
UNIVERSITAT POLITÈCNICA DE CATALUNYA
DEPARTAMENT DE LLENGUATGES I SISTEMES INFORMÀTICS
MASTER IN COMPUTING

MASTER THESIS

SPACE-OPTIMIZED TEXTURE ATLASES

STUDENT: JONÀS MARTÍNEZ BAYONA
DIRECTOR: CARLOS ANDÚJAR GRAN
DATE: 8/09/2009

Acknowledgments

We would like to thank TeleAtlas for providing the tridimensional model and facade textures of
Barcelona and the Institut Cartogrà�c de Catalunya for the aerial photos.

Contents

I Abstract 7

II Introduction 8

III State of the art 10

1 Image comparison metrics 10

1.1 Spatial domain metrics . 10
1.1.1 Mean squared error . 10
1.1.2 Normalized mean squared error . 11
1.1.3 Template matching . 11

1.2 Spatial-frequency domain metrics . 12
1.2.1 Contrast sensitivity function . 12
1.2.2 Mannos-Sakrison's �lter . 12
1.2.3 Daly's �lter . 13
1.2.4 Ahumada's �lter . 13

1.3 Perceptually-based metrics . 13
1.3.1 The human visual system . 14
1.3.2 Visible di�erences predictor . 14

1.4 Tone mapping metrics . 15
1.4.1 Single scale tone reproduction operators . 15
1.4.2 Multi scale tone reproduction operators . 16

2 Image compression 17

2.1 Lossy compression methods . 17
2.2 Lossless compression methods . 18
2.3 Compression of images with repetitive patterns . 19

3 Texture atlases 20

4 Terrain and urban visualization 22

4.1 Geometry LOD techniques . 22
4.2 Texture LOD techniques . 22

5 Texture atlas packing 24

5.1 Two-dimensional models . 24
5.2 Approximation algorithms . 25

5.2.1 Strip packing . 25
5.2.2 Bin packing . 25
5.2.3 Metaheuristics . 25

5.3 Exact algorithms . 26

IV Space-optimized texture atlases 27

6 Overview of the technique 27

6.1 Creation of texture atlases . 27
6.2 Real-time visualization . 28

1

7 Creating optimized texture atlases 29

7.1 Image downsampling to match viewing conditions . 29
7.2 Image downsampling to match image saliency . 30

7.2.1 Generic image metric texture compression . 30
7.2.2 Mean squared error metric compression . 32
7.2.3 Human visual system metric compression . 32

7.3 Texture atlas packing . 35
7.3.1 Predicting the minimum size of texture atlas . 35
7.3.2 Texture atlas binary tree . 35
7.3.3 Optimizing texture space . 36

8 Rendering optimized texture atlases 38

8.1 Texture wrapping . 38
8.1.1 Mapping of the texture coordinates . 38
8.1.2 Compression of the texture coordinates . 40
8.1.3 Decompression of the texture coordinates . 40
8.1.4 Texture mipmapping and �ltering . 40
8.1.5 Texture atlas �ltering . 42
8.1.6 Texture atlas support for DXTC compression . 43

8.2 Real-time visualization . 45
8.2.1 Texture atlas tree . 45
8.2.2 Building rendering . 47
8.2.3 Terrain visualization . 47

V Results 49

9 Test speci�cations 49

9.1 Test model . 49
9.2 Hardware tested . 50

10 Space compression 51

10.1 Image downsampling . 52
10.1.1 Downsampling function of test images . 52
10.1.2 Reconstruction of test images with varying RMSE visual tolerance 56
10.1.3 Reconstruction of test images with varying HVSE visual tolerance 61
10.1.4 Test images compression results . 69
10.1.5 Image downsampling results of test model . 74

10.2 Packing . 77
10.3 Encoding texture chart coordinates . 81

11 Time Performance 83

12 Selected snapshots 85

VI Conclusions 88

VII Appendix 89

2

List of Figures

1 Images analyzed with RMSE . 11
2 Mannos-Sakrison contrast sensitivity function . 13
3 Cross Section of the human Eye (Illustration by Mark Erickson) 14
4 Block diagram of the Visible Di�erences Predictor. Heavy arrows indicate parallel pro-

cessing of the spatial frequency and orientation channels. 15
5 S3TC lookup table . 18
6 Example of a texture atlas . 20
7 TileTree by Lefebvre et al. [45] Left: A torus is textured by a TileTree. Middle: The

TileTree positions square texture tiles around the surface using an octree.Right: The
tile map holding the set of square tiles. 21

8 Distance-dependent texture selection proposed by Buchholz and Döllner [6] 23
9 The Fekete and Schepers modeling approach . 24
10 First-Fit Decreasing Height algorithm . 25
11 Texture atlas creation scheme . 28
12 Example of search space reduction using binary search. Each point of the square repre-

sents a texture size (w, h). Upper row : search on w (�rst three steps) followed by search
on h (three more steps). Lower row : alternating search on w, h. Note that in general
both approaches are not guaranteed to �nd the same (wo,ho). 31

