31,691 research outputs found

    Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation

    Get PDF
    A post-tetanic membrane hyperpolarization following repetitive neuronal activity is a commonly observed phenomenon in the isolated frog spinal cord as well as in neurons of other nervous tissues. We have now used double-barrelled Na+- and K+-ion-sensitive microelectrodes to measure the intracellular Na+- and K+-concentrations and also the extracellular K+-concentration of lumbar spinal motoneurons during and after repetitive stimulation of a dorsal root. The results show that the posttetanic membrane hyperpolarization occurred at a time when the intracellular [Na+] reached its maximal value, intracellular [K+] had its lowest level and extracellular [K+] was still elevated. The hyperpolarization was blocked by ouabain and reduced by Li+. These data support the previous suggestion that an electrogenic Na+/K+ pump mode may be the mechanism underlying the post-tetanic membrane hyperpolarization

    Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery

    Get PDF
    Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered

    Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields

    Get PDF
    In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism

    Understanding the magnetic resonance spectrum of nitrogen vacancy centers in an ensemble of randomly-oriented nanodiamonds

    Full text link
    Nanodiamonds containing nitrogen vacancy (NV-) centers show promise for a number of emerging applications including targeted in vivo imaging and generating nuclear spin hyperpolarization for enhanced NMR spectroscopy and imaging. Here, we develop a detailed understanding of the magnetic resonance behavior of NV- centers in an ensemble of nanodiamonds with random crystal orientations. Two-dimensional optically detected magnetic resonance spectroscopy reveals the distribution of energy levels, spin populations, and transition probabilities that give rise to a complex spectrum. We identify overtone transitions that are inherently insensitive to crystal orientation and give well-defined transition frequencies that access the entire nanodiamond ensemble. These transitions may be harnessed for high-resolution imaging and generation of nuclear spin hyperpolarization. The data are well described by numerical simulations from the zero- to high-field regimes, including the intermediate regime of maximum complexity. We evaluate the prospects of nanodiamond ensembles specifically for nuclear hyperpolarization and show that frequency-swept dynamic nuclear polarization may transfer a large amount of the NV- center's hyperpolarization to nuclear spins by sweeping over a small region of its spectrum.Comment: 6 pages, 5 figure

    Modulation of endothelial cell KCa3.1 Channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries

    Get PDF
    Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways

    Calcium activates SK channels in the intact human lens.

    Get PDF
    corecore