9 research outputs found

    Contents

    Get PDF

    On colorful edge triples in edge-colored complete graphs

    Get PDF
    An edge-coloring of the complete graph Kn we call F-caring if it leaves no F-subgraph of Kn monochromatic and at the same time every subset of |V(F)| vertices contains in it at least one completely multicolored version of F. For the first two meaningful cases, when F=K1,3 and F=P4 we determine for infinitely many n the minimum number of colors needed for an F-caring edge-coloring of Kn. An explicit family of 2⌈log2n⌉ 3-edge-colorings of Kn so that every quadruple of its vertices contains a totally multicolored P4 in at least one of them is also presented. Investigating related Ramsey-type problems we also show that the Shannon (OR-)capacity of the Grötzsch graph is strictly larger than that of the five length cycle

    Online choosability of graphs

    Get PDF
    We study several problems in graph coloring. In list coloring, each vertex vv has a set L(v)L(v) of available colors and must be assigned a color from this set so that adjacent vertices receive distinct colors; such a coloring is an LL-coloring, and we then say that GG is LL-colorable. Given a graph GG and a function f:V(G)→Nf:V(G)\to\N, we say that GG is ff-choosable if GG is LL-colorable for any list assignment LL such that ∣L(v)âˆŁâ‰„f(v)|L(v)|\ge f(v) for all v∈V(G)v\in V(G). When f(v)=kf(v)=k for all vv and GG is ff-choosable, we say that GG is kk-choosable. The least kk such that GG is kk-choosable is the choice number, denoted ch⁥(G)\ch(G). We focus on an online version of this problem, which is modeled by the Lister/Painter game. The game is played on a graph in which every vertex has a positive number of tokens. In each round, Lister marks a nonempty subset MM of uncolored vertices, removing one token at each marked vertex. Painter responds by selecting a subset DD of MM that forms an independent set in GG. A color distinct from those used on previous rounds is given to all vertices in DD. Lister wins by marking a vertex that has no tokens, and Painter wins by coloring all vertices in GG. When Painter has a winning strategy, we say that GG is ff-paintable. If f(v)=kf(v)=k for all vv and GG is ff-paintable, then we say that GG is kk-paintable. The least kk such that GG is kk-paintable is the paint number, denoted \pa(G). In Chapter 2, we develop useful tools for studying the Lister/Painter game. We study the paintability of graph joins and of complete bipartite graphs. In particular, \pa(K_{k,r})\le k if and only if r<kkr<k^k. In Chapter 3, we study the Lister/Painter game with the added restriction that the proper coloring produced by Painter must also satisfy some property P\mathcal{P}. The main result of Chapter 3 provides a general method to give a winning strategy for Painter when a strategy for the list coloring problem is already known. One example of a property P\mathcal{P} is that of having an rr-dynamic coloring, where a proper coloring is rr-dynamic if each vertex vv has at least min⁥{ r,d(v) }\min\set{r,d(v)} distinct colors in its neighborhood. For any graph GG and any rr, we give upper bounds on how many tokens are necessary for Painter to produce an rr-dynamic coloring of GG. The upper bounds are in terms of rr and the genus of a surface on which GG embeds. In Chapter 4, we study a version of the Lister/Painter game in which Painter must assign mm colors to each vertex so that adjacent vertices receive disjoint color sets. We characterize the graphs in which 2m2m tokens is sufficient to produce such a coloring. We strengthen Brooks' Theorem as well as Thomassen's result that planar graphs are 5-choosable. In Chapter 5, we study sum-paintability. The sum-paint number of a graph GG, denoted \spa(G), is the least ∑f(v)\sum f(v) over all ff such that GG is ff-paintable. We prove the easy upper bound: \spa(G)\le|V(G)|+|E(G)|. When \spa(G)=|V(G)|+|E(G)|, we say that GG is sp-greedy. We determine the sum-paintability of generalized theta-graphs. The generalized theta-graph Θℓ1,
,ℓk\Theta_{\ell_1,\dots,\ell_k} consists of two vertices joined by kk paths of lengths \VEC \ell1k. We conjecture that outerplanar graphs are sp-greedy and prove several partial results toward this conjecture. In Chapter 6, we study what happens when Painter is allowed to allocate tokens as Lister marks vertices. The slow-coloring game is played by Lister and Painter on a graph GG. Lister marks a nonempty set of uncolored vertices and scores 1 point for each marked vertex. Painter colors all vertices in an independent subset of the marked vertices with a color distinct from those used previously in the game. The game ends when all vertices have been colored. The sum-color cost of a graph GG, denoted \scc(G), is the maximum score Lister can guarantee in the slow-coloring game on GG. We prove several general lower and upper bounds for \scc(G). In more detail, we study trees and prove sharp upper and lower bounds over all trees with nn vertices. We give a formula to determine \scc(G) exactly when α(G)≀2\alpha(G)\le2. Separately, we prove that \scc(G)=\spa(G) if and only if GG is a disjoint union of cliques. Lastly, we give lower and upper bounds on \scc(K_{r,s})

    Hall ratio of the Mycielski graphs

    Get PDF
    AbstractLet n(G) denote the number of vertices of a graph G and let α(G) be the independence number of G, the maximum number of pairwise nonadjacent vertices of G. The Hall ratio of a graph G is defined byρ(G)=maxn(H)α(H):H⊆G,where the maximum is taken over all induced subgraphs H of G. It is obvious that every graph G satisfies ω(G)⩜ρ(G)⩜χ(G) where ω and χ denote the clique number and the chromatic number of G, respectively. We show that the interval [ω(G),ρ(G)] can be arbitrary large by estimating the Hall ratio of the Mycielski graphs
    corecore