13 RMSE error of the subsampling of a facade detail . 32
14 Framework of the CIELAB colour model . 33
15 HVSE error of the subsampling of a facade detail . 34
16 Binary tree structure . 36
17 Packed texture coordinates on the atlas . 38
18 Encoding of a compressed texture coordinate . 40
19 Uninitialized texels at the 2x2 and 1x1 mipmaps for an atlas containing 8x8 and 4x4

textures . 41
20 Bilinear �ltering of lower mip-levels accesses texels from unrelated neighbouring textures 42
21 Correct bilinear �ltering scheme in a 16x16 chart with 2 border texels and 2 mip-levels . 43
22 Incorrect bilinear �ltering scheme in a 16x16 chart with 1 border texel and 2 mip-levels 43
23 Hierarchical texture atlas representation . 45
24 Screen projection factor scheme . 47
25 Terrain rendering LOD example . 48
26 Thumbnails of a set of Teleatlas textures . 49
27 Window downsampling function . 52
28 Rocktile downsampling function . 52
29 Bricktile downsampling function . 53
30 Fabrictile downsampling function . 53
31 Textureatlas downsampling function . 54
32 Crayons downsampling function . 54
33 Boat downsampling function . 55
34 Aerial photo downsampling function . 55
35 Window reconstruction using RMSE . 56
36 Rocktile reconstruction using RMSE . 57
37 Bricktile reconstruction using RMSE . 57
38 Fabrictile reconstruction using RMSE . 58
39 Textureatlas reconstruction using RMSE . 58
40 Crayons reconstruction using RMSE . 59
41 Boat reconstruction using RMSE . 59
42 Aerialphoto reconstruction using RMSE . 60
43 Window reconstruction using HVSE . 61

3

44 Rocktile reconstruction using HVSE . 62
45 Bricktile reconstruction using HVSE . 63
46 Fabrictile reconstruction using HVSE . 64
47 Textureatlas reconstruction using HVSE . 65
48 Crayons reconstruction using HVSE . 66
49 Boat reconstruction using HVSE . 67
50 Aerialphoto reconstruction using HVSE . 68
51 Texture set 1 packing . 77
52 Texture set 2 packing . 77
53 Texture set 3 packing . 78
54 Texture set 4 packing . 78
55 Texture set 5 packing . 79
56 Texture packing results . 79
57 Chart encoding performance (vertices/s) . 81
58 Chart encoding performance (fragments/s) . 82
59 Chart encoding performance (frames/s) . 82
60 Resulting framerate for each technique (walkthrough) 83
61 Framerate evolution of walkthrough . 84
62 Barcelona snapshot 1 . 85
63 Barcelona snapshot 2 . 85
64 Barcelona snapshot 3 . 86
65 Barcelona snapshot 4 . 86
66 Barcelona snapshot 5 . 87
67 Barcelona snapshot 6 . 87
68 Some characteristic colours of Barcelona facades . 91

4

List of Tables

1 Space and processing overheads of the three options considered for tiling periodic images 39
2 Area precision and mip-level associated to each atlas tree level of our implementation . 46
3 Test model geometry information . 49
4 Test model texture information . 49
5 Hardware speci�cations . 50
6 Test image speci�cations . 51
7 Texture compression with the whole city . 74
8 City downsampling RMSE 5% . 75
9 City downsampling RMSE 10% . 75
10 City downsampling RMSE 20% . 75
11 City downsampling HVSE 10% . 75
12 City downsampling HVSE 30% . 75
13 City downsampling HVSE 50% . 76
14 Texture set packing occupancy . 80
15 Chart encoding performance (for more information of the encoding techniques see Table

1) . 81
16 Resulting framerate for each technique (walkthrough) 83

5

List of Algorithms

1 Subsampling image in one direction with error metric 31
2 Compression of an image with error metric . 31
3 Texture atlas bin packing . 35
4 Inserting an image . 36
5 Filling the space between leafs . 37
6 Optimizing texture stretch . 37
7 Texture wrapping vertex program (see Section 8.1.1) . 89
8 Texture wrapping fragment program (see Section 8.1.3) 89
9 Quadtree generation (see Section 8.2.1) . 90

6

Part I

Abstract

Texture atlas parameterization provides an e�ective way to map a variety of colour and data attributes
from 2D texture domains onto polygonal surface meshes. Most of the existing literature focus on how
to build seamless texture atlases for continuous photometric detail, but little e�ort has been devoted
to devise e�cient techniques for encoding self-repeating, uncontinuous signals such as building facades.

We present a perception-based scheme for generating space-optimized texture atlases speci�cally
designed for intentionally non-bijective parameterizations. Our scheme combines within-chart tiling
support with intelligent packing and perceptual measures for assigning texture space in accordance to
the amount of information contents of the image and on its saliency. We demonstrate our optimization
scheme in the context of real-time navigation through a gigatexel urban model of an European city.
Our scheme achieves signi�cant compression ratios and speed-up factors with visually indistinguishable
results.

