 10.

To see that different choices of the edges e1 and e2 cannot produce any duplicate trees, consider

trees T ′ and T ′′ which are RF distance two from T . Suppose that the splits that differ between

T and T ′ are associated with distinct edges e and e′, while the splits that differ between T and

T ′′ are associated with distinct edges f and f ′, {e, e′} 6= {f, f ′}. Without loss of generality,

we assume that e 6∈ {f, f ′}. Then S(T ′′, e) = S(T, e) 6= S(T ′, e), and so T 6= T ′.

Hence, by Corollary 3.4,

N2
RF (T ) = 10(n+ c− 6) + 4

(
1

2
(n2 − 9n+ 24)− c

)
= 2n2 − 8n+ 6c− 12.

We can now determine the size of
◦
∆(T,Σ′k) for a tree T where Σ′k is the set of splits associated with

k pairwise non-adjacent edges of T .

Corollary 3.6. Let T ∈ UB(n) (n ≥ 4) and let Σ′k (1 ≤ k ≤ n − 3) be the set of splits associated

with distinct, pairwise non-adjacent internal edges e1, ..., ek of T . Then
◦
∆(T,Σ′k) = 2k.

Proof. By Lemma 3.2, ∆(T,Σ′k) = 3k. Similar to the proof of Lemma 3.5, the set of trees counted by

∆(T,Σ′k) includes some trees that have a subset of the splits Σ′k in addition to the splits Σ(T )−Σ′k.

As in the proof of Lemma 3.5 (i), for each edge ej , j = 1, ..., k, there are three trees with the splits

Σ(T )−S(T, ej), however one of these trees also has the split S(T, ej). Hence there are precisely two

trees with all of the splits in Σ(T ) except S(T, ej). Therefore, taking the product over all k edges

we have
◦
∆(T,Σ′k) = 2k.
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The Number of Subsets of k Internal Edges

Lemma 3.7. Let T ∈ UB(n) (n ≥ 4). Then

(i) The number of sets of k distinct, pairwise non-adjacent internal edges e1,..., ek (1 ≤ k ≤ n−3)

in T , denoted AT,k, satisfies

1

k!
nk − k(5k + 1)

2k!
nk−1 +O(nk−2) ≤ AT,k ≤

1

k!
nk − k(k + 2)

k!
nk−1 +O(nk−2).

(ii) The number of sets of k distinct internal edges e1,..., ek (2 ≤ k ≤ n − 3) in T where exactly

two edges are adjacent, denoted BT,k, satisfies

1

2(k − 2)!
nk−1 +O(nk−2) ≤ BT,k ≤

2

(k − 2)!
nk−1 +O(nk−2).

(iii) The number of sets of k distinct internal edges e1,..., ek (3 ≤ k ≤ n−3) in T where more than

two edges are adjacent, is O(nk−2).

Proof.

(i) We calculate the bounds by considering the best and worst case scenarios for the choice of

each edge. There are n− 3 choices for the first edge e1. There are at most (n− 3)− 2 choices

for e2 (this can occur when e1 has exactly one adjacent internal edge in T ). Then there are at

most (n− 3)− 4 choices for e3 (this can occur when e1 and e2 each have exactly one adjacent

internal edge in T ), and so on. Therefore

AT,k ≤
1

k!
(n− 3)(n− 3− 2)(n− 3− 2(2)) · · · (n− 3− 2(k − 1))

=
1

k!
nk − 1

k!
nk−1

k−1∑
i=0

(3 + 2i) +O(nk−2)

=
1

k!
nk − k(k + 2)

k!
nk−1 +O(nk−2).

On the other hand, there are at least (n − 3) − 5 choices for e2 (this can occur when e1 has

four adjacent internal edges in T ). Then there are at least (n− 3)− 10 choices for e3 (this can

occur when e1 and e2 each have four adjacent internal edges in T ), and so on. Therefore

AT,k ≥
1

k!
(n− 3)(n− 3− 5)(n− 3− 5(2)) · · · (n− 3− 5(k − 1))

=
1

k!
nk − 1

k!
nk−1

k−1∑
i=0

(3 + 5i) +O(nk−2)

=
1

k!
nk − k(5k + 1)

2k!
nk−1 +O(nk−2).

(ii) We will prove this in the same way as (i), assuming without loss of generality that e1 and e2

are the adjacent pair of edges. There are n− 3 choices for e1. There are at most four choices
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for e2 (this can occur if e1 has four adjacent internal edges in T ). For e3 there are at most

(n − 3) − 3 choices (this can occur if e1 and e2 each have two adjacent pendant edges in T ).

The remaining edges follow in the same way as in (1). Therefore

BT,k ≤
4

2(k − 2)!
(n− 3)(n− 6)(n− 6− 2(1))...(n− 6− 2(k − 3))

=
2

(k − 2)!
nk−1 +O(nk−2).

On the other hand, there is at least one possible choice for e2 (this can occur if e1 has exactly

one adjacent internal edge in T ). For e3 there are at least (n− 3)− 7 choices (this can occur if

e1 and e2 each have no adjacent pendant edges in T ). The remaining edges are chosen in the

same way as in (1). Hence

BT,k ≥
1

2(k − 2)!
(n− 3)(n− 10)(n− 10− 5(1))...(n− 10− 5(k − 3))

=
1

2(k − 2)!
nk−1 +O(nk−2).

(iii) Let F be the subgraph of T consisting of the edges e1,..., ek. Then F has m ≤ k−2 components.

Suppose we first choose m internal edges of T corresponding to one edge in each component

of F . By (i) the number of such choices is O(nm), as each of these edges will contribute a

linear factor to the total number of ways of choosing the k edges. However, the remaining

k −m ≥ 2 edges can be chosen in such a way that we always choose an edge adjacent to at

least one of those already chosen. The number of these choices depends only on the number

and location of the edges already chosen, and not on n. Hence the number of possible sets is

O(nm) where m ≤ k − 2.

Note that in the proof of Lemma 3.7, it may not be possible to maximise (or minimise) the number

of choices for each individual edge in T , however this is not a problem as we only require bounds on

the number of choices of the k edges of T .

We now know the number of binary phylogenetic trees whose splits differ from those of T ∈ UB(n) by

exactly k splits over a given set of k edges, and the number of subsets of k internal edges. Combining

this information, we can prove Theorem 3.1.

Proof of Theorem 3.1

Proof. We break down the calculation of the size of the kth RF neighbourhood of T into two steps.

We consider how many trees there are whose splits differ from those of T by exactly the k splits
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corresponding to a given set of k distinct internal edges of T . Then we consider how many ways

these k edges can be chosen in T . By Lemma 3.2, given T and a set of k distinct internal edges

of T with associated split set Σk, the number of trees with splits Σ(T )− Σk and none of the splits

in Σk, is independent of n. Hence the only factor dependent on the size of n is the number of ways

of choosing the k edges in T .

By Lemma 3.7, when we count the number of ways of choosing k distinct internal edges of T , the

case where the k edges are pairwise non-adjacent (Case 1 from the beginning of this section) gives a

term of order nk and a term of order nk−1. The case where exactly two of the k edges are adjacent

(Case 2) produces a term of order nk−1, but does not have a term of order nk. If more than two of

the k edges are adjacent (Case 3) then the highest order term is O(nk−2).

Now we consider how many trees there are whose splits differ from those of T by exactly the k splits

corresponding to a given set of k distinct internal edges of T . From the information above, the only

two cases we need to consider are those where the k edges are pairwise non-adjacent, or exactly two

of the k edges are adjacent. By Corollary 3.6, the case where all edges are pairwise non-adjacent

produces 2k kth RF neighbours with splits that differ from the splits of T over precisely the k given

internal edges. In the case where exactly two edges are adjacent, the k − 1 pairwise non-adjacent

edges give 2k−2 neighbours, by Corollary 3.6. The adjacent pair result in 10 neighbours, by the proof

of Lemma 3.5 (ii). Hence in total there are 10 · 2k−2 neighbours. Therefore, by Lemma 3.7,

|Nk
RF (T )| ≥

(
1

k!
nk − k(5k + 1)

2k!
nk−1

)
2k + 10

(
1

2(k − 2)!
nk−1

)
2k−2 +O(nk−2)

=
2k

k!
nk − 5k2 + 7k

4k!
2knk−1 +O(nk−2).

|Nk
RF (T )| ≤

(
1

k!
nk − k(k + 2)

k!
nk−1

)
2k + 10

(
2

(k − 2)!
nk−1

)
2k−2 +O(nk−2)

=
2k

k!
nk +

4k2 − 7k

k!
2knk−1 +O(nk−2).

4 Nearest Neighbour Interchange

In this section we provide proofs for the expressions for the size of the first and second NNI neigh-

bourhoods of an unrooted binary tree, originally found by Robinson (1971). We extend Robinson
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(1971)’s result for the size of the third NNI neighbourhood by finding an explicit expression in terms

of the number of leaves, cherries and internal paths of length three in the tree. These results were

proved independently, without reference to the original proofs. Finally we provide a new asymptotic

expression for the size of the kth NNI neighbourhood of an unrooted binary tree.

Let T ∈ UB(n) and let e = {x, y} be an interior edge of T . Let A1 and A3 be subtrees of T that

are distance one from e and distance three apart (see Fig. 3). Then A1 and A3 are swappable

across e. Let vertex z1 adjacent to x be the root of A1, and z3 adjacent to y be the root of A3. A

nearest neighbour interchange (NNI) on T is performed by deleting the edges {x, z1} and {y, z3},
and inserting edges {x, z3} and {y, z1}. We will also refer to this process as swapping the subtrees

A1 and A3 across e. The resulting tree is a first NNI neighbour of T . To make it clear which edge

of a tree T two subtrees are swapped across in an NNI operation on T , we will refer to such an

operation as an NNI operation on edge e in T .

The two distinct first NNI neighbours resulting from an NNI operation on edge e in T can be seen

in Fig. 3. We have four subtrees A1, A2, A3 and A4 that are all distance one from e. To obtain T ′

we swap subtrees A2 and A3, and to obtain T ′′ we swap subtrees A2 and A4. Note that swapping

subtrees A1 and A4 produces a tree isomorphic to T ′. Although there are four different pairs of sub-

trees that could be swapped across e, there are only two distinct neighbours that can be obtained

from NNI operations on e.

e

e e

T

T 0 T 00

A1

A1

A2

A2

A3

A3

A4

A4

A1

A2

A3

A4

a1

a1 a1

a2

a2

a2

a3

a3

a3

a4

a4

a4

Figure 3: The two first NNI neighbours of T resulting from an NNI operation on the edge e.

We see that in T ′ and T ′′, all four subtrees A1, A2, A3 and A4 are distance one from e. Given a

labelling of the edges of the original tree T , we preserve this labelling by assigning the label ai to

the edge incident to subtree Ai, in T and in the two first NNI neighbours of T resulting from an

NNI operation on edge e. Note that T can also be obtained from T ′ by an NNI operation, which we
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call the inverse of the operation used to obtain T ′ from T .

Consider a graph G in which each vertex represents a tree in UB(n) and there is an edge between

the vertices representing trees T1 and T2 if they are first NNI neighbours. The NNI distance between

T1 and T2, δNNI(T1, T2), is the distance between the two vertices representing trees T1 and T2 in G.

Throughout this section we will consider the trees resulting from a series of NNI operations begin-

ning with a tree T ∈ UB(n). Let NNI(T ; e1, e2, ..., ek) ⊆ ∪kj=0N
j
NNI(T ) be the set of trees that can

be obtained by performing an NNI operation on internal edge e1 in T to give T1, followed by an NNI

operation on internal edge e2 in T1 to give T2, and so on until we have completed k NNI operations.

Note that if T ′ ∈ NNI(T ; e1, ..., ek), T
′ is not necessarily a kth NNI neighbour of T . It may instead

be a jth NNI neighbour of T for some j < k (j ∈ N).

Robinson (1971) determined the size of the first and second NNI neighbourhoods of any unrooted

binary tree, and found an upper bound on the size of the third NNI neighbourhood. In this section

we independently investigate each of these three neighbourhoods, and obtain an explicit expression

for the third NNI neighbourhood of a tree in terms of the number of leaves, cherries and internal

paths of length three in the tree. Robinson (1971) also gave an upper bound for the size of the kth

NNI neighbourhood of a tree T in terms of the size of the (k − 1)th NNI neighbourhood of T . Our

main result for this section is the asymptotic expression for the size of the kth NNI neighbourhood

of a binary tree given in Theorem 4.1. The proof of this theorem appears in Section 4.4, although it

relies on many of the results in Sections 4.1-4.3 pertaining to the sizes of the first, second and third

NNI neighbourhoods.

Theorem 4.1. Let T ∈ UB(n) (n ≥ 4). Then for each fixed k ∈ Z+ there exists a constant DT,k

such that,

|Nk
NNI(T )| = 2knk

k!

(
1 +DT,kn

−1 +O(n−2)
)

(2)

where

−3k(k + 1)

2
≤ DT,k ≤ 3k(k − 2).

As mentioned previously, tree rearrangement operations are also used to compare trees produced

by different tree reconstruction methods, or trees obtained from different data sets. This can be

achieved by determining the NNI distance (smallest number of operations) between the two trees.

DasGupta et al. (1997b) showed that the problem of computing the NNI distance between two trees

in UB(n) is NP-complete. Culik and Wood (1982) found an upper bound of 4n log(n) on the NNI
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distance between two trees in UB(n), which was later improved to n log(n) by Li et al. (1996).

It is also useful to understand the structure of UB(n), and the first and second NNI neighbourhoods

of a tree (e.g. how the first NNI neighbours of a tree relate to each other). A walk in a graph G

is a sequence of vertices and edges, in which the vertices are not necessarily distinct. Consider a

graph G in which each vertex represents a tree in UB(n) and there is an edge between the vertices

representing trees T1 and T2 if they are first NNI neighbours. Bryant (2008) posed the question;

what is the length of the shortest walk that visits every vertex of G? Gordon et al. (2013) provided a

constructive proof that this walk is a Hamiltonian path (a path that visits every vertex of G exactly

once). So by a series of NNI operations beginning from a tree T ∈ UB(n), it is possible to visit each

tree in UB(n) exactly once. We refer to this series of NNI operations as an NNI walk. In Section 5

we investigate the structure of UB(n) by determining the number of pairs of trees that share a first

NNI neighbour (the number of pairs of trees that are within NNI distance two of each other).

