24 research outputs found

    Hallucinating dense optical flow from sparse lidar for autonomous vehicles

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we propose a novel approach to estimate dense optical flow from sparse lidar data acquired on an autonomous vehicle. This is intended to be used as a drop-in replacement of any image-based optical flow system when images are not reliable due to e.g. adverse weather conditions or at night. In order to infer high resolution 2D flows from discrete range data we devise a three-block architecture of multiscale filters that combines multiple intermediate objectives, both in the lidar and image domain. To train this network we introduce a dataset with approximately 20K lidar samples of the Kitti dataset which we have augmented with a pseudo ground-truth image-based optical flow computed using FlowNet2. We demonstrate the effectiveness of our approach on Kitti, and show that despite using the low-resolution and sparse measurements of the lidar, we can regress dense optical flow maps which are at par with those estimated with image-based methods.Peer ReviewedPostprint (author's final draft

    Hallucinating Dense Optical Flow from Sparse Lidar for Autonomous Vehicles

    Get PDF
    In this paper we propose a novel approach to estimate dense optical flow from sparse lidar data acquired on an autonomous vehicle. This is intended to be used as a drop-in replacement of any image-based optical flow system when images are not reliable due to e.g. adverse weather conditions or at night. In order to infer high resolution 2D flows from discrete range data we devise a three-block architecture of multiscale filters that combines multiple intermediate objectives, both in the lidar and image domain. To train this network we introduce a dataset with approximately 20K lidar samples of the Kitti dataset which we have augmented with a pseudo ground-truth image-based optical flow computed using FlowNet2. We demonstrate the effectiveness of our approach on Kitti, and show that despite using the low-resolution and sparse measurements of the lidar, we can regress dense optical flow maps which are at par with those estimated with image-based methods.Comment: Accepted in ICPR 2018. More information: www.victorvaquero.m

    Lidar-based scene understanding for autonomous driving using deep learning

    Get PDF
    With over 1.35 million fatalities related to traffic accidents worldwide, autonomous driving was foreseen at the beginning of this century as a feasible solution to improve security in our roads. Nevertheless, it is meant to disrupt our transportation paradigm, allowing to reduce congestion, pollution, and costs, while increasing the accessibility, efficiency, and reliability of the transportation for both people and goods. Although some advances have gradually been transferred into commercial vehicles in the way of Advanced Driving Assistance Systems (ADAS) such as adaptive cruise control, blind spot detection or automatic parking, however, the technology is far from mature. A full understanding of the scene is actually needed so that allowing the vehicles to be aware of the surroundings, knowing the existing elements of the scene, as well as their motion, intentions and interactions. In this PhD dissertation, we explore new approaches for understanding driving scenes from 3D LiDAR point clouds by using Deep Learning methods. To this end, in Part I we analyze the scene from a static perspective using independent frames to detect the neighboring vehicles. Next, in Part II we develop new ways for understanding the dynamics of the scene. Finally, in Part III we apply all the developed methods to accomplish higher level challenges such as segmenting moving obstacles while obtaining their rigid motion vector over the ground. More specifically, in Chapter 2 we develop a 3D vehicle detection pipeline based on a multi-branch deep-learning architecture and propose a Front (FR-V) and a Bird’s Eye view (BE-V) as 2D representations of the 3D point cloud to serve as input for training our models. Later on, in Chapter 3 we apply and further test this method on two real uses-cases, for pre-filtering moving obstacles while creating maps to better localize ourselves on subsequent days, as well as for vehicle tracking. From the dynamic perspective, in Chapter 4 we learn from the 3D point cloud a novel dynamic feature that resembles optical flow from RGB images. For that, we develop a new approach to leverage RGB optical flow as pseudo ground truth for training purposes but allowing the use of only 3D LiDAR data at inference time. Additionally, in Chapter 5 we explore the benefits of combining classification and regression learning problems to face the optical flow estimation task in a joint coarse-and-fine manner. Lastly, in Chapter 6 we gather the previous methods and demonstrate that with these independent tasks we can guide the learning of higher challenging problems such as segmentation and motion estimation of moving vehicles from our own moving perspective.Con más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectivaAmb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva

    Motion Segmentation for Autonomous Robots Using 3D Point Cloud Data

    Get PDF
    Achieving robot autonomy is an extremely challenging task and it starts with developing algorithms that help the robot understand how humans perceive the environment around them. Once the robot understands how to make sense of its environment, it is easy to make efficient decisions about safe movement. It is hard for robots to perform tasks that come naturally to humans like understanding signboards, classifying traffic lights, planning path around dynamic obstacles, etc. In this work, we take up one such challenge of motion segmentation using Light Detection and Ranging (LiDAR) point clouds. Motion segmentation is the task of classifying a point as either moving or static. As the ego-vehicle moves along the road, it needs to detect moving cars with very high certainty as they are the areas of interest which provide cues to the ego-vehicle to plan it\u27s motion. Motion segmentation algorithms segregate moving cars from static cars to give more importance to dynamic obstacles. In contrast to the usual LiDAR scan representations like range images and regular grid, this work uses a modern representation of LiDAR scans using permutohedral lattices. This representation gives ease of representing unstructured LiDAR points in an efficient lattice structure. We propose a machine learning approach to perform motion segmentation. The network architecture takes in two sequential point clouds and performs convolutions on them to estimate if 3D points from the first point cloud are moving or static. Using two temporal point clouds help the network in learning what features constitute motion. We have trained and tested our learning algorithm on the FlyingThings3D dataset and a modified KITTI dataset with simulated motion

