14 research outputs found

    Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes

    Get PDF

    REVISITING THE CONCEPT OF LEVEL OF DETAIL IN 3D CITY MODELLING

    Get PDF
    This review paper discusses the concept of level of detail in 3D city modelling, and is a first step towards a foundation for a standardised definition. As an introduction, a few level of detail specifications, outlooks and approaches are given from the industry. The paper analyses the general uncertainties and shortcomings around the concept of level of detail in 3D city modelling such as ordinality and inconsistencies, and identifies factors that constitute a specific level of detail. The paper proposes a framework for a new consistent LoD definition which would consolidate present and future LoD paradigms, gives an example of an LoD specification, discusses open questions such as the contexts for which 3D city models are used in practice, and gives prospects for a future quantification and sorting of levels of detail

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques

    HLODs for faster display of large static and dynamic environments

    No full text
    We present an algorithm and a system for accelerated display of massive static and dynamic environments using hierarchical simplification. Given a geometric dataset, we represent it using a scene graph and compute levels of detail (LODs) for each node in the graph. We augment the LODs with automatically-generated hierarchical levels of detail (HLODs) that serve as higher fidelity drastic simplifications of entire branches of the scene graph. We extend the algorithm to handle a class of dynamic environments by incrementally recomputing a subset of the HLODs on the fly when objects move. We leverage the properties of the HLOD scene graph in our system, using them to render the environment in a specified image quality or target frame rate mode. The resulting algorithms have been implemented as part of a system named SHAPE. We demonstrate its performance on complex CAD environments composed of tens of millions of polygons. Overall, SHAPE is able to achieve considerable speedups in frame rate with little loss in image quality

    Space-optimized texture atlases

    Get PDF
    Texture atlas parameterization provides an effective way to map a variety of colour and data attributes from 2D texture domains onto polygonal surface meshes. Most of the existing literature focus on how to build seamless texture atlases for continuous photometric detail, but little e ort has been devoted to devise e cient techniques for encoding self-repeating, uncontinuous signals such as building facades. We present a perception-based scheme for generating space-optimized texture atlases speci cally designed for intentionally non-bijective parameterizations. Our scheme combines within-chart tiling support with intelligent packing and perceptual measures for assigning texture space in accordance to the amount of information contents of the image and on its saliency. We demonstrate our optimization scheme in the context of real-time navigation through a gigatexel urban model of an European city. Our scheme achieves signi cant compression ratios and speed-up factors with visually indistinguishable results. We developed a technique that generates space-optimized texture atlases for the particular encoding of uncontinuous signals projected onto geometry. The scene is partitioned using a texture atlas tree that contains for each node a texture atlas. The leaf nodes of the tree contain scene geometry. The level of detail is controlled by traversing the tree and selecting the appropriate texture atlas for a given viewer position and orientation. In a preprocessing step, textures associated to each texture atlas node of the tree are packed. Textures are resized according to a given user-de ned texel size and the size of the geometry that are projected onto. We also use perceptual measures to assign texture space in accordance to image detail. We also explore different techniques for supporting texture wrapping of uncontinuous signals, which involved the development of e cient techniques for compressing texture coordinates via the GPU. Our approach supports texture ltering and DXTC compression without noticeable artifacts. We have implemented a prototype version of our space-optimized texture atlases technique and used it to render the 3D city model of Barcelona achieving interactive rendering frame rates. The whole model was composed by more than three million triangles and contained more than twenty thousand different textures representing the building facades with an average original resolution of 512 pixels per texture. Our scheme achieves up 100:1 compression ratios and speed-up factors of 20 with visually indistinguishable results

    Studio e realizzazione di moduli software per la visualizzazione e l'archiviazione di modelli tridimensionali ad elevata complessità

    Get PDF
    Nel campo della realtà virtuale e della computer grafica spesso si ha a che fare con modelli tridimensionali di grandi dimensioni. Nonostante i miglioramenti dei dispositivi hardware avvenuti in questi ultimi anni, quando l'applicazione utilizza modelli composti da milioni di poligoni, non sempre è possibile raggiungere un sufficiente grado di interattività. A tale scopo sono state sviluppate numerose tecniche che ottimizzano e velocizzano il processo di visualizzazione. In particolare, il lavoro svolto riguarda una tecnica di semplificazione di mesh poligonali ed il suo impiego per la generazione di livelli di dettaglio (LOD). Inoltre è stata implementata una tecnica di compressione di mesh di triangoli per una gestione ed archiviazione più efficiente di modelli di grandi dimensioni

    High-Quality Simplification and Repair of Polygonal Models

    Get PDF
    Because of the rapid evolution of 3D acquisition and modelling methods, highly complex and detailed polygonal models with constantly increasing polygon count are used as three-dimensional geometric representations of objects in computer graphics and engineering applications. The fact that this particular representation is arguably the most widespread one is due to its simplicity, flexibility and rendering support by 3D graphics hardware. Polygonal models are used for rendering of objects in a broad range of disciplines like medical imaging, scientific visualization, computer aided design, film industry, etc. The handling of huge scenes composed of these high-resolution models rapidly approaches the computational capabilities of any graphics accelerator. In order to be able to cope with the complexity and to build level-of-detail representations, concentrated efforts were dedicated in the recent years to the development of new mesh simplification methods that produce high-quality approximations of complex models by reducing the number of polygons used in the surface while keeping the overall shape, volume and boundaries preserved as much as possible. Many well-established methods and applications require "well-behaved" models as input. Degenerate or incorectly oriented faces, T-joints, cracks and holes are just a few of the possible degenaracies that are often disallowed by various algorithms. Unfortunately, it is all too common to find polygonal models that contain, due to incorrect modelling or acquisition, such artefacts. Applications that may require "clean" models include finite element analysis, surface smoothing, model simplification, stereo lithography. Mesh repair is the task of removing artefacts from a polygonal model in order to produce an output model that is suitable for further processing by methods and applications that have certain quality requirements on their input. This thesis introduces a set of new algorithms that address several particular aspects of mesh repair and mesh simplification. One of the two mesh repair methods is dealing with the inconsistency of normal orientation, while another one, removes the inconsistency of vertex connectivity. Of the three mesh simplification approaches presented here, the first one attempts to simplify polygonal models with the highest possible quality, the second, applies the developed technique to out-of-core simplification, and the third, prevents self-intersections of the model surface that can occur during mesh simplification

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described
    corecore