4.1 First Neighbourhood

Determining the size of the first NNI neighbourhood of a tree is not simply a matter of counting all

of the NNI operations that could be performed on the tree. We need to consider whether or not it

is possible for two different NNI operations on T to produce the same tree. The following theorem

is due to Robinson (1971).

Theorem 4.2. Let T ∈ UB(n) (n ≥ 3). Then |NNNI(T )| = 2(n− 3).

Our proof requires the following lemma, which shows how the non-trivial splits of two trees that are

first NNI neighbours compare.

Lemma 4.3. Let T ∈ UB(n) (n ≥ 4) and T ′ = NNI(T ; e) where e is an internal edge of T . Then

|Σ(T )− Σ(T ′)| = |Σ(T ′)− Σ(T )| = 1.

Furthermore Σ(T )−Σ(T ′) = {S(T, e)}, and for all internal edges e′ 6= e in T , S(T ′, e′) = S(T, e′).

Proof. Note that |Σ(T )| = |Σ(T ′)| as T, T ′ ∈ UB(n). Let the subtrees distance one from e in T be

A, B, C and D, where dT (A,B) = 2. We have S(T, e) = {L(A) ∪ L(B),L(C) ∪ L(D)}. Either A or

B is one of the two subtrees that are swapped by the NNI operation, so dT ′(A,B) = 3, and L(A)

and L(B) are in different parts of S(T ′, e). Hence S(T, e) 6= S(T ′, e).

Suppose there exists an internal edge e′ of T , such that e′ 6= e. Let S(T, e′) = {L1, L2}. In T , either

e′ is adjacent to e, or e′ is in one of the subtrees A, B, C or D. Therefore either L1 or L2 is a subset

of the leaves in one of the subtrees A, B, C or D. Since A, B, C and D are the four subtrees of T ′
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that are distance one from e, S(T ′, e′) = S(T, e′).

Therefore Σ(T )− Σ(T ′) = {S(T, e)} and Σ(T ′)− Σ(T ) = {S(T ′, e)}. Hence

|Σ(T )− Σ(T ′)| = |Σ(T ′)− Σ(T )| = 1.

Proof of Theorem 4.2

Proof. If n = 3 then T has no internal edges, so the result is trivially true. Assume that n ≥ 4. By

the definition of an NNI operation, there are two distinct first NNI neighbours of T resulting from

an NNI operation on an internal edge e in T . By Lemma 2.1, T has n − 3 internal edges. If we

perform NNI operations on each of these edges we obtain 2(n − 3) first NNI neighbours, provided

that operations on two different internal edges of T do not produce the same tree.

Let T1 ∈ NNI(T ; e) and T2 ∈ NNI(T ; e′) where e and e′ are internal edges in T , and e 6= e′. By

Lemma 4.3, S(T1, e) 6= S(T, e), but S(T2, e) = S(T, e). Hence S(T1, e) 6= S(T2, e) and so T1 6= T2.

Therefore there are 2(n− 3) distinct first NNI neighbours of T .

4.2 Second Neighbourhood

In this subsection we independently prove the following result due to Robinson (1971) for the size

of the second NNI neighbourhood. Recall that UB(n, c) is the set of unrooted binary trees with n

leaves and c cherries.

Theorem 4.4. Let T ∈ UB(n, c) (n ≥ 3). Then

|N2
NNI(T )| = 2n2 − 10n+ 4c.

Before proving Theorem 4.4, we present several general results regarding trees obtained by a series of

k NNI operations. These results will help to determine exactly when NNI operations over different

sets of edges produce the same tree, and are used to determine the size of the second, third and

kth neighbourhoods of a tree. In Lemma 4.3, we saw the impact of a single NNI operation on

the non-trivial splits of a tree. Now we compare the non-trivial splits of trees that are kth NNI

neighbours.

Lemma 4.5. Let T ∈ UB(n) (n ≥ 4), and let e1, ..., ek (k ≥ 1) be internal edges of T such that

there exists em (1 ≤ m ≤ k) for which em 6∈ {e1, ..., em−1, em+1, ..., ek}. Let T ′ ∈ NNI(T ; e1, ..., ek).

Then S(T, em) is not a split of T ′. Furthermore, if e′ is an internal edge of T and e′ 6∈ {e1, ..., ek},
then S(T ′, e′) = S(T, e′).
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Proof. Let Tm−1 ∈ NNI(T ; e1, ..., em−1) such that T ′ ∈ NNI(Tm−1; em, ..., ek). Since em 6∈ {e1, ..., em−1},
S(Tm−1, em) = S(T, em) by Lemma 4.3. Let A and B be two subtrees in Tm−1 that are distance one

from em, where d(A,B) = 2. Then

S(Tm−1, em) = S(T, em) = {L(A) ∪ L(B),L(T )− (L(A) ∪ L(B))}.

The NNI operation over edge em in Tm−1 swaps either A or B with one of the other two subtrees that

are distance one from e. Let Tm ∈ NNI(Tm−1; em) such that T ′ ∈ NNI(Tm; em+1, ..., ek). Then

L(A) and L(B) are in different parts of S(Tm, em). Since em 6∈ {em+1, ..., ek}, S(T ′, em) = S(Tm, em)

by Lemma 4.3. Hence all leaves in A are in a different component of T ′ \ em to the leaves of B.

Therefore S(T, em) is not a split of T ′.

Let e′ be an internal edge of T , e′ 6∈ {e1, ..., ek}. To see that S(T ′, e′) = S(T, e′), consider trees

T ′1, ..., T ′k−1 where T ′1 ∈ NNI(T ; e1), T ′2 ∈ NNI(T ′1; e2), ..., T ′k−1 ∈ NNI(T ′k−2; ek−1), and T ′ ∈
NNI(T ′k−1; ek). By Lemma 4.3,

S(T ′, e′) = S(T ′k−1, e
′) = · · · = S(T ′1, e

′) = S(T, e′).

Corollary 4.6. Let T ∈ UB(n) (n ≥ 4) and let e1, ..., ek (k ≥ 1) be internal edges of T such that

there exists em (1 ≤ m ≤ k) for which em 6∈ {e1, ..., em−1, em+1, ..., ek}. Let P = NNI(T ; e1, ..., ej)

and Q = NNI(T ; ej+1, ..., ek) where 1 ≤ j ≤ k. Then

P ∩Q = ∅.

Proof. Without loss of generality suppose that 1 ≤ m ≤ j. By Lemma 4.5, S(T, em) is not a split of

any of the trees in P .

Also by Lemma 4.5, for all T ′ ∈ Q, S(T ′, em) = S(T, em), since em 6∈ {ej+1, ..., ek}. Therefore, since

two trees are equal if and only if they have the same set of splits, we have P ∩Q = ∅.

Now we consider whether or not two consecutive operations occurring on the same edge of a tree

has any impact on the neighbours of that tree.

Lemma 4.7. Let T ∈ UB(n) (n ≥ 4), and let e1,..., ek (k ≥ 2) be internal edges of T . Suppose

there exists an m (1 ≤ m ≤ k − 1) for which em = em+1. If

P = NNI(T ; e1, ..., em, em+1, em+2, ..., ek),

then P ∩Nk
NNI(T ) = ∅.
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Proof. Let Tm−1 ∈ NNI(T ; e1, ..., em−1) and let Tm, T
′
m ∈ NNI(Tm−1; em), Tm 6= T ′m. Now sup-

pose we perform an operation on edge em+1 = em in Tm to obtain a tree Tm+1. Let

T ′ ∈ NNI(Tm+1; em+2, ..., ek).

First, suppose the operation on edge em+1 is the inverse of the operation on edge em. Then

Tm+1 = Tm−1. Hence

T ′ ∈ NNI(Tm−1; em+2, ..., ek),

and so T ′ 6∈ Nk
NNI(T ).

Now suppose that the operation on edge em+1 is not the inverse of the operation on edge em. Then

Tm+1 = T ′m. Hence

T ′ ∈ NNI(T ′m; em+2, ..., ek),

and so T ′ 6∈ Nk
NNI(T ). Therefore P ∩Nk

NNI(T ) = ∅.

We now consider the number of kth NNI neighbours resulting from a series of k NNI operations over

a given set of distinct edges.

Lemma 4.8. Let T ∈ UB(n) (n ≥ 4), let e1, e2,..., ek (1 ≤ k ≤ n − 3) be distinct internal edges

of T . Then NNI(T ; e1, ..., ek) is a subset of Nk
NNI(T ) of size 2k.

Proof. For each edge e of T there are two distinct first NNI neighbours resulting from NNI opera-

tions on e. Since we perform NNI operations on k different edges in T , there are 2k kth neighbours,

provided that none of the resulting trees are equivalent, or in the jth NNI neighbourhood of T for

some j < k.

The latter follows from Corollary 4.6 since e1, ..., ek are distinct. This means that

NNI(T ; e1, ..., ek) ⊆ Nk
NNI(T ).

To show that none of the resulting 2k trees are equivalent we consider the splits of these trees.

Let Tk and T ′k be two trees in NNI(T ; e1, ..., ek), where at least one operation produced a differ-

ent first neighbour in each case. In other words, there exist trees Tm−1, Tm and T ′m such that

Tm−1 ∈ NNI(T ; e1, ..., em−1), Tm, T
′
m ∈ NNI(Tm−1; em), Tm 6= Tm+1, Tk ∈ NNI(Tm; em+1, ..., ek),

and T ′k ∈ NNI(T ′m; em+1, ..., ek). Note that since Tm and T ′m are the two distinct first NNI neigh-

bours of Tm−1 obtained by an NNI operation on em, T ′m ∈ NNI(Tm; em).

Now we consider the splits of T , Tm, T ′m, Tk, and T ′k. By Lemma 4.5, S(Tm, em) 6= S(T, em) and

S(T ′m, em) 6= S(T, em) because we performed a single NNI operation on edge em. Also by Lemma
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4.5, S(Tm, em) 6= S(T ′m, em), as Tm and T ′m are first NNI neighbours (by an operation on edge em).

Since em 6∈ {em+1, ..., ek}, S(Tk, em) = S(Tm, em) 6= S(T ′m, em) = S(T ′k, em) by Lemma 4.5. Hence

Tk 6= T ′k.

Therefore we obtain 2k distinct kth NNI neighbours from k NNI operations over distinct edges

e1,...,ek in order.

For the remainder of this subsection we restrict our attention to performing NNI operations on two

different edges of a tree. It is natural to consider whether or not the distance between two edges

in the tree affects the resulting second NNI neighbours. The following result is due to Robinson

(1971), and was originally proved by exhaustion, leaving the details to the reader. Here we provide

an alternate proof.

Lemma 4.9. Let T ∈ UB(n) (n ≥ 5), and let e1 and e2 be distinct internal edges of T . Let P =

NNI(T ; e1, e2) and Q = NNI(T ; e2, e1). If e1 and e2 are adjacent then P ∩Q = ∅, otherwise P = Q.

Proof. First suppose that edges e1 and e2 are non-adjacent in T . Let A be the subtree containing

e2 such that dT (A, e1) = 1. Let the other three subtrees distance one from e1 be B, C and D. First

we consider NNI(T ; e1, e2). The first operation swaps two of the subtrees incident to e1 to obtain

T1 ∈ NNI(T ; e1). We then perform an NNI operation on edge e2 in T1. We obtain a tree T2 with

a subtree A′ such that dT2(A′, e1) = 1 and B, C and D are the other three subtrees distance one

from e1. Now consider NNI(T ; e2, e1). First we perform an NNI operation on edge e2 in A (in T ),

and one of the two distinct trees produced is T ′1 ∈ NNI(T ; e2) with subtree A′ where dT ′1(A′, e1) = 1

and B, C and D are the other three subtrees distance one from e1. The second operation swaps two

of the subtrees distance one from e1 in T ′1, which are A′, B, C and D. One of the two distinct trees

obtained is T2, and so T2 ∈ NNI(T ; e2, e1). This is true for all T2 ∈ NNI(T ; e1, e2), so P ⊆ Q.

Similarly Q ⊆ P and so P = Q.

Now suppose that e1 and e2 are adjacent. Let A and B be subtrees such that dT (A, e1) = dT (B, e1) =

1 and dT (A, e2) = dT (B, e2) = 2. Let C and D be subtrees such that dT (C, e2) = dT (D, e2) = 1 and

dT (C, e1) = dT (D, e1) = 2. Let E be the subtree such that dT (E, e1) = dT (E, e2) = 1. This can be

seen in Fig. 4.

First we consider NNI(T ; e1, e2). Let T1 ∈ NNI(T ; e1) and T2 ∈ NNI(T1; e2). The first operation is

over e1, so either dT1(A,E) = 2 or dT1(B,E) = 2. Without loss of generality suppose dT1(A,E) = 2.

Then dT1(E, e2) = dT1(A, e2) = 2. Therefore after the second operation, dT2(E,A) = 2. Now we

consider NNI(T ; e2, e1). Let T ′1 ∈ NNI(T ; e2) and T ′2 ∈ NNI(T ′1; e1). The first NNI operation is
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Figure 4: A general structure for an unrooted binary tree T , showing subtrees A, B, C, D, and E.

over e2, so dT ′2(A,E) = 4. Therefore dT ′2(A,E) ≥ 3. Hence T ′2 6= T2. The choice of T2 ∈ P and

T ′2 ∈ Q were arbitrary, so P ∩Q = ∅.

Lemma 4.9 tells us how the distance between the two edges we perform NNI operations on affects

the resulting second NNI neighbours. Corollary 4.6 justifies that different choices of edges for the

two NNI operations do not produce any duplicate second NNI neighbours. Corollary 4.8 tells us

the number of second NNI neighbours resulting from NNI operations over a given set of internal

edges of a tree in order. We now have sufficient information to determine the size of the second NNI

neighbourhood.

Proof of Theorem 4.4

Proof. In this proof we consider all possible choices of two internal edges e1 and e2 of T , and the

second NNI neighbours obtained by two NNI operations on these edges. Clearly if n = 3, T has

no internal edges and the result is trivially true. If e1 = e2, then by Lemma 4.7, NNI(T ; e1, e2) ∪
NNI(T ; e2, e1) ⊆ NNNI(T ) ∪ {T}. It follows that if n = 4, then N2

NNI(T ) = 0, and so the result

holds.

Now assume that n ≥ 5, and suppose that e1 and e2 are distinct. By Lemma 4.8,

|NNI(T ; e1, e2)| = |NNI(T ; e2, e1)| = 22 = 4.

