1,240 research outputs found

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    GTTC Future of Ground Testing Meta-Analysis of 20 Documents

    Get PDF
    National research, development, test, and evaluation ground testing capabilities in the United States are at risk. There is a lack of vision and consensus on what is and will be needed, contributing to a significant threat that ground test capabilities may not be able to meet the national security and industrial needs of the future. To support future decisions, the AIAA Ground Testing Technical Committees (GTTC) Future of Ground Test (FoGT) Working Group selected and reviewed 20 seminal documents related to the application and direction of ground testing. Each document was reviewed, with the content main points collected and organized into sections in the form of a gap analysis current state, future state, major challenges/gaps, and recommendations. This paper includes key findings and selected commentary by an editing team

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or

    Advanced Simulation and Computing FY12-13 Implementation Plan, Volume 2, Revision 0.5

    Full text link
    corecore