    DeepTIO: a deep thermal-inertial odometry with visual hallucination

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordVisual odometry shows excellent performance in a wide range of environments. However, in visually-denied scenarios (e.g. heavy smoke or darkness), pose estimates degrade or even fail. Thermal cameras are commonly used for perception and inspection when the environment has low visibility. However, their use in odometry estimation is hampered by the lack of robust visual features. In part, this is as a result of the sensor measuring the ambient temperature profile rather than scene appearance and geometry. To overcome this issue, we propose a Deep Neural Network model for thermal-inertial odometry (DeepTIO) by incorporating a visual hallucination network to provide the thermal network with complementary information. The hallucination network is taught to predict fake visual features from thermal images by using Huber loss. We also employ selective fusion to attentively fuse the features from three different modalities, i.e thermal, hallucination, and inertial features. Extensive experiments are performed in hand-held and mobile robot data in benign and smoke-filled environments, showing the efficacy of the proposed model

    Enhancing RGB-D SLAM Using Deep Learning

    Get PDF

    Combining Features and Semantics for Low-level Computer Vision

    Get PDF
    Visual perception of depth and motion plays a significant role in understanding and navigating the environment. Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving. The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information. Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions. Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects. Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem Verständnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die Schätzung der Bewegung von Videokameras sind von größter Bedeutung für Anwendungen, wie das autonome Fahren. Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfür sind reflektierende und texturlose Oberflächen oder große Bewegungen, bei denen herkömmliche lokale Methoden häufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige Lichtverhältnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern. Für die binokulare Stereo Schätzung schlagen wir zuallererst vor zusammenhängende Bereiche mit objektklassen-spezifischen Disparitäts Vorschlägen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spärlichen Disparitätsschätzung und semantischen Segmentierung des Bildes erhalten. Die Disparitäts Vorschläge kodieren die Tatsache, dass die Gegenstände bestimmter Kategorien nicht willkürlich geformt sind, sondern typischerweise regelmäßige Strukturen aufweisen. Wir integrieren sie für die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen. Zweitens nutzen wir für die 3D-Rekonstruktion die Tatsache, dass mit der Größe der rekonstruierten Fläche auch die Wahrscheinlichkeit steigt, Objekte von ähnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders für Szenen im Freien, in denen Gebäude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber ähnlichkeit in der Form aufweisen. Wir nutzen diese ähnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, während fehlende Flächen vervollständigt werden, da Objekte ähnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstädtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen Abhängigkeiten zwischen Objekten. Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, präsentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusätzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. Für das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm für eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes für das Feature Matching

    Visual slam in dynamic environments

    Get PDF
    El problema de localización y construcción visual simultánea de mapas (visual SLAM por sus siglas en inglés Simultaneous Localization and Mapping) consiste en localizar una cámara en un mapa que se construye de manera online. Esta tecnología permite la localización de robots en entornos desconocidos y la creación de un mapa de la zona con los sensores que lleva incorporados, es decir, sin contar con ninguna infraestructura externa. A diferencia de los enfoques de odometría en los cuales el movimiento incremental es integrado en el tiempo, un mapa permite que el sensor se localice continuamente en el mismo entorno sin acumular deriva.Asumir que la escena observada es estática es común en los algoritmos de SLAM visual. Aunque la suposición estática es válida para algunas aplicaciones, limita su utilidad en escenas concurridas del mundo real para la conducción autónoma, los robots de servicio o realidad aumentada y virtual entre otros. La detección y el estudio de objetos dinámicos es un requisito para estimar con precisión la posición del sensor y construir mapas estables, útiles para aplicaciones robóticas que operan a largo plazo.Las contribuciones principales de esta tesis son tres: 1. Somos capaces de detectar objetos dinámicos con la ayuda del uso de la segmentación semántica proveniente del aprendizaje profundo y el uso de enfoques de geometría multivisión. Esto nos permite lograr una precisión en la estimación de la trayectoria de la cámara en escenas altamente dinámicas comparable a la que se logra en entornos estáticos, así como construir mapas en 3D que contienen sólo la estructura del entorno estático y estable. 2. Logramos alucinar con imágenes realistas la estructura estática de la escena detrás de los objetos dinámicos. Esto nos permite ofrecer mapas completos con una representación plausible de la escena sin discontinuidades o vacíos ocasionados por las oclusiones de los objetos dinámicos. El reconocimiento visual de lugares también se ve impulsado por estos avances en el procesamiento de imágenes. 3. Desarrollamos un marco conjunto tanto para resolver el problema de SLAM como el seguimiento de múltiples objetos con el fin de obtener un mapa espacio-temporal con información de la trayectoria del sensor y de los alrededores. La comprensión de los objetos dinámicos circundantes es de crucial importancia para los nuevos requisitos de las aplicaciones emergentes de realidad aumentada/virtual o de la navegación autónoma. Estas tres contribuciones hacen avanzar el estado del arte en SLAM visual. Como un producto secundario de nuestra investigación y para el beneficio de la comunidad científica, hemos liberado el código que implementa las soluciones propuestas.<br /
    corecore