We know from Lemma 4.9 that if e1 and e2 are not adjacent then NNI(T ; e1, e2) = NNI(T ; e2, e1).

Hence NNI(T ; e1, e2) ∪NNI(T ; e2, e1) = 4. Lemma 4.9 also tells us that if e1 and e2 are adjacent

then NNI(T ; e1, e2) ∩NNI(T ; e2, e1) = ∅. Hence NNI(T ; e1, e2) ∪NNI(T ; e2, e1) = 8.

By Corollary 4.6, NNI(T ; e1, e2) ∩NNI(T ; f1, f2) = ∅ if {e1, e2} 6= {f1, f2}. Therefore

|N2
NNI(T )| =

∑
{e1,e2}∈E(T )

|NNI(T ; e1, e2) ∪NNI(T ; e2, e1)|.
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We know from Lemma 3.4 that T has n+c−6 pairs of adjacent internal edges and 1
2(n2−9n+24)−c

pairs of non-adjacent internal edges. Therefore summing over all possible choices of edges e1 and e2,

we have

|N2
NNI(T )| = 8(n+ c− 6) + 4

(
1

2
(n2 − 9n+ 24)− c

)
= 2n2 − 10n+ 4c.

It is interesting to compare these results for the size of the first and second NNI neighbourhoods

with the corresponding results for the RF distance. In both cases the size of the first neighbourhood

is dependent only on the number of leaves, while the size of the second neighbourhood is determined

by the number of leaves and cherries.

4.3 Third Neighbourhood

In this subsection we determine the size of the third NNI neighbourhood, extending the work of

Robinson (1971) who found an upper bound. Robinson (1971)’s results can be summarised as

|N3
NNI(T )| = 8x+ 16y + 24z + 36p3(T ) + 2t, (3)

where x, y, z and t are integers, p3(T ) is the number of internal paths of length three, and

x+ y + z + p3(T ) =
(n− 3)(n− 4)(n− 5)

6
, (4)

t = n+ c− 6 ≤ 3(n− 4)

2
,

p3(T ) ≤ 2n− 12 for n ≥ 7 ,

z = c− 2 ≤ n− 4

2
for n ≥ 4 ,

y ≤


3
2n

2 − 16n+ 42 if n is odd

(3
2n

2 − 3
2n+ 45 if n is even.

Our result for the size of the third NNI neighbourhood is presented in Theorem 4.10, and will be

proved later in this subsection.

Theorem 4.10. Let T ∈ UB(n, c) (n ≥ 4). Then

|N3
NNI(T )| = 4

3
n3 − 8n2 − 70

3
n+ 8cn− 46c+ 12p3(T ) + 164.
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The following result is a corollary of Lemma 4.9.

Corollary 4.11. Let T ∈ UB(n) (n ≥ 4), and let e1, ..., ek (k ≥ 1) be internal edges of T . Let

P = NNI(T ; e1, ..., em, em+1, ..., ek),

Q = NNI(T ; e1, ..., em+1, em, ..., ek).

If em and em+1 are distinct and non-adjacent then P = Q.

Proof. Let Tm−1 be a tree in NNI(T ; e1, ..., em−1). Then

NNI(Tm−1; em, em+1) = NNI(Tm−1; em+1, em)

by Lemma 4.9. This is true for any choice of Tm−1, so

NNI(T ; e1, ..., em−1, em, em+1) = NNI(T ; e1, ..., em−1, em+1, em).

Therefore P = Q.

Corollary 4.12. Let T ∈ UB(n) (n ≥ 4), and let e1, ..., ek (k ≥ 1) be internal edges of T . Suppose

that em = ej for some m, j where 1 ≤ m < j ≤ k. Let

P = NNI(T ; e1, ..., em, em+1, ..., ej−1, ej , ..., ek),

Q = NNI(T ; e1, ..., em−1, em+1, ..., ej−1, ej , ..., ek)

R = NNI(T ; e1, ..., em−1, em+1, ..., ej−1, ej+1, ..., ek).

Suppose that the edges em+1, ..., ej−1 are non-adjacent to em. If the operation on edge ej is the

inverse of the operation on edge em, then P = R, otherwise P = Q.

Proof. By Corollary 4.11,

P = NNI(T ; e1, ..., em−1, em+1, em, ..., ej−1, ej , ..., ek)

= NNI(T ; e1, ..., em−1, em+1, em+2, em, ..., ej−1, ej , ..., ek)

...

= NNI(T ; e1, ..., em−1, em+1, ..., ej−1, em, ej , ..., ek).

So by the proof of Lemma 4.7, if the operation on edge ej is the inverse of the operation on edge

em, P = R, otherwise P = Q.

In the proof of Theorem 4.4 we used Corollary 4.6 to determine that performing NNI operations

over two different pairs of edges never produces the same tree. Now we prove a similar result for

sets of three edges.
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Lemma 4.13. Let T ∈ UB(n) (n ≥ 5), P = NNI(T ; e1, e2, e3), and Q = NNI(T ; f1, f2, f3) where

e1 6= e2, e2 6= e3, f1 6= f2, and f2 6= f3. Assume that the NNI operation on edge e3 is not the inverse

of the NNI operation on edge e1, and the NNI operation on edge f3 is not the inverse of the operation

on edge f1. If {e1, e2, e3} 6= {f1, f2, f3}, P ∩Q = ∅.

Proof. Assume that {e1, e2, e3} 6= {f1, f2, f3}. Then either there exists ei (1 ≤ i ≤ 3) such that

ei 6∈ {f1, f2, f3}, or there exists fj (1 ≤ j ≤ 3) such that fj 6∈ {e1, e2, e3} (or both). Without loss of

generality assume that there exists ei (1 ≤ i ≤ 3) such that ei 6∈ {f1, f2, f3}. There are two cases to

consider.

1. First suppose that ei 6= ej for all j 6= i (1 ≤ j ≤ 3). Then by Corollary 4.6, P ∩Q = ∅.

2. Now suppose that ei = ej for some j 6= i (1 ≤ j ≤ 3). Then ei = e1 = e3. If e2 6∈ {f1, f2, f3},
Case 1 applies. Hence assume that e2 ∈ {f1, f2, f3}. Now |{e1, e2, e3}| = 2. If |{f1, f2, f3}| = 3

then Corollary 4.6 applies and P ∩ Q = ∅. Assume that |{f1, f2, f3}| < 3. Then f1 = f3. If

f2 6∈ {e1, e2, e3} then again, Corollary 4.6 applies and P ∩Q = ∅. Assume that f2 ∈ {e1, e2, e3}.
Then f2 = e2. Since {e1, e2, e3} 6= {f1, f2, f3}, f1 6∈ {e1, e2, e3}.

If e2 is not adjacent to e1, then NNI(T ; e1, e2, e3) = NNI(T ; e2, e3) by Corollary 4.12. By

Case 1, NNI(T ; e2, e3) ∩NNI(T ; f1, f2, f3) = ∅, so P ∩Q = ∅. Likewise, if e2 is not adjacent

to f1, Case 1 applies and P ∩Q = ∅.

Now suppose that that e2 is adjacent to both e1 and f1. By Lemma 4.5, for all T ′ ∈ Q,

S(T ′, e1) = S(T, e1), as no NNI operation has been performed on the edge e1. We will show

that none of the trees in P have the split S(T, e1).

Let the four subtrees adjacent to e1 in T be A, B, C and D such that dT (A,B) = 2 and neither

A or B is incident to e2. Then

S(T, e1) = {L(A) ∪ L(B),L(T )− (L(A) ∪ L(B))}.

The first operation on edge e1 will result in a tree T1 where dT ′(A,B) = 3 and either A or B

is incident to both e1 and e2. Without loss of generality assume this subtree is A. Then L(A)

and L(B) are in different parts of S(T1, e1). Let T2 be a tree resulting from an NNI operation

on edge e2 in T1. In T2, B is adjacent to e1, but A is not, and dT2(A,B) = 4. The final NNI

operation is on e1 and produces a tree T3, where dT3(A,B) ≥ 3. Hence T3 does not have the

split S(T, e1). Therefore none of the trees in P contain the split S(T, e1), and P ∩Q = ∅.
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Proof of Theorem 4.10

Proof. We perform NNI operations on three internal edges e1, e2 and e3 of T . These edges may be

distinct, or not all distinct.

First, suppose that all three of these edges are distinct. Then there are four cases to consider;

1. The edges are pairwise non-adjacent.

2. Exactly two of the edges are adjacent.

3. The edges form an internal path of length three.

4. The edges share a common endpoint.

1. Suppose we choose three pairwise non-adjacent internal edges of T and perform NNI opera-

tions on each of these three edges in any order. By Corollary 4.8 and Corollary 4.11, there are

23 = 8 third NNI neighbours of T resulting from these NNI operations.

2. Suppose we choose three internal edges e1, e2 and e3 of T , such that exactly two of these three

edges are adjacent. Without loss of generality let the adjacent pair be e1 and e2. Now suppose

that we perform NNI operations on each of these three edges in any order. There are 3! = 6

ways to order the NNI operations on the three edges. By Corollary 4.11,

NNI(T ; e1, e2, e3) = NNI(T ; e1, e3, e2) = NNI(T ; e3, e1, e2)

NNI(T ; e2, e1, e3) = NNI(T ; e2, e3, e1) = NNI(T ; e3, e2, e1).

By Lemma 4.9,

NNI(T ; e1, e2, e3) ∩NNI(T ; e2, e1, e3) = ∅,

as e1 and e2 are adjacent. Therefore by Corollary 4.8, there are

|NNI(T ; e1, e2, e3) ∪NNI(T ; e2, e1, e3)| = 8 + 8 = 16

third NNI neighbours of T resulting from these NNI operations.

3. Suppose we have an internal (e1 − e3)-path of length three, with edge e2 adjacent to both e1

and e3. There are 3! = 6 ways to order the operations on these three edges. By Corollary 4.11,

NNI(T ; e1, e3, e2) = NNI(T ; e3, e1, e2),

since e1 and e3 are non-adjacent. Now consider NNI(T ; e2, e1, e3) and NNI(T ; e2, e3, e1).

Since e1 and e3 are non-adjacent we might also expect these sets to be equivalent. However,
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in one of the first NNI neighbours T ′ ∈ NNI(T ; e2), e1 and e3 are adjacent. In the other first

NNI neighbour T ′′ ∈ NNI(T ; e2), T ′′ 6= T ′, e1 and e3 are non-adjacent. By Lemma 4.9 and

Corollary 4.11,

NNI(T ′; e1, e3) ∩NNI(T ′; e3, e1) = ∅, and

NNI(T ′′; e1, e3) = NNI(T ′′; e3, e1).

Since |NNI(T ′′; e1, e3)| = 4,

NNI(T ; e2, e1, e3) ∩NNI(T ; e2, e3, e1) = 4.

By considering distances between pairs of subtrees distance one from one or more of the three

edges e1, e2 and e3, it can be shown that these are the only duplicate trees obtained. Since

each ordering of the operations produces 23 = 8 neighbours, we have

6(8)− |NNI(T ; e1, e3, e2)| − 4 = 48− 8− 4 = 36

third NNI neighbours for each choice of the three edges.

4. Suppose we choose three internal edges e1, e2 and e3 of T that share a common endpoint, and

perform NNI operations on each of these three edges in any order. Without loss of generality

suppose that the first NNI operation is over edge e1, and let T ′ ∈ NNI(T ; e1). In T ′ edges e2

and e3 are not adjacent. Therefore by Lemma 4.11,

NNI(T ; e1, e2, e3) = NNI(T ; e1, e3, e2).

Similarly,

NNI(T ; e2, e1, e3) = NNI(T ; e2, e3, e1), and

NNI(T ; e3, e1, e2) = NNI(T ; e3, e2, e1).

However, because all three edges are pairwise adjacent in T , the choice of the first edge is

important, and

NNI(T ; e1, e2, e3) ∩NNI(T ; e2, e1, e3) = ∅,

NNI(T ; e1, e2, e3) ∩NNI(T ; e3, e1, e2) = ∅, and

NNI(T ; e2, e1, e3) ∩NNI(T ; e3, e1, e2) = ∅.

Therefore there are |NNI(T ; e1, e2, e3)| + |NNI(T ; e2, e1, e3)| + |NNI(T ; e3, e1, e2)| = 24 re-

sulting third NNI neighbours.

Now suppose that we choose three internal edges e1, e2 and e3 of T , at least two of which are the

same edge. We consider NNI(T ; e1, e2, e3). There are two cases to consider.
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1. If e1 = e2 = e3, then by Lemma 4.7 we obtain no third NNI neighbours.

2. Suppose that exactly one of the edges e1, e2 and e3 is distinct. By Lemma 4.7, if e1 = e2 or

e2 = e3 then NNI(T ; e1, e2, e3) ∩N3
NNI(T ) = ∅.

Now suppose that e2 is the distinct edge, so e1 = e3. Then either e2 is adjacent to e1, or not.

(a) Suppose that e2 is not adjacent to e1. Then by Corollary 4.12, NNI(T ; e1, e2, e3) ∩
N3
NNI(T ) = ∅.

(b) Suppose that e2 is adjacent to e1. Consider different arrangements of the five subtrees

A, B, C, D and E distance one from one or both of the two adjacent internal edges, and

not containing either of them (see Fig. 4 in the proof of Lemma 4.9). This is the same

as arrangements of the binary phylogenetic tree where n = 5. By Lemma 2.2 there are

15 different binary trees with n = 5, and one of these is the tree T5 corresponding to the

arrangement in T . There are 2(n−3) = 4 first NNI neighbours of T5 by Theorem 4.2 and

2n2 − 10n + 4c = 8 second NNI neighbours of T5 by Theorem 4.4. Therefore there are

15− 8− 4− 1 = 2 trees in UB(5) that are not T5, or in the first or second neighbourhood

of T5. Similarly there are 2 trees in UB(n) with pendant subtrees A, B, C, D and E

that are not T or in the first or second neighbourhood of T ′ (recall that E is the subtree

that is distance one from both e1 and e2). These two trees T1 and T2, are those for which

dT1(E, e1) = dT1(E, e2) = dT2(E, e1) = dT2(E, e2) = 1.

Now we show that T1 and T2 are third NNI neighbours of T . The first NNI operation on

edge e1 swaps subtrees so that in the resulting tree T ′, dT ′(E, e1) = 1 and dT ′(E, e2) = 2.