We developed a technique that generates space-optimized texture atlases for the particular encoding
of uncontinuous signals projected onto geometry. The scene is partitioned using a texture atlas tree
that contains for each node a texture atlas. The leaf nodes of the tree contain scene geometry. The
level of detail is controlled by traversing the tree and selecting the appropriate texture atlas for a given
viewer position and orientation. In a preprocessing step, textures associated to each texture atlas node
of the tree are packed. Textures are resized according to a given user-de�ned texel size and the size
of the geometry that are projected onto. We also use perceptual measures to assign texture space in
accordance to image detail.

We also explore di�erent techniques for supporting texture wrapping of uncontinuous signals, which
involved the development of e�cient techniques for compressing texture coordinates via the GPU. Our
approach supports texture �ltering and DXTC compression without noticeable artifacts.

We have implemented a prototype version of our space-optimized texture atlases technique and
used it to render the 3D city model of Barcelona achieving interactive rendering frame rates. The
whole model was composed by more than three million triangles and contained more than twenty
thousand di�erent textures representing the building facades with an average original resolution of
512 × 512 pixels per texture. Our scheme achieves up 100:1 compression ratios and speed-up factors
of 20 with visually indistinguishable results.

7

Part II

Introduction

Heavily-textured models involving a large number of periodic textures are often encountered in many
computer graphic applications including architectural visualization, urban modelling and virtual earth
globes. Factoring repeated content through texture tiling helps to reduce image data by several orders
of magnitude. Current available urban city models, for example, make extensive use of periodic textures
to encode highly-detailed repeating patterns on building facades. Even though the current trend in
urban modeling is to use real photographs, the limitations of current acquisition technology makes this
option feasible only for a few singular buildings, and it is obviously not applicable for ancient sites
and non-existing cities. As an example, the most detailed 3D model of the city of Barcelona available
today, makes use of a library of 23,939 distinct textures, most of them periodic, to represent 93,111
buildings, in addition to 28 singular buildings for which real photographs are used.

Real-time rendering of detailed textured models is still a challenging problem in computer graphics.
Rendering acceleration methods for geometry data (such as maximizing the hit rate of the geometry
cache [36], reducing pixel overdraw and level-of-detail rendering) are bene�cial for �nely-tesselated,
geometrically-complex models, but not for urban mass models with a few planar polygons and most
details stored in texture maps and displacement maps. Image-based method simplify scene parts by
replacing them with impostors, at the expense of high storage requirements. View frustum culling
and occlusion culling techniques can provide speed-ups of several orders of magnitude, but are mostly
e�ective for indoor scenes, being of little value e.g. for overhead views of outdoor scenes.

The use of large collections of highly-detailed, periodic textures in models representing man-made
structures poses several additional problems:

� Per-corner attributes. Polygonal meshes representing man-made structures often exhibit pre-
dominance of sharp edges over smooth edges, thus requiring per-corner (rather than per-vertex)
attribute binding. A corner is a vertex/polygon pair and typical corner attributes are color,
normal, and texture coordinates. Per-corner attribute binding requires much more storage (and
often memory bandwidth) than per-vertex binding. For example, a triangle mesh with V vertices
has 3T ≈ 6V corners and a quad mesh has 4Q ≈ 4V corners, i.e. per-corner binding requires
storing six (resp. four) times more attributes than per-vertex binding. For example, a triangle
mesh with per-corner normals and texture coordinates typically requires 3×32×V bits for vertex
coordinates and 6× (2 + 3)× 32× V bits for per-corner attributes.

� Poor hardware support for per corner binding. Vertex Bu�er Objects (VBOs) is one of the most
e�cient ways for rendering geometry primitives in today's highly-pipelined hardware. VBOs
allow vertex array data to be stored in high-performance graphics memory on the server side
and promotes e�cient data transfer. Unfortunately, VBOs only support per-vertex binding (the
speci�cation of OpenGL does not support multi-index vertex arrays). This means that the only
way to use VBOs to render primitives with per-corner attributes is to replicate all per-corner
attributes, including vertex coordinates. On the exemple above, the storage space for attributes
would be 6 × (2 + 3) × 32 × V bits. Even in this scenario rendering VBOs is still much more
e�cient than rendering individual polygons.

� Texture switching and texture atlases. Rendering models using a large collection of texture maps
su�ers from costly texture switching operations. State-sorting can be performed so that all
objects with similar textures are drawn together, but the remaining number of texture switches
can be still too high. The traditional approach to avoid texture switching is to pack multiple
textures into a single texture atlas. Unfortunately, OpenGL's GL_REPEAT wrapping mode
cannot be used within a chart inside a texture atlas, and thus tiled textures need to be unfolded
on the texture atlas, increasing the required space by several orders of magnitude. Some new
GPUs provide a new feature called texture arrays, which allow to reduce texture switching but

8

all the charts are required to have exactly the same size and the maximum number of charts is
limited by the maximum texture resolution rather than by the memory available.

Contribution

In this thesis we present an algorithm for creating a space-optimized texture atlas from a heavily-
textured polygonal