22 research outputs found

    Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    Get PDF
    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously

    The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Investigating the storage capacity of a network with cell assemblies

    Get PDF
    Cell assemblies are co-operating groups of neurons believed to exist in the brain. Their existence was proposed by the neuropsychologist D.O. Hebb who also formulated a mechanism by which they could form, now known as Hebbian learning. Evidence for the existence of Hebbian learning and cell assemblies in the brain is accumulating as investigation tools improve. Researchers have also simulated cell assemblies as neural networks in computers. This thesis describes simulations of networks of cell assemblies. The feasibility of simulated cell assemblies that possess all the predicted properties of biological cell assemblies is established. Cell assemblies can be coupled together with weighted connections to form hierarchies in which a group of basic assemblies, termed primitives are connected in such a way that they form a compound cell assembly. The component assemblies of these hierarchies can be ignited independently, i.e. they are activated due to signals being passed entirely within the network, but if a sufficient number of them. are activated, they co-operate to ignite the remaining primitives in the compound assembly. Various experiments are described in which networks of simulated cell assemblies are subject to external activation involving cells in those assemblies being stimulated artificially to a high level. These cells then fire, i.e. produce a spike of activity analogous to the spiking of biological neurons, and in this way pass their activity to other cells. Connections are established, by learning in some experiments and set artificially in others, between cells within primitives and in different ones, and these connections allow activity to pass from one primitive to another. In this way, activating one or more primitives may cause others to ignite. Experiments are described in which spontaneous activation of cells aids recruitment of uncommitted cells to a neighbouring assembly. The strong relationship between cell assemblies and Hopfield nets is described. A network of simulated cells can support different numbers of assemblies depending on the complexity of those assemblies. Assemblies are classified in terms of how many primitives are present in each compound assembly and the minimum number needed to complete it. A 2-3 assembly contains 3 primitives, any 2 of which will complete it. A network of N cells can hold on the order of N 2-3 assemblies, and an architecture is proposed that contains O(N2) 3-4 assemblies. Experiments are described that show the number of connections emanating from each cell must be scaled up linearly as the number of primitives in any network .increases in order to maintain the same mean number of connections between each primitive. Restricting each cell to a maximum number of connections leads, to severe loss of performance as the size of the network increases. It is shown that the architecture can be duplicated with Hopfield nets, but that there are severe restrictions on the carrying capacity of either a hierarchy of cell assemblies or a Hopfield net storing 3-4 patterns, and that the promise of N2 patterns is largely illusory. When the number of connections from each cell is fixed as the number of primitives is increased, only O(N) cell assemblies can be stored

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Investigating the storage capacity of a network with cell assemblies

    Get PDF
    Cell assemblies are co-operating groups of neurons believed to exist in the brain. Their existence was proposed by the neuropsychologist D.O. Hebb who also formulated a mechanism by which they could form, now known as Hebbian learning. Evidence for the existence of Hebbian learning and cell assemblies in the brain is accumulating as investigation tools improve. Researchers have also simulated cell assemblies as neural networks in computers. This thesis describes simulations of networks of cell assemblies. The feasibility of simulated cell assemblies that possess all the predicted properties of biological cell assemblies is established. Cell assemblies can be coupled together with weighted connections to form hierarchies in which a group of basic assemblies, termed primitives are connected in such a way that they form a compound cell assembly. The component assemblies of these hierarchies can be ignited independently, i.e. they are activated due to signals being passed entirely within the network, but if a sufficient number of them. are activated, they co-operate to ignite the remaining primitives in the compound assembly. Various experiments are described in which networks of simulated cell assemblies are subject to external activation involving cells in those assemblies being stimulated artificially to a high level. These cells then fire, i.e. produce a spike of activity analogous to the spiking of biological neurons, and in this way pass their activity to other cells. Connections are established, by learning in some experiments and set artificially in others, between cells within primitives and in different ones, and these connections allow activity to pass from one primitive to another. In this way, activating one or more primitives may cause others to ignite. Experiments are described in which spontaneous activation of cells aids recruitment of uncommitted cells to a neighbouring assembly. The strong relationship between cell assemblies and Hopfield nets is described. A network of simulated cells can support different numbers of assemblies depending on the complexity of those assemblies. Assemblies are classified in terms of how many primitives are present in each compound assembly and the minimum number needed to complete it. A 2-3 assembly contains 3 primitives, any 2 of which will complete it. A network of N cells can hold on the order of N 2-3 assemblies, and an architecture is proposed that contains O(N2) 3-4 assemblies. Experiments are described that show the number of connections emanating from each cell must be scaled up linearly as the number of primitives in any network .increases in order to maintain the same mean number of connections between each primitive. Restricting each cell to a maximum number of connections leads, to severe loss of performance as the size of the network increases. It is shown that the architecture can be duplicated with Hopfield nets, but that there are severe restrictions on the carrying capacity of either a hierarchy of cell assemblies or a Hopfield net storing 3-4 patterns, and that the promise of N2 patterns is largely illusory. When the number of connections from each cell is fixed as the number of primitives is increased, only O(N) cell assemblies can be stored.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Book of abstracts

    Get PDF

    PSA 2016

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2016

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Hairy neuron convergence theorems without the precision of timing

    No full text
    corecore