Let T ′′ be the tree resulting from the second NNI operation on edge e2 of T ′. Since E

is not adjacent to e2 in T ′, dT ′′(E, e1) = 1 and dT ′′(E, e2) = 2. Let X be the subtree of

T ′′ such that dT ′′(X, e1) = dT ′′(X, e2) = 1. Note that either X = C or X = D. Then

E and X are a swappable pair for the third NNI operation on edge e1 in T ′′. Hence

there exists T ′′′ ∈ NNI(T ′′; e3) such that dT ′′′(E, e1) = dT ′′′(E, e2) = 1. The proof of

Lemma 4.13 justifies that T ′′′ 6= T . Whether T ′′′ = T1 or T ′′′ = T2 depends on whether

the first NNI operation on edge e1 in T swapped subtrees so that dT ′(E,A) = 2, or so

that dT ′(E,B) = 2. Hence T1 and T2 are both third NNI neighbours of T , so

|NNI(T ; e1, e2, e3) ∩N3
NNI(T )| = 2.

By Lemma 4.13 all distinct choices of edges e1, e2 and e3 produce distinct first neighbours.
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Recall that p3(T ) is the number of ways to select three internal edges of T so that they form an

internal path of length three. Let x be the number of ways of choosing three internal edges of T so

that they are pairwise non-adjacent, let y be the number of ways of choosing three internal edges of

T so that exactly one pair is adjacent, and let z be the number of ways of choosing three internal

edges of T so that they share a common endpoint. By Corollary 3.4, there are n + c − 6 adjacent

pairs of edges in T .

Therefore combining all of the cases (where the three edges are distinct, or not all distinct),

|N3
NNI(T )| = 8x+ 16y + 36p3(T ) + 24z + 2(n+ c− 6). (5)

By Lemma 3.3, z = c− 2.

To determine y, we note that there are n + c − 6 pairs of adjacent internal edges in T . Therefore

there are (n − 5)(n + c − 6) ways of choosing three internal edges of T such that are least two of

these edges are adjacent. Removing all cases where we have an internal path of length three, or the

three edges share an endpoint, we have

y = (n− 5)(n+ c− 6)− 2p3(T )− 3z.

In total there are 1
6(n − 3)(n − 4)(n − 5) ways to choose three internal edges of T , so the number

where all are pairwise non-adjacent is

x =
1

6
(n− 3)(n− 4)(n− 5)− y − z − p3(T ).

Hence substituting into (5) we have

|N3
NNI(T )| = 4

3
n3 − 8n2 − 70

3
n+ 8cn− 46c+ 12p3(T ) + 164.

Now we consider how we might calculate the value of p3(T ) for a tree T ∈ UB(n).

Theorem 4.14. Let T ∈ UB(n). Then p1(T ) = n− 3 and

pk(T ) = 4pk−2(T )− hk(T )−mk(T ),

where for all k, mk(T ) is the number of paths of length k in T where both end points are leaves of

T , and hk(T ) is the number of paths of length k in T where exactly one end vertex is a leaf of T .
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Proof. The number of internal edges in T is n− 3, so p1(T ) = n− 3.

The number of paths of length k in T is Pk(T ) = pk(T ) + mk(T ) + hk(T ). Now in a binary tree,

Pk(T ) = 4pk−2(T ). Therefore

pk(T ) = Pk(T )−mk(T )− hk(T ) = 4pk−2(T )− hk(T )−mk(T ).

It follows that p3(T ) = 4(n− 3)− h3(T )−m3(T ) for a tree T ∈ UB(n, c), and therefore

|N3
NNI(T )| = 4

3
n3 − 8n2 +

74

3
n+ 8cn− 46c− 12h3(T )− 12m3(T ) + 20.

Note that mk(T ) and hk(T ) can both be counted using a breadth first search in polynomial time.

4.4 Asymptotic Result for the kth Neighbourhood

In this subsection we prove Theorem 4.1. Similarly to the proof of Theorem 3.1 we consider the

number of kth NNI neighbours resulting from NNI operations over a given set of k internal edges.

From Lemma 3.7 we know the number sets of k internal edges of T . Combining these gives us the

total number of kth NNI neighbours. The four different cases that are relevant are:

1. The k edges are distinct and pairwise non-adjacent.

2. The k edges are distinct and exactly two are adjacent.

3. The k edges are distinct and more than two are adjacent.

4. The k edges are not all distinct.

These are the same cases as for RF, with the additional possibility that the k edges are not all

distinct (Case 4). In Equation 2 of Theorem 4.1, the term of order nk is completely determined

by Case 1, while the term of order nk−1 is determined by Cases 1 and 2. We show that all other

possibilities for the k edges (covered by Cases 3 and 4) only contribute to terms of order nk−2 or

lower.

Neighbours Resulting from NNI Operations over k Given Edges

We consider how many kth NNI neighbours result from k NNI operations on a given set of k internal

edges of T in the cases outlined above.

Lemma 4.15. Let T ∈ UB(n) (n ≥ 4).

(i) For any given set of k distinct, pairwise non-adjacent internal edges (1 ≤ k ≤ n−3), there are

2k kth neighbours of T resulting from NNI operations on this sequence of edges in any order.
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(ii) For any given set of k distinct internal edges (2 ≤ k ≤ n−2) where exactly one pair is adjacent,

there are 2k+1 kth neighbours of T resulting from NNI operations on this sequence edges in any

order.

(iii) For a given T and a given sequence of k (not necessarily distinct) edges of T (k ≥ 1), the

number of kth NNI neighbours resulting from NNI operations on this sequence edges in any

order is constant with respect to n.

Proof.

(i) Suppose we perform NNI operations on k distinct, pairwise non-adjacent internal edges e1, ..., ek

of T . Lemma 4.8 tells us that if the NNI operations are performed in a given order we obtain 2k

neighbours. Since the edges are pairwise non-adjacent, by Corollary 4.11, changing the order

of the operations does not change the set of trees produced. Hence there are 2k neighbours of

T resulting from NNI operations on this set of edges in any order.

(ii) The only difference between this and (i) is the pair of adjacent edges ei and ej (1 ≤ i < j ≤ k).

By Corollary 4.11,

NNI(T ; e1, ..., ei, ..., ej , ..., ek) = NNI(T ; e1, ..., ei−1, ei+1, ..., ej−1, ej+1, ..., ek, ei, ej).

As in (i), by Lemma 4.8 and Corollary 4.11, performing NNI operations on the edges e1, ...,

ei−1, ei+1, ..., ej−1 , ej+1, ..., ek in any given order produces the set of trees

NNI(T ; e1, ..., ei−1, ei+1, ..., ej−1, ej+1, ..., ek),

where

|NNI(T ; e1, ..., ei−1, ei+1, ..., ej−1, ej+1, ..., ek)| = 2k−2.

Let Tk−2 ∈ NNI(T ; e1, ..., ei−1, ei+1, ..., ej−1, ej+1, ..., ek). By Lemma 4.9,

NNI(Tk−2; ei, ej) ∩NNI(Tk−2; ej , ei) = ∅.

Therefore since

|NNI(Tk−2; ei, ej) ∪NNI(Tk−2; ej , ei)| = 4 + 4 = 8,

we have 8(2k−2) = 2k+1, kth NNI neighbours of T .

(iii) Let F be the subgraph of T consisting of the edges e1, ..., ek. Then F has m components,

C1, ..., Cm (1 ≤ m ≤ k). Edges in different components of F are not adjacent, so by Corollary

4.11 the order in which we perform NNI operations on them does not change the resulting

neighbours. However, by Lemma 4.9 the order of NNI operations on the edges that form a
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component of F , does change the resulting neighbours. Therefore the number of neighbours

resulting from NNI operations on the k edges is

m∏
`=1

f(C`),

where f(C`) is the number of distinct kth NNI neighbours resulting from NNI operations in T

on the edges from e1, ..., ek that are in component C` of F (more than one NNI operation may

be on the same edge). We consider each component separately.

Let Cp, 1 ≤ p ≤ m be a component of F with q edges and consider calculating f(Cp). Let

f1, ..., fj (j ≤ k) be the subsequence of the edges e1, ..., ek that are in Cp. Note that the edges

f1, ..., fj are not necessarily distinct. Add pendant edges incident to vertices in V (Cp), so that

all of the vertices in V (Cp) have degree three. The resulting tree C ′p is an unrooted binary

tree with q+ 3 leaves. The internal edges of C ′p are the distinct edges of the sequence f1, ..., fj .

Then f(Cp) is equivalent to the number of distinct kth NNI neighbours of C ′p resulting from

NNI operations on the edges f1, ..., fj of C ′p. The number of kth neighbours f(C ′p) from these

operations depends only on the shape and size of C ′p, the number of times we perform an NNI

operation on each internal edge of Cp, and the order in which the operations are performed.

All of these factors are determined by the choice of the edges e1, ..., ek of T . Therefore, given

a tree T , and internal edges e1, ..., ek of T , the number of kth NNI neighbours of T resulting

from NNI operations on the edges e1, ..., ek in any order is independent of n.

Now we have all of the information required to prove Theorem 4.1.

Proof of Theorem 4.1

Proof. We break down the calculation of the size of the kth NNI neighbourhood of T into two steps.

First we consider how many neighbours result from k NNI operations on a given sequence of k edges

of T . Then we consider how many ways these k edges can be chosen in T . By Lemma 4.15 the

number of kth NNI neighbours of a given tree T resulting from operations over a given sequence

of k edges is not dependent on n. Hence the only factor dependent on n is the number of ways of

choosing these k edges. We consider two cases.

First, assume that the k edges are all distinct, and consider how many ways they can be chosen in T .

By Lemma 3.7 the case where the k edges are pairwise non-adjacent (Case 1 from the beginning of

this subsection) gives a term of order nk and a term of order nk−1. The case where exactly two of

the k edges are adjacent (Case 2), produces a term of order nk−1, but not a term of order nk. If

35



more than two of the k edges are adjacent then the highest order term is O(nk−2).

Now suppose that the k edges are not all distinct. By Lemma 3.7 if k− 1 of the k edges are distinct

and pairwise non-adjacent, the highest order term is O(nk−1). However, by Corollary 4.12, the trees

produced by this are not kth NNI neighbours of T . By Lemma 3.7, if more than two of the k edges

are the same, or more than two are adjacent, the highest order term is O(nk−2).

In the case where the edges are pairwise non-adjacent, by Lemma 4.15 there are 2k kth NNI neigh-

bours of T resulting from NNI operations on a given set of k edges. In the case where exactly two

edges are adjacent there are 2k+1 resulting kth NNI neighbours. Hence by Lemma 3.7,

|Nk
NNI(T )| ≥

(
1

k!
nk − k(5k + 1)

2k!
nk−1

)
2k +

1

2(k − 2)!
nk−12k+1 +O(nk−2)

=
2k

k!
nk − 3k(k + 1)

2k!
2knk−1 +O(nk−2).

|Nk
NNI(T )| ≤

(
1

k!
nk − k(k + 2)

k!
nk−1

)
2k +

2

(k − 2)!
nk−12k+1 +O(nk−2)

=
2k

k!
nk +

3k(k − 2)

k!
2knk−1 +O(nk−2).

We can see that this result is very similar to the size of the kth RF neighbourhood, as DT,k and CT,k

are both quadratic in k.

5 Pairs of Trees with Shared Neighbours

Now that we have expressions for the size of the first and second NNI and RF neighbourhoods, it

is possible to find an exact count for the number of pairs of binary phylogenetic trees with n leaves

that share a first NNI or RF neighbour. This is the same as the number of pairs of trees that are

within at most distance two of each other, and tells us more about the structure of UB(n).

We can calculate the number of pairs of trees that share a first neighbour by summing the size of the

first and second neighbourhoods of a tree, over all binary phylogenetic trees. This counts each pair

twice, so we halve the result. However, since the size of the second neighbourhood for both NNI and

RF is dependent on the number of cherries, it is necessary to know how many binary phylogenetic
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trees there are with n leaves and c cherries, which is |UB(n, c)|. Hendy and Penny (1982) found

an expression for |UB(n, c)|, which they proved using induction on the number of leaves. Here we

present a constructive proof of their result.

Proposition 5.1. For all n ≥ 4,

|UB(n, c)| = n!(n− 4)!

c!(c− 2)!(n− 2c)!22c−2
,

for 2 ≤ c ≤ n
2 , and |UB(n, c)| = 0 otherwise.

Proof. The tree with the smallest number of cherries is a caterpillar, which has two cherries. Since

there are two leaves in a cherry, the maximum number of cherries a tree can have is n
2 . Hence for

c < 2 or c > n
2 we have |UB(n, c)| = 0.

Let 2 ≤ c ≤ n
2 . Each T ∈ UB(n, c) has 2c leaves that are in cherries. The number of ways of

choosing the 2c leaves of T to form the c cherries is
(
n
2c

)
. From those 2c leaves we choose two for

each cherry. Since the order of the cherries is not important, we divide by c!, the number of ways to

order the c cherries. Therefore the number of ways of choosing c cherries from n leaves is

M =
1

c!

(
n

2c

)(
2c

2

)(
2c− 2

2

)
...

(
2

2

)
=

1

c!

(
n!

(2c)!(n− 2c)!

(2c!)

2!(2c− 2)!

(2c− 2)!

2!(2c− 4)!
...

2!

2!

)
=

n!

c!(n− 2c)!2c
.

Now consider each cherry as a single leaf with the labels of both leaves. There are c of these double-

labelled leaves and n− 2c other leaves. We determine the number of trees that can be formed with

these leaves. We have the restriction that no pair of the n − 2c single-labelled leaves can be in a

cherry. Therefore we will first consider the number of trees we can form with only the c double-

labelled leaves. This number, P , is given in Lemma 2.2,

P = |UB(c)| = (2c− 4)!

(c− 2)!2c−2
.

Now let T be one of these trees with c double-labelled leaves. We insert the remaining n − 2c

single-labelled leaves. Each single-labelled leaf can only be joined to edges in E(T ), so as not to

create another cherry. There are 2c − 3 edges in E(T ) to which the single-labelled leaves could be

joined. Since there are no other restrictions on where these single-labelled leaves must be inserted,

we simply need to count the number of distinct trees resulting from joining the n−2c single labelled
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edges to edges in E(T ). The number of distinct trees is given by

Q = (n− 2c)!

(
(n− 2c) + (2c− 3)− 1

(2c− 3)− 1

)
= (n− 2c)!

(
n− 4

2c− 4

)
=

(n− 4)!(n− 2c)!

(2c− 4)!(n− 2c)!
=

(n− 4)!

(2c− 4)!
.

Combining M , P , and Q, we have

|UB(n, c)| = MPQ =
n!

c!(n− 2c)!2c
· (2c− 4)!

(c− 2)!2c−2
· (n− 4)!

(2c− 4)!

=
n!(n− 4)!

c!(c− 2)!(n− 2c)!22c−2
.

Now we can use this result to find the number of pairs of binary phylogenetic trees in UB(n) that

are within at most distance two of each other under NNI and RF. For θ ∈ {NNI,RF}, define

N≤kθ (n) = {(T, T ′) : T, T ′ ∈ UB(n), dθ(T, T
′) ≤ k}.

Corollary 5.2. Let n ≥ 3, Then

(i) |N≤2
NNI(n)| = ∑bn2 cc=2 |UB(n, c)|(n2 − 4n+ 2c− 3).

(ii) |N≤2
RF (n)| = ∑bn2 cc=2 |UB(n, c)|(n2 − 3n+ 3c− 9).

Proof.

(i) For T ∈ UB(n, c), the number of first and second NNI neighbours is

NNNI(T ) +N2
NNI(T ) = 2(n− 3) + 2n2 − 10n+ 4c

= 2n2 − 8n+ 4c− 6.

To find the number of pairs of trees in UB(n) that are within NNI distance two, we simply

sum the number of first and second neighbours over all trees in UB(n), and then halve the

result as each pair will be counted twice. So,

|N≤2
NNI(n)| = 1

2

bn
2
c∑

c=2

|UB(n, c)|(2n2 − 8n+ 4c− 6)

=

bn
2
c∑

c=2

|UB(n, c)|(n2 − 4n+ 2c− 3).

Proposition 5.1 gives us |UB(n, c)|.
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(ii) For each unrooted binary tree T , the number of first and second RF neighbours is

NRF (T ) +N2
RF (T ) = 2(n− 3) + 2n2 − 8n+ 6c− 12

= 2n2 − 6n+ 6c− 18.

Therefore

|N≤2
RF (n)| = 1

2

bn
2
c∑

c=2

|UB(n, c)|(2n2 − 6n+ 6c− 18)

=

bn
2
c∑

c=2

|UB(n, c)|(n2 − 3n+ 3c− 9).

6 Subtree Prune and Regraft

A subtree prune and regraft (SPR) operation on a tree T ∈ UB(n) is defined by the following process:

1. Select an edge e = {u, v} ∈ E(T ) and delete it, leaving two components Tu (containing the

vertex u) and Tv (containing the vertex v).

2. Select an edge f ∈ E(Tv), and subdivide f with a new vertex w to obtain two edges f1 and f2.

The vertex w has degree two.

3. Insert the edge g = {w, u}, and suppress the vertex v to obtain a binary tree T ′ ∈ UB(n).

Essentially we prune the subtree Tu, and regraft it onto edge f . We refer to e as the cut edge and f

as the join edge of the SPR operation (see Fig. 5). The tree T ′ is a first SPR neighbour of T . We

will use the notation SPR(T, (e, f)) to refer to the tree obtained by an SPR operation on tree T

with cut edge e and join edge f .

Note that if dT (e, f) = 1 then T ′ is a first NNI neighbour of T (Semple and Steel, 2003). In Fig. 1,

T2 is obtained from T1 by a single SPR operation, with cut edge incident to the leaf d and join edge

incident to the root of the cherry with leaves a and b.

Consider a graph G in which each vertex represents a tree in UB(n) and there is an edge between

the vertices representing trees T1 and T2 if they are first SPR neighbours. The SPR distance between

T1 and T2, δSPR(T1, T2), is the distance between the two vertices representing T1 and T2 in G.

The size of the first SPR neighbourhood of a given binary phylogenetic tree was determined by Allen

and Steel (2001). No other SPR neighbourhood sizes are known. In this section we independently
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Figure 5: An example of an SPR operation with cut edge e and join edge f .

investigate the first and second SPR neighbourhoods. We obtain the same expression as Allen and

Steel (2001) for the size of the first SPR neighbourhood, and we show that unlike RF and NNI, the

size of the second SPR neighbourhood of a binary tree T cannot be determined solely by the number

of leaves and cherries of T .

In relation to the structure of the SPR neighbourhood, Caceres et al. (2013) provided tight bounds

on the length of the shortest NNI walk that visits all trees in the first SPR neighbourhood of a tree T .

Allen and Steel (2001) found upper and lower bounds for the maximum SPR distance between any

two trees in UB(n).

6.1 First Neighbourhood

Allen and Steel (2001) calculated an expression for the size of the first SPR neighbourhood of a tree

T ∈ UB(n). This is stated below, along with an independent proof.

Theorem 6.1. Let T ∈ UB(n), n ≥ 3. Then |NSPR(T )| = 2(n− 3)(2n− 7).

Proof. Suppose that we perform a single SPR operation on T with cut edge e = {u, v} and join

edge f . Call the resulting tree T ′. Given the cut edge e, there are three cases to consider for the

choice of the join edge f ;

1. dT (e, f) = 0,

2. dT (e, f) = 1, and

3. dT (e, f) > 1.

1. Assume that dT (e, f) = 0, that is, f is adjacent to e. Without loss of generality let f = {v, v1}.
Edge f is subdivided by vertex w, and vertex v is suppressed by the SPR operation, so f and

v are not in T ′. In T ′, vertex w is adjacent to the three vertices that are adjacent to v in T .

Hence we have essentially replaced v in T with w in T ′, and so T ′ = T .
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2. Since dT (e, f) = 1 there is exactly one other edge on the (e − f)-path in T , which we call h.

Then T ′ is a first NNI neighbour of T obtained by swapping subtrees across h (see Fig. 6).

e

T

A2

A3

A4

f A2

A3 A4

T 0

Tu Tu g
h

Figure 6: Tree T ′ is a first neighbour of T obtained by an SPR operation with cut edge e and join

edge f , or by an NNI operation swapping subtrees A2 and A3 across h.

Let h′ be an internal edge of T , and let A and B be a pair of subtrees of T that are swappable

across h′ (see Fig. 7). Let T ′′ be a first NNI neighbour of T obtained by swapping subtrees A

and B across edge h′. Then T ′′ is a first SPR neighbour of T obtained by an operation with

cut edge e′ and join edge f ′, where dT (e′, A) = 1, dT (e′, h′) = 0 and dT (f ′, B) = 0. Therefore

we have exactly the first NNI neighbours of T , of which there are 2(n− 3).

T T 00

A AB B

e0

f 0
h0

C CD D

Figure 7: Tree T ′′ is a first neighbour of T obtained by an NNI operation swapping subtrees A and

B across edge h′, or by an SPR operation with cut edge e′ and join edge f ′.

3. Now we consider the case where dT (e, f) > 1. Let h = {v1, v2} be an edge on the (e− f)-path

in T , such that h is adjacent to e. Let A, B, C and D be the four subtrees distance one from

h in T , with dT (A,B) = 2, and let a, b, c, and d be their respective incident internal edges

(see Fig. 8). If edge f is in subtree C or D, then either e = a or e = b. If f is in subtree A or

B, then either e = c or e = d. There are (2n − 3) − 5 = 2n − 8 edges in the four subtrees A,

B, C and D. Therefore given h, there are 2(2n− 8) = 4(n− 4) first SPR neighbours of T . By

Lemma 2.1, T has n− 3 internal edges, giving a total of 4(n− 3)(n− 4) first SPR neighbours,

provided that all are distinct, and none are trees from Case 2.

Now we justify that all of the 4(n− 3)(n− 4) trees from Case 3 are distinct and none are trees

from Case 2. We consider the set of trees obtained by SPR operations when e = a and f is an
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Figure 8: The four subtrees A, B, C and D distance one from internal edge h in T .

edge in C, and show that no other SPR operations (from Case 2 or Case 3) can produce any

of these trees.

Let e = a, let f be an edge in C, and let N1, ..., Np be the first SPR neighbours resulting from

SPR operations with these cut and join edges, where p is the number of edges in C. Since a

is the edge deleted from T by the SPR operation, in the neighbour Ni, i = 1, ..., p, the edges

h and b have been replaced with a single edge h′. We have dNi(A,B) ≥ 4, dNi(A,D) ≥ 4, and

dNi(B,D) = 2, i = 1, ..., p. Note that C is not a subtree of Ni.

First we note that each different choice of f in C produces a different tree so N1, ..., Np are

distinct. What is not so easy to see is that no other SPR operation (from Case 2 or Case 3)

can produce a tree in {N1, ..., Np}. Let e′ and f ′ be internal edges of T such that dT (e′, f ′) ≥ 1

(Cases 2 and 3). Assume that e′ 6= a or f ′ is not an edge of C. Let T ′′ = SPR(T, (e′, f ′)). We

justify that T ′′ 6∈ {N1, ..., Np} by considering all possible choices of e′ and f ′.

First suppose that e′ is an edge in A, B or D. Then this subtree is not a subtree of T ′′, so

T ′′ 6∈ {N1, ..., Np}. Similarly, if f ′ is an edge in A, B or D then T ′′ 6∈ {N1, ..., Np}. As noted

above, C is not a subtree of Ni, i = 1, ..., p. Suppose that neither e′ or f ′ is an edge of C.

Then C is a subtree of T ′′, and so T ′′ 6∈ {N1, ..., Np}. We now assume that either e′ or f ′ is an

edge in C (or both).

Suppose that e′ is an edge in C. If f ′ = a or f ′ = b then dT ′′(A,B) = 3, so T ′′ 6∈ {N1, ..., Np}.
If f ′ = c, f ′ = d, f ′ = h, or f ′ is an edge of C, then dT ′′(A,B) = 2, so T ′′ 6∈ {N1, ..., Np}.

Now suppose that e′ is not an edge in C. Therefore f ′ is an edge in C. The remaining choices

for e are a, b, c, d and h. If e′ = c, e′ = d or e′ = h then dT ′′(A,B) = 2 so T ′′ 6∈ {N1, ..., Np}.
Let e′ = b. Then dT ′′(A,D) = 2, and so T ′′ 6∈ {N1, ..., Np}. Hence T ′′ ∈ {N1, ..., Np} only if
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e′ = a and f ′ is an edge of C. Therefore Case 3 produces 4(n − 3)(n − 4) distinct first SPR

neighbours, none of which are trees in Case 2.

Combining the three cases we have 2(n− 3) first SPR neighbours from Case 2, and 4(n− 3)(n− 4)

first SPR neighbours from Case 3. From Case 1 there were none. Therefore in total there are

N = 2(n− 3) + 4(n− 3)(n− 4)

= 2(n− 3)(2n− 7)

first SPR neighbours of T .

6.2 Second Neighbourhood

As with NNI and RF, the size of the first SPR neighbourhood of a tree depends only on the number

of leaves in the tree. However, unlike NNI and RF, the size of the second SPR neighbourhood of

a tree cannot be expressed solely in terms of the number of leaves and cherries of the tree. In this

subsection we show that these two parameters are not sufficient to determine even the highest order

term of the size of the second SPR neighbourhood. At the end of this subsection we prove our main

results, which are presented in Theorems 6.2 and 6.3.

Theorem 6.2. Let T ∈ UB(n).

(i) If T is a caterpillar then

|N2
SPR(T )| = 1

2
n4 +O(n3).

(ii) If T is a balanced tree then

|N2
SPR(T )| = 1

3
n4 +O(n3).

It is evident from Theorem 6.2 that the size of the second SPR neighbourhood of a tree T is not

uniquely determined by the number of leaves of T . However, every caterpillar has exactly two

cherries, while a balanced tree with at least six leaves has at least three cherries. Therefore for

n ≥ 6 a caterpillar and a balanced tree, each with n leaves, have different numbers of cherries.

Therefore Theorem 6.2 does not justify that the size of the second SPR neighbourhood of T cannot

be uniquely determined by the number of leaves and cherries of T . To show this, we consider two

different structures of an unrooted binary tree T with n = 3m (m ≥ 3) leaves, and 3 cherries. These

two tree structures (Type 1 and Type 2) can be seen in Fig. 9 and Fig. 10 respectively. Similarly to

Theorem 6.2, we show that trees of Type 1 and Type 2 also have a different highest order term in the

expression for the size of the second SPR neighbourhood. This result is presented in Theorem 6.3.
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a

b

c d

n � 5

Figure 9: A Type I tree with three cherries and n = 3m leaves (m ≥ 3).

a

b

dc

m � 1 m � 1

m � 1

Figure 10: A Type II tree with three cherries and n = 3m leaves (m ≥ 3).

Theorem 6.3. Let T1 and T2 be unrooted binary trees with n = 3m leaves (m ≥ 3) and three

cherries, and suppose that T1 is of Type I and T2 is of Type II. Then

|N2
SPR(T1)| = 1

2
n4 +O(n3), and

|N2
SPR(T2)| = 23

54
n4 +O(n3).

We will use the notation

SPR(T, (c1, j1), (c2, j2), ..., (ck, jk))

to denote the tree obtained by k successive SPR operations starting with tree T , where c1 and j1 in

T are the cut and join edges respectively of the first operation, c2 and j2 in SPR(T, (c1, j1)) are the

cut and join edges of the second operation, and so on. When k = 2 we refer to the two operations

that result in the set of trees SPR(T, (c1, j1), (c2, j2)), as a pair of SPR operations.

First we determine an upper bound on the size of the second SPR neighbourhood. This follows

directly from the expression for the size of the first SPR neighbourhood given in Theorem 6.1.

Corollary 6.4. Let T ∈ UB(n) (n ≥ 3). Then

|N2
SPR(T )| ≤ 4(n− 3)2(2n− 7)2 = O(n4).
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The first step in proving Theorems 6.2 and 6.3 is to determine whether or not all pairs of SPR

operations contribute to the term of order n4 in the expression for the size of the second SPR neigh-

bourhood of a tree.

Let T ∈ UB(n) and let

T(T ) = {(c1, c2, j1, j2) : c1, j1 ∈ E(T ), c1 6= j1; c2, j2 ∈ E(SPR(T, (c1, j1))), c2 6= j2}.

This is the set of all possible choices for the four cut and join edges of two SPR operations starting

with tree T .

We could break down the possible choices of the edges c1, j1, c2 and j2 into many cases by consid-

ering whether or not they are distinct, and the pairwise distances between them. Here the case we

will consider is the one for which the four edges c1, j1, c2 and j2 are distinct edges of the original

tree T , and are pairwise at least distance three apart.

Let S(T ) be the subset of T(T ) where c2, j2 ∈ E(T ), and the four edges c1, j1, c2, j2 are pairwise at

least distance three apart in T .

The following lemma shows that in order to prove Theorems 6.2 and 6.3 it suffices to consider only

pairs of SPR operations with cut and join edges in S(T ).

Lemma 6.5. Let T ∈ UB(n). Then

|S(T )| = 2

3
n4 +O(n3)

|T(T )− S(T )| = O(n3).

Proof. For n sufficiently large, it is possible to choose the edges c1, j1, c2 and j2 in T such that

(c1, c2, j1, j2) ∈ S(T ). To determine the size of S(T ), we count the number of sets of four internal

edges of T , where all pairs of edges in the set are at least distance three apart. There are 2n − 3

choices for edge c1, since this is the number of edges in T (this follows from Lemma 2.1). The

maximum number of choices for j1 is (2n − 3 − 7) (this can occur if c1 is a pendant edge). The

minimum number of choices for edge j1 is (2n−3−29) (this can occur if c1 is an internal edge). The

maximum number of choices for c2 is (2n− 3− 7− 6) (this can occur if c1 and j1 are both pendant

edges). The minimum number of choices for c2 is (2n− 3− 2(29) (this can occur if both c1 and j1

are internal edges). A similar process determines upper and lower bounds on the number of choices

for edge j2. We divide by the number of ways to order the four edges. Therefore

|S(T )| ≥ 1

4!
(2n− 3)(2n− 3− 29)(2n− 3− 2(29))(2n− 3− 3(29)) =

2

3
n4 +O(n3), and
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|S(T )| ≤ 1

4!
(2n− 3)(2n− 3− 7)(2n− 3− 7− 6)(2n− 3− 7− 2(6)) =

2

3
n4 +O(n3).

Now we consider T(T )− S(T ). Determining |T(T )− S(T )| is similar to determining |S(T )|, however

for at least one of the four cut and join edges, instead of counting the number of edges at least

distance three from those already chosen, we count the number within distance two of those already

chosen, and therefore obtain a constant factor instead of a linear factor. Let M be a maximal subset

of the the edges {c1, c2, j1, j2} such that the edges in M are pairwise distance at least three apart

in T , where |M | = m < 4. Suppose we first choose the edges in M . From the argument above we

can see that the number of such choices is O(nm). The remaining 4−m ≥ 1 edges must be chosen

from edges within distance two of those already chosen. The number of these choices depends only

on the number and location of the m edges already chosen, and not on n. Hence

|S(T )| = 2

3
n4 +O(n3), and |T(T )− S(T )| = O(n3).

Lemma 6.5 tells us that the highest order term in the expression for the size of S(T ) is O(n4). Note

that instead of requiring the edges in S(T ) to be at least distance three apart we could have made

them distance k apart for any k ∈ Z+ and Lemma 6.5 would still hold. We have chosen to consider

distance three, because if pairs of these four edges are within distance two of each other, then there

are more cases to consider in order to determine exactly when two different pairs of SPR operations

produce the same tree. To determine only the O(n4) term in the expression for the size of the second

SPR neighbourhood, we can ignore all cases where there exist edges e, f ∈ {c1, c2, j1, j2} such that

dT (e, f) ≤ 2.

However, we can’t simply take the highest order term in the expression for the size of S(T ) as the

highest order term in the expression for the size of the second SPR neighbourhood of a tree T , as

there may be cases where two different pairs of SPR operations produce the same tree (duplicates),

or when a pair of SPR operations produces a first SPR neighbour of T . To prove Theorem 6.2 and

Theorem 6.3 we need to know precisely when these two situations arise.

In Lemma 6.7 and 6.8 we show that there are no cases where a pair of SPR operations with cut and

join edges in S(T ) yield a first SPR neighbour, and that whether two different pairs of operations

produce the same tree is dependent on whether or not the cut and join edges j2, c1, c2, and j1 lie

on a path in this order. Note that if the edges do lie on a path in this order, they also lie on a path

in the reverse order. We first require a result about how many ways one SPR operation on a tree

T ∈ UB(n) can reduce the distance between two subtrees of T .
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Lemma 6.6. Let T ∈ UB(n). Suppose there exist subtrees A and B of T (not necessarily pendant

or maximal), such that dT (A,B) = k, and if A or B is an internal subtree, then it has at least one

internal edge. Let a and b be vertices of degree two in A and B respectively, such that dT (a, b) = k.

Call the two pendant edges of the (a − b)-path P , e and f respectively. Let T ′ ∈ UB(n) with the

same leaf set as T , such that A and B are subtrees of T ′ (with vertices a and b respectively of degree

two), dT ′(A,B) = 2, and dT ′(a, b) = 2. Then

(i) for k ≥ 4, if T ′ = SPR(T, (c1, j1)) then {c1, j1} = {e, f}, and

(ii) for k ≥ 5, if T ′ = SPR(T, (c1, j1), (c2, j2)) with (c1, c2, j1, j2) ∈ S(T ) then {c1, j1} = {e, f} or

{c2, j2} = {e, f}.

Proof. Fig. 11 shows trees T and T ′.

A B
k

e f
T

T 0

a b

BbA a

Figure 11: Trees T and T ′.

(i) Let T ′′ = SPR(T, (c1, j1)). We show that T ′′ 6= T ′ unless {c1, j1} = {e, f}. First suppose that

edge c1 is in subtree A or B. Then either T ′′ = T (if we regraft in the same place), or T ′′ 6= T

since the subtree (A or B) is not in T ′′. Likewise for edge j1.

Now suppose that c1 and j1 are not edges of A or B. Hence A and B are both subtrees of T ′′.

If we assume that edge c1 is not in P or incident to P , then dT ′′(A,B) ≥ 5 if j1 is an edge of

P , else dT ′′(A,B) ≥ 4. Therefore T ′′ 6= T ′. If c1 is incident to P then deleting edge c1 creates

a vertex of degree two in P , which is suppressed by the SPR operation. Hence dT ′′(A,B) ≥ 4

if j1 is an edge of P , otherwise dT ′′(A,B) ≥ 3, and so T ′′ 6= T ′.

Now suppose that j1 is not an edge of A or B, and c1 is an edge of P . If c1 6∈ {e, f} then

dT ′′(A,B) ≥ 3 if j1 is incident to A or B, otherwise dT ′′(A,B) ≥ 4, and so T ′′ 6= T ′. Finally
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suppose that c1 ∈ {e, f}, and j1 is not incident to A or B. Then dT ′′(A,B) ≥ 3 and T ′′ 6= T ′.

If j1 is adjacent to A or B but j1 6∈ {e, f} (which can occur if A or B is an internal subtree)

then dT ′′(A,B) = 2 but dT ′′(a, b) > 2, since the internal subtree has at least one internal edge.

Hence if T ′′ = T ′ then {c1, j1} = {e, f}.

(ii) Let T ′′ = SPR(T, (c1, j1)(c2, j2)), where (c1, c2, j1, j2) ∈ S(T ). We show that T ′′ 6= T ′ unless

{c1, j1} = {e, f} or {c2, j2} = {e, f}. As in (i) if any of the four cut and join edges are in the

subtrees A or B in T , then that subtree is not a subtree of T ′′, so T ′′ 6= T ′. In (i) we saw that

if the cut edge of an operation is not in P or incident to P in T then the operation does not

reduce the distance between A and B. As in (i), an operation with a cut edge incident to P ,

reduces the distance between A and B by at most one. Hence if neither cut edge c1 or c2 is in

P , we have dT ′′(A,B) ≥ 3, and so T ′′ 6= T ′.

Suppose that c1 is not an edge of P , but c2 is. Then by (i), if T1 = SPR(T, (c1, j1)) then

dT1(A,B) ≥ 4. By (i), if T ′′ = T ′ then {c2, j2} = {e, f}.

Now suppose that c1 6∈ {e, f} is an edge of P . Then by (i), in the tree T1 = SPR(T, (c1, j1))

we have dT1(A,B) ≥ 3 if j1 is incident to A or B, otherwise dT1(A,B) ≥ 4. If dT1(A,B) ≥ 4

then by (i), the second operation cannot result in T ′ unless {c2, j2} = {e, f}. If dT1(A,B) = 3,

then since (c1, c2, j1, j2) ∈ S(T ), the edges c2 and j2 cannot be in or incident to the shortest

path between A and B in T1. Hence dT ′′(A,B) = 3, and T ′′ 6= T ′.

Finally, suppose that c1 ∈ {e, f}. If j1 is not incident to A or B then in the tree T1 =

SPR(T, (c1, j1)) we have dT1(A,B) ≥ 3. Again, if dT1(A,B) ≥ 4 then by (i), the sec-

ond operation cannot result in T ′ unless {c2, j2} = {e, f}. If dT1(A,B) = 3 then since

(c1, c2, j1, j2) ∈ S(T ), the edges c2 and j2 cannot be in or incident to the shortest path between

A and B in T1. Hence dT ′′(A,B) = 3, and T ′′ 6= T ′. If j1 is adjacent to A or B, but j1 6∈ {e, f}
then dT1(A,B) = 2 but dT1(a, b) > 2. Again, c2 and j2 cannot be edges on or incident to the

path between A and B in T1, so dT ′′(a, b) > 2. The only remaining case is {c1, j1} = {e, f}.

Therefore T ′′ 6= T ′ unless {c1, j1} = {e, f} or {c2, j2} = {e, f}.

Lemma 6.7. Let T ∈ UB(n), and suppose that T ′ = SPR(T, (c1, j1)) and T ′′ = SPR(T, (c1, j1), (c2, j2))

where (c1, c2, j1, j2) ∈ S(T ). Suppose that the edges j2, c1, c2, and j1 lie on a path in T in this order.
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Then

(i) T ′′ 6∈ NSPR(T ), and

(ii) for all other choices of edges (c′1, c
′
2, j
′
1, j
′
2) ∈ S(T ) where (c′1, c

′
2, j
′
1, j
′
2) 6= (c1, c2, j1, j2), we have

T ′′ 6= SPR(T, (c′1, j
′
1), (c′2, j

′
2)).

Proof. Since the four cut and join edges lie on a path in T , the rest of the tree can be partitioned

into five subtrees (two pendant and three internal) connected by these four edges.

Consider the forest T \{c1, j1, c2, j2}. It has components A, B, C, D and E which are subtrees of T .

Edge j2 is incident to A and B, edge c1 is incident to B and C, edge c2 is incident to C and D,

and edge j1 is incident to D and E. Fig. 12 shows T , T ′ and T ′′. Each of the internal subtrees B,

C and D have at least three internal edges, as all pairs of the four cut and join edges are at least

distance three apart. Let b be the endpoint of c1 that is in B, and c be the endpoint of c2 that is in C.

j2 c1 c2 j1
CT

j2c2
C D B

C

D B

T �

A EB D

E

A

E

AT 00

Figure 12: Tree T ′ = SPR(T, (c1, j1)) and T ′′ = SPR(T, (c1, j1), (c2, j2)).

(i) From the above we have dT (B,E) = dT (b, E) ≥ 9 and dT ′′(B,E) = dT ′′(b, E) = 2. There-

fore if T ′′ is a first SPR neighbour of T , then either T ′′ = SPR(T, (c1, j1)) = T ′ or T ′′ =
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SPR(T, (j1, c1)) by Lemma 6.6 1. We also have dT ′′(A,C) = 2 and dT ′(A,C) ≥ 10, so T ′′ 6= T ′.

In T1 = SPR(T, (j1, c1)), dT1(A,C) ≥ 6, so T ′′ 6= T1. Therefore T ′′ is not a first SPR neighbour

of T .

(ii) Considering (c′1, c
′
2, j
′
1, j
′
2) ∈ S(T ), let T1 = SPR(T, (c′1, j

′
1)) and T2 = SPR(T, (c′1, j

′
1), (c′2, j

′
2)).

We show that T2 = T ′′ implies that (c′1, c
′
2, j
′
1, j
′
2) = (c1, c2, j1, j2). As before, we have

dT ′′(B,E) = dT ′′(b, E) = 2. Since dT (B,E) = dT (b, E) ≥ 9, if T ′′ = T2, then the cut

and join edges for one of the operations must be c1 and j1 by Lemma 6.6. There are four cases

to consider.

(a) First suppose that (c′1, j
′
1) = (c1, j1). Then T1 = T ′. Since all SPR operations on

T ′ result in distinct neighbours (by Lemma 6.1), T ′′ = SPR(T, (c1, j1), (c′2, j
′
2)) only

if (c′2, j
′
2) = (c2, j2).

(b) Now suppose that (c′1, j
′
1) = (j1, c1). Then dT1(B,C) = dT1(B,E) = dT1(C,E) = 2. The

edges c′2 and j′2 must be distance three or more from c1 and j1 in T . If c′2 or j′2 are in one of

the subtrees B, C and E, then this subtree is not a subtree of T2 and T2 6= T ′′. If neither

c′2 or j′2 are in one of the subtrees B, E or C, then dT2(B,C) = dT2(B,E) = dT2(C,E) = 2.

However, dT ′′(C,E) ≥ 7 so T2 6= T ′′.

We now assume that {c′2, j′2} = {c1, j1}. We have dT (A,C) ≥ 5 and dT ′′(A,C) = 2. If T2 = T ′′,

then by the proof of Lemma 6.6, c′1 ∈ {c2, j2} and j′1 is incident to either A or C. Since j′1 6= c′2,

we have j′1 6= c1 which means that j′1 ∈ {c2, j2}. Therefore {c′1, j′1} = {c2, j2}.

(c) Suppose that (c′1, j
′
1) = (j2, c2). Then dT1(A,C) = dT1(A,D) = 2. Regardless of whether

the second SPR operation involves pruning B or E in T , dT2(A,C) = dT2(A,D) = 2, and

dT2(A,B) > 2. However, dT ′′(A,B) = 2, so T2 6= T ′′.

(d) Finally suppose that (c′1, j
′
1) = (c2, j2). Then dT1(A,C) ≥ 6. In T1, the subtrees at the

ends of the (c1 − j1)-path are C and E. So dT2(C,E) = 2, and T2 6= T ′′.

Therefore T2 = T ′′ implies that (c′1, c
′
2, j
′
1, j
′
2) = (c1, c2, j1, j2).

1Note that Lemma 6.6 applies when dT (B,E) = dT (b, x) ≥ 9 and dT ′′(B,E) = dT ′′(b, x) = 2 where x is a vertex

of degree two in E. However since E is a pendant subtree with only one vertex of degree two we simply use dT (b, E)

instead of dT (b, x) for simplicity. This occurs in other places throughout the proofs of Lemma 6.7 and Lemma 6.8.
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Lemma 6.8. Let T ∈ UB(n) and suppose that T ′ = SPR(T, (c1, j1)) and T ′′ = SPR(T, (c1, j1), (c2, j2))

where (c1, c2, j1, j2) ∈ S(T ). Suppose that there is no path in T in which the edges j2, c1, c2, and j1

appear in this order. Then

(i) T ′′ 6∈ NSPR(T ), and

(ii) for all choices of edges (c′1, c
′
2, j
′
1, j
′
2) ∈ S(T ), (c′1, c

′
2, j
′
1, j
′
2) 6= (c1, c2, j1, j2), we have

T ′′ = SPR(T, (c′1, j
′
1), (c′2, j

′
2))

iff (c′1, c
′
2, j
′
1, j
′
2) = (c2, c1, j2, j1).

Proof. Let C1 and D1 be the subtrees rooted at the endpoints c and d respectively of the (c1, j1)-path

in T . Then dT ′(C1, D1) = 2. Now let C and D be subtrees of C1 and D1 respectively for which

dT ′′(C,D) = 2. Because neither c2 or j2 is within distance two of c1 or j1, C and D each have

at least three internal edges. Therefore C and D are (not necessarily pendent) subtrees such that

dT (C,D) = dT (c, d) ≥ 5 and dT ′′(C,D) = dT ′′(c, d) = 2.

Let A1 and B1 be subtrees rooted at the endpoints a and b respectively of the (c2, j2)-path in T .

Let the subtrees at the endpoints of the (c2, j2)-path in T ′ be A2 and B2 respectively. Note that

a and b are the endpoints of this path in T ′. Now let A = A1 ∩ A2 and B = B1 ∩ B2. Since

(c1, c2, j1, j2) ∈ S(T ), A and B have at least three internal edges. So A and B are (not necessarily pen-

dant) subtrees of T rooted at either end of the (c2, j2)-path in T . We have dT (A,B) = dT (a, b) ≥ 5.

Since c1 can’t be within distance two of either c2 or j2, dT ′(A,B) = dT ′(a, b) ≥ 5. Finally

dT ′′(A,B) = dT ′′(a, b) = 2.

(i) From above we have dT (C,D) = dT (c, d) ≥ 5, but dT ′′(C,D) = dT ′′(c, d) = 2. By Lemma

6.6, T ′′ ∈ NSPR(T ) implies T ′′ = SPR(T, (c1, j1)) = T ′ or T ′′ = SPR(T, (j1, c1)). However

dT ′(A,B) = dT ′(a, b) ≥ 5 and dT ′′(A,B) = dT ′′(a, b) = 2, so by Lemma 6.6, if T ′′ ∈ NSPR(T )

then either T ′′ = SPR(T, (c2, j2)) or T ′′ = SPR(T, (j2, c2)). Since (c1, c2, j1, j2) ∈ S(T ), these

four trees are distinct, and T ′′ 6∈ NSPR(T ).

(ii) As in Lemma 6.7, if

T ′′ = SPR(T, (c′1, j
′
1), (c′2, j

′
2))

for (c′1, c
′
2, j
′
1, j
′
2) ∈ S(T ), (c′1, c

′
2, j
′
1, j
′
2) 6= (c1, c2, j1, j2), then {{c′1, j′1}, {c′2, j′2}} = {{c1, j1}, {c2, j2}}

by Lemma 6.6. We consider all possible cases. Let T1 = SPR(T, (c′1, j
′
1)) and

T2 = SPR(T, (c′1, j
′
1), (c′2, j

′
2)).
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(a) First let (c′1, j
′
1) = (c2, j2) and (c′2, j

′
2) = (c1, j1). The first SPR operation on T prunes

and regrafts A1 so that dT1(A1, B1) = 2. Because the edges j1, c2, c1, j2 do not lie on

a path in T in this order, the endpoints of the (c1 − j1)-path in T1 are c and d. Hence

dT2(A,B) = dT2(a, b) = dT2(C,D) = dT2(c, d) = 2 and case analysis shows that T2 = T ′′.

So

T ′′ = SPR(T, (c1, j1), (c2, j2)) = SPR(T, (c2, j2), (c1, j1)).

(b) Now consider the case where (c′1, j
′
1) = (c1, j1). Then T1 = T ′. Since we know that SPR

operations on T with different cut and join edges result in distinct trees (by Theorem

6.1), we have

SPR(T, (c1, j1), (j2, c2)) 6= SPR(T, (c1, j1), (c2, j2)) = T ′′.

Similarly,

SPR(T, (c2, j2), (j1, c1)) 6= SPR(T, (c2, j2), (c1, j1)) = T ′′.

(c) Let X be the subtree of T such that dT (X,D) = 2 and X does not contain edge c1.

Then dT ′(C,D) = 2 and dT ′(C,X) = dT ′(D,X) = 3. Since the cut and join edges for

the second SPR operation must be at least distance three from c1 and j1 in T there is a

subtree of X which we denote X ′, such that dT ′′(C,X
′) = dT ′′(D,X

′) = 3. Suppose that

(c′1, j
′
1) = (j1, c1). Then dT1(C,X) = dT1(D,X) ≥ 4. Again, there exists a subtree X ′′ of

X such that dT2(C,X ′′) = dT2(D,X ′′) ≥ 4. Since (c1, c2, j1, j2) ∈ S(T ), the intersection

between X ′ and X ′′ is non-empty. Therefore T2 6= T ′′. The same argument applies if we

consider (c′1, j
′
1) = (j2, c2).

Therefore

T ′′ = SPR(T, (c1, j1), (c2, j2)) = SPR(T, (c2, j2), (c1, j1)),

but for all other choices of edges (c′1, c
′
2, j
′
1, j
′
2) ∈ S(T ), (c′1, c

′
2, j
′
1, j
′
2) 6= (c1, c2, j1, j2), we have

T ′′ 6= SPR(T, (c′1, j
′
1), (c′2, j

′
2)).

We have now established that there are no pairs of SPR operations that produce a first SPR neigh-

bour of a tree T . The only case where two different pairs of SPR operations produce the same tree

is when there is no path in T with the edges j2, c1, c2, j1 in the order listed, and

SPR(T, (c1, j1), (c2, j2)) = SPR(T, (c2, j2), (c1, j1)).
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We now count how many ways the edges j2, c1, c2 and j1 can appear in a path in a binary tree

T in the order given, with the four edges pairwise at least distance three apart. Let this quantity

be P (T ). We need to know the number of paths of all lengths greater than or equal to thirteen in

T , which is dependent on tree shape. However for a caterpillar and a balanced tree the number of

paths of any length is completely determined by the number of leaves of the tree.

Lemma 6.9. For n ≥ 4:

(i) A caterpillar with n leaves, has 4(n− k) paths of length k for 3 ≤ k ≤ n− 1.

(ii) Let

f(k) =

 3
(

2
k
2
−1
)(

n− 2
k
2

)
, k even;

2
k+1
2

(
n− 3

(
2

k−3
2

))
, k odd.

A balanced tree with n = 2i leaves (i ≥ 2) has f(k) paths of length k for 3 ≤ k ≤ 2i− 1, and a

balanced tree with n = 3 · 2i leaves (i ≥ 1) has f(k) paths of length k for 3 ≤ k ≤ 2(i+ 1).

Proof.

(i) A caterpillar T has a single path of n − 3 internal edges. Now pk−2(T ) is the number of

ways to select k − 2 of these internal edges so that they are adjacent. This is given by

pk−2(T ) = (n − 3) − (k − 2) + 1 = n − k. Then, because T is binary, Pk(T ) = 4(n − k), for

k ≥ 3.

(ii) If T is a balanced tree with n leaves, then it has c = n
2 cherries. Let P̄k(n) be the number of

paths of length k in a balanced tree with n leaves, and p̄k(n) be the number of internal paths

of length k in a balanced tree with n leaves. The number of internal paths of length k in T is

given by the number of paths of length k in T ′ where T ′ is the subtree induced by the internal

vertices of T . Since T ′ has n
2 leaves,

p̄k(n) = P̄k

(n
2

)
,

provided n ≥ 6. As in (i),

P̄k(n) = 4p̄k−2(n).

We have p̄2(n) = n+ c− 6 = 3
(
n
2 − 2

)
by Corollary 3.4, and so if k is even then

P̄k(n) = 3
(

2k−2
)( n

2
k
2
−1
− 2

)
= 3

(
2

k
2
−1
)(

n− 2
k
2

)
.

We have p̄1(n) = n− 3 by Lemma 2.1, so if k is odd then

P̄k(n) = 2k−1

(
n

2
k−1
2
−1
− 3

)
= 2

k+1
2

(
n− 3

(
2

k−3
2

))
.
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Now if n = 2i, the maximum path length in the tree is given by 2i − 1, and if n = 3 · 2i then the

maximum path length in the tree is given by 2(i+ 1).

Now that we know the number of paths in a caterpillar or balanced tree of any given length, we can

determine the size of P (T ). We are now ready to to prove Theorem 6.2.

Proof of Theorem 6.2

Proof. Suppose that T has a path P of length k, k ≥ 13. Fix the two pendant edges of P as j2 and

j1 so that j2 is the first edge in P , and j1 is the kth edge in P . All pairs of the edges j2, c1, c2, and

j1 must be distance three or more apart and in the order given. So dT (c1, j2) ≥ 3 and dT (c1, j1) ≥ 7.

If c1 is the mth edge in P then 5 ≤ m ≤ k−8. Now if c2 is the jth edge in P , then m+4 ≤ j ≤ k−4,

so there are (k− 4)− (m+ 4) + 1 = k−m− 7 possible choices for the location of c2. Finally, it does

not matter at which endpoint of P we begin counting. So the number of ways of arranging the four

edges on this path is

Rk = 2
k−8∑
m=5

(k −m− 7) = (k − 11)(k − 12).

(i) By Lemma 6.9, T has 4(n− k) paths of length k for k ≥ 3. Hence for a caterpillar,

P (T ) =
n−1∑
k=13

4(n− k)(k − 11)(k − 12)

=
1

3
n4 +O(n3).

We know by Lemma 6.7 and Lemma 6.8 that if we count the number of ways to choose the

edges (c1, c2, j1, j2) ∈ S(T ), then in the cases not counted by P (T ) we count every second

neighbour twice. For the cases that are counted by P (T ) we obtain no duplicate trees. So by

Lemma 6.5,

|N2
SPR(T )| = 1

2

(
2

3
n4 +O(n3)− P (T )

)
+ P (T )

=
1

2

(
2

3
n4 + P (T )

)
+O(n3)

=
1

2

(
2

3
n4 +

1

3
n4

)
+O(n3) =

1

2
n4 +O(n3).

(ii) Similarly for a balanced tree T with n = 3(2)i leaves (i ≥ 1), we can sum over even and odd
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path lengths (see Lemma 6.9) to obtain

P (T ) =
n−1∑
k=13

Pk(T )(k − 11)(k − 12)

=

log2(n
3

)+1∑
m=7

(
3
(
2m−1

)
(n− 2m) (2m− 11)(2m− 12)

)
+

log2(n
3

)+1∑
m=7

(
2m
(
n− 3

(
2m−2

))
(2m− 12)(2m− 13)

)
=

8

ln(2)2
n2 ln(n)2 +O(n2 ln(n))

= O(n2 ln(n)2) = O(n3).

If T is a balanced tree with n = 2i leaves (i ≥ 2), then we instead have

P (T ) =

log2(n
4

)+1∑
m=7

(
3
(
2m−1

)
(n− 2m) (2m− 11)(2m− 12)

)
+

log2(n
4

)+2∑
m=7

(
2m
(
n− 3

(
2m−2

))
(2m− 12)(2m− 13)

)
=

8

ln(2)2
n2 ln(n)2 +O(n2 ln(n)) = O(n3).

Therefore for any balanced tree T ,

|N2
SPR(T )| = 1

2

(
2

3
n4 + P (T )

)
+O(n3) =

1

3
n4 +O(n3).

This shows that the size of the second SPR neighbourhood of a tree cannot be uniquely determined

by the number of leaves of the tree. To show that the number of leaves and cherries is insufficient

we consider Theorem 6.3.

Proof of Theorem 6.3

Proof. Suppose that n = 3m and c = 3, where m ≥ 7. Consider the tree T1 of Type 1, with n leaves

and c cherries (see Fig. 9). Let Cxy be the caterpillar formed by the path between vertices x and y

in T1 and all of the edges incident to vertices on that path. Let a, b and d be the roots of the three

cherries of T1, such that dT1(a, b) = 2. Let c be the vertex in T1 that is not adjacent to a leaf. Both

of the caterpillars Cad and Cbd have n − 1 leaves. If we find P (Cad) and P (Cbd) then we will have
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found every way of selecting the edges c1, c2, j1 and j2 so that all four edges are on a path in the

order j2, c1, c2, j1. Eliminating double counting, we have

P (T1) = P (Cad) + P (Cbd)− P (Ccd) = 2P (Cad)− P (Ccd).

We do not consider the caterpillar Cab because it is too short to have any paths of length thirteen

or more. So by Theorem 6.2,

P (T1) =
2

3
(n− 1)4 − 1

3
(n− 2)4 +O(n3) =

1

3
n4 +O(n3).

Now let T2 be the tree of Type 2 with n leaves, c cherries and maximum path length 2m (see Fig.

10). Let a, b and d be the roots of the three cherries of T2, and let c be the vertex in T2 that is not

adjacent to a leaf. Then by the same process as above,

P (T2) = P (Cad) + P (Cbd) + P (Cab)− P (Cac)− P (Cbc)− P (Ccd) = 3P (Cad)− 3P (Cac).

Now Cad has 2m+ 1 leaves and Cac has m+ 2 leaves, so

P (T2) = (2m+ 1)4 − (m+ 2)4 +O(n3)

= (
2

3
n+ 1)4 − (

1

3
n+ 2)4 +O(n3)

=
5

27
n4 +O(n3).

Therefore |N2
SPR(T1)| = 1

2n
4 +O(n3) and |N2

SPR(T2)| = 23
54n

4 +O(n3).

Since T1 and T2 have the same number of leaves and cherries, it is clear that other properties of the

tree T would be required to get an exact formula for the highest order term of |N2
SPR(T )|.

7 Tree Bisection and Reconnection

A tree bisection and reconnection (TBR) operation on a tree T ∈ UB(n) is performed by:

1. Deleting an internal edge e = {x, y} in T , leaving two components X (containing the vertex

x) and Y (containing the vertex y).

2. Suppressing the vertices x and y to give new edges ex and ey respectively. We call the resulting

components X ′ and Y ′ respectively.

3. Inserting an edge f connecting a pair of edges fX in X ′ and fY in Y ′ to give a tree T ′ ∈ UB(n).
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Tree T ′ is a first TBR neighbour of T . A single TBR operation can be seen in Fig. 13. We call e the

cut edge of the TBR operation, and fX and fY are the join edges. Note that if either ex = fX or

ey = fY then the TBR operation is an SPR operation.

Consider a graph G in which each vertex represents a tree in UB(n) and there is an edge between the

vertices representing trees T1 and T2 if they are first TBR neighbours. The TBR distance between

T1 and T2, δTBR(T1, T2), is the distance between the two vertices representing T1 and T2 in G.

A

B

A

B

C

C D

D
E

e

T

X

C D

E

F

F

F EA B

Y

T �

f

f

ex ey

fX fY

Figure 13: Tree T ′ is a first TBR neighbour of T resulting from a TBR operation with cut edge e

and join edges fX and fY .

7.1 First Neighbourhood

Humphries and Wu (2013) showed that the size of the first TBR neighbourhood of a tree T ∈ UB(n)

(n ≥ 4) is given by

|NTBR(T )| = 4
∑
|A||B| − (4n− 2)(n− 3)

where the sum is over all non-trivial splits {A,B} of T . In Theorem 7.1 we take a slightly different

approach to calculating the size of the first neighbourhood by considering paths of different lengths

in T . We will then show in Theorem 7.2 that our result is equivalent to that of Humphries and Wu
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(2013).

Theorem 7.1. Let T ∈ UB(n) (n ≥ 3). Then

|NTBR(T )| = 2(n− 3)(2n− 7) +
M∑
k=5

(k − 4)Pk(T )

where M is the diameter of T and Pk(T ) is the number of paths of length k in T .

Proof. If n = 3 then T has no internal edges (by Lemma 2.1), so the result is trivially true. Now

assume that n ≥ 4. Let T ′ be a TBR neighbour of T . We consider the possible choices of join edges

fX and fY in relation to ex and ey. There are three cases to consider.

1. Let fX = ex and fY = ey. Then T ′ = T .

2. Suppose that either fX = ex or fY = ey, but not both. Then this is an SPR operation, so

there are 2(n− 3)(2n− 7) neighbours by Theorem 6.1.

3. Finally suppose that fX 6= ex and fY 6= ey. Then fX , fY ∈ E(T ), and e is an edge on the

(fX − fY )-path P in T . Suppose that e is adjacent to fX , then deleting edge e results in

a vertex of degree two incident to fX in X. Hence, after suppressing x in X to obtain X ′,

fX 6∈ E(X ′). However by definition fX ∈ E(X ′) so e is not adjacent to fX . Similarly e is not

adjacent to fY . Consider choosing the edges fX and fX so that dT (fX , fY ) ≥ 3. Let k be the

length of P . Since e is not equal to or adjacent to fX or fY , there are k − 4 possible choices

for e in the path P . We then sum over all possible paths of length five or greater in T .

Therefore, provided no two TBR operations produce the same tree, we have

|NTBR(T )| = 2(n− 3)(2n− 7) +

M∑
k=5

(k − 4)Pk(T )

where M is the maximum length of any such path (the diameter of T ).

We now show that given a particular TBR operation on T from Case 3, there is no other TBR

operation that yields the same neighbour.

Suppose we perform a TBR operation on T where fX 6= ex and fY 6= ey (Case 3), and call the

resulting tree T ′. Let TX and TY be the subtrees of T for which TX ⊆ X, TY ⊆ Y , dT (TX , e) =

dT (TY , e) = 1, fX 6∈ E(TX), and fY 6∈ E(TY ). Let T ′X and T ′Y be the maximal internal subtrees of

T incident to fX and fY respectively, for which dT (T ′X , e) = dT (T ′Y , e) = 1. We let A denote the
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pendant subtree incident to fX , and B denote the pendant subtree incident to fY . Note that any

of the subtrees TX , TY , A and B may consist of only a single vertex, while T ′X and T ′Y may contain

only one leaf and one internal vertex. Both T and T ′ can be seen in Fig. 14. All six of these labelled

subtrees are subtrees of T ′. We have dT ′(TX , TY ) ≥ 5 and dT ′(TX , T
′
X) = dT ′(TY , T

′
Y ) = 1.

e

A B

T

A B

T 0

ex ey

fX fY
f

TX
TX

T 0
X

T 0
X

TY
TY

T 0
Y T 0

Y

Figure 14: Trees T and T ′ where δTBR(T, T ′) = 1.

Now suppose we perform a TBR operation on T to obtain T ′′, with cut edge e′ and join edges

gX and gY . We will show that T ′′ 6= T ′ for any choice of the edges e′, gX , gY except e′ = e,

{gX , gY } = {fX , fY }, by considering the distances between subtrees.

First suppose that the cut edge e′ is in one of the six labelled subtrees. Then either T ′′ = T or the

corresponding subtree is not a subtree of T ′′. Hence T ′′ 6= T ′.

Suppose that e′ = fX . Then in the forest F obtained by deleting e′, dF (TX , TY ) = 3. If either gX or

gY lies on the path between TX and TY then dT ′′(TX , TY ) = 4, else dT ′′(TX , TY ) = 3. Hence T ′′ 6= T ′.

The same is true if e′ = fY .

Suppose that e′ is adjacent to e. If e′ is incident to either T ′X or T ′Y then in the forest F resulting

from the deletion of e′, dF (TX , TY ) = 2. Hence dT ′′(TX , TY ) ≤ 3, and T ′′ 6= T ′. If e′ is incident to

TX then dT ′′(TY , T
′
Y ) ≥ 2 and if e′ is incident to TY then dT ′′(TX , T

′
X) ≥ 2. Hence T ′′ 6= T ′.

Finally suppose that e′ = e. If either gX or gY is in one of the six labelled subtrees then that subtree

is not a subtree of T ′′, so T ′′ 6= T ′.
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Suppose that gX = ex or gY = ex. Then dT ′′(TX , T
′
X) = 2. Similarly if gX = ey or gY = ey then

dT ′′(TY , T
′
Y ) = 2. Hence neither of these cases give T ′′ = T ′.

Therefore T ′′ = T ′ implies that e′ = e and {gX , gY } = {fX , fY }. Hence

|NTBR(T )| = 2(n− 3)(2n− 7) +

M∑
k=5

(k − 4)Pk(T )

where M is the maximum length of any such path (the diameter of T ).

We now show that the result in Theorem 7.1 is equivalent to that of Humphries and Wu (2013).

Theorem 7.2. Let T ∈ UB(n) (n ≥ 4). Then

4
∑
|A||B| − (4n− 2)(n− 3) = 2(n− 3)(2n− 7) +

M∑
k=5

(k − 4)Pk(T )

where the first sum is over all non-trivial splits {A,B} of T and M is the diameter of T .

Proof. Let e be an internal edge of T , and let e1 and e2 be edges of T such that e lies on the

(e1−e2)-path in T and dT (e, e1), dT (e, e2) ≥ 1. Then dT (e1, e2) ≥ 3. The number of possible choices

of these edges is given by
∑M

k=5(k − 4)Pk(T ).

We now calculate the number of possible choices of the edges e, e1 and e2, by considering the splits

of T . Let S = {A,B} be the non-trivial split of T corresponding to edge e in T . Let TX and TY

be the subtrees incident to e, where e1 ∈ E(TX) and e2 ∈ E(TY ). We consider how many possible

choices there are for the edges e1 and e2. Note that |A| = |L(TX)| and |B| = |L(TY )|. The number of

edges in TX is 2|A|− 2, because there is one vertex (incident to e) of degree two. Since dT (e, e1) ≥ 1

there are only 2|A| − 4 possible choices of e1. The same is true of e2 and |B|. Hence

M∑
k=5

(k − 4)Pk(T )) =
∑

{A,B}∈Σ(T )

(2|A| − 4)(2|B| − 4).
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Therefore

(4
∑

{A,B}∈Σ(T )

(|A||B|)−(4n− 2)(n− 3))− (2(n− 3)(2n− 7) +
M∑
k=5

(k − 4)Pk(T ))

= 4
∑

{A,B}∈Σ(T )

(|A||B|)−
M∑
k=5

((k − 4)Pk(T ))− 8(n− 3)(n− 2)

= 4
∑

{A,B}∈Σ(T )

(|A||B|)−
∑

(A,B)∈Σ(T )

((2|A| − 4)(2|B| − 4))− 8(n− 3)(n− 2)

= 8
∑

{A,B}∈Σ(T )

(|A|+ |B| − 2)− 8(n− 3)(n− 2)

= 8(n− 3)(n− 2)− 8(n− 3)(n− 2)

= 0.

We now find explicit formulae for the size of the TBR neighbourhood of a caterpillar and both

types of balanced tree (where n = 2i or n = 3 · 2i, i ∈ Z+). Our expression for the size of the

neighbourhood of a caterpillar is the same as that obtained by Humphries and Wu (2013). They

also found an asymptotic expression for the size of the TBR neighbourhood of a ‘complete’ tree,

which is a more general structure than a balanced tree. Our expression for the size of the TBR

neighbourhood of a balanced tree in Corollary 7.3 agrees with their result.

Corollary 7.3. Let T ∈ UB(n).

(i) If T is a caterpillar (n ≥ 6), then

|NTBR(T )| = 2

3
n3 − 4n2 +

16

3
n+ 2.

(ii) If T is a balanced tree with n = 3 · 2i leaves (i ≥ 2), then

|NTBR(T )| = (4i− 20

3
)n2 + 22n− 6.

(iii) If T is a balanced tree with n = 2i leaves (i ≥ 3), then

|NTBR(T )| = (4i− 13)n2 + 22n− 6.

Proof.
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(i) For k ≥ 3, a caterpillar T has 4(n− k) paths of length k by Lemma 6.9. Hence

|NTBR(T )| = 2(n− 3)(2n− 7) +
n−1∑
k=5

(k − 4)Pk(T )

= 2(n− 3)(2n− 7) +

n−1∑
k=5

4(k − 4)(n− k)

= 2(n− 3)(2n− 7) +
2

3
(n− 3)(n− 4)(n− 5)

=
2

3
n3 − 4n2 +

16

3
n+ 2.

(ii) For a balanced tree T with n = 3(2)i leaves (i ≥ 2), we sum over all of the even and odd paths

in T . By Lemma 6.9 we obtain

|NTBR(T )| = 2(n− 3)(2n− 7) +
n−1∑
k=5

(k − 4)Pk(T )

= 2(n− 3)(2n− 7) +

log2(n
3

)+1∑
m=3

6(m− 2)(2m−1)(n− 2m)

+

log2(n
3

)+1∑
m=3

(2m− 5)2m(n− 3(2m−2))

= 4n2 log2(n)−
(

20

3
+ 4 log2(3)

)
n2 + 22n− 6

=

(
4i− 20

3

)
n2 + 22n− 6.

(iii) For a balanced tree T with n = (2)i leaves (i ≥ 3), we again sum over all of the even and odd

paths in T . By Lemma 6.9 we obtain

|NTBR(T )| = 2(n− 3)(2n− 7) +
n−1∑
k=5

(k − 4)Pk(T )

= 2(n− 3)(2n− 7) +

log2(n
4

)+1∑
m=3

6(m− 2)(2m−1)(n− 2m)

+

log2(n
4

)+2∑
m=3

(2m− 5)2m(n− 3(2m−2))

= 4n2 log2(n)− 13n2 + 22n− 6

= (4i− 13)n2 + 22n− 6.

8 Concluding Comments

In this thesis, we derived new results for the sizes of the first and second RF neighbourhoods of an

unrooted binary tree. We independently verified the expressions for the sizes of the first and second
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NNI neighbourhoods, originally calculated by Robinson (1971), and extended Robinson (1971)’s re-

sult for the third NNI neighbourhood of an unrooted binary tree. In addition, we calculated new

asymptotic results for the sizes of the kth RF and NNI neighbourhoods of a binary phylogenetic

tree. We also found an expression for the number of pairs of binary trees that share a first neighbour

under the RF and NNI metrics.

In our results for the size of the kth RF and NNI neighbourhoods of an unrooted binary tree T

(Theorems 3.1 and 4.1), the term of order nk−1 contains a parameter dependent on T and k. We

have calculated bounds on the value of this parameter; for RF, −5k2+7k
4 ≤ CT,k ≤ 4k2 − 7k, and

for NNI, −3k(k+1)
2 ≤ DT,k ≤ 3k(k − 2). These bounds are not strict, so it would be interesting to

investigate ways of improving them. A natural question is whether or not both positive and negative

values of CT,k and DT,k are possible for any given value of k, and if so, can we find examples of such

trees.

We independently verified the expression for the size of the first SPR neighbourhood, originally

calculated by Allen and Steel (2001), and showed that in contrast to RF and NNI, the size of the

second SPR neighbourhood is not solely dependent on the number of leaves and cherries of the tree.

Humphries and Wu (2013) showed that for TBR even the first neighbourhood depends on variables

other than the number of leaves and cherries. We calculated an expression for the size of the first

TBR neighbourhood, that is equivalent to that of Humphries and Wu (2013).

In this thesis we have considered neighbourhoods of unrooted binary trees under the four metrics;

RF, NNI, SPR and TBR. There are, however, many other metrics that can be used to compare trees,

that would be interesting to investigate. For example, Moulton and Wu (2015) recently defined a new

metric dp, similar to the TBR metric. (The same metric was also independently defined by Kelk and

Fischer (2014).) Using the result of Humphries and Wu (2013) they calculated the size of the first

neighbourhood of an unrooted binary tree under this metric. Given the difficulty of calculating the

size of the second SPR neighbourhood it is possible that similar problems would arise in calculating

the size of the second neighbourhood under TBR or dp. However, this would be interesting to

investigate, and it may be possible to find the size of the second TBR or dp neighbourhood of a

particular type of tree, such as a caterpillar or a balanced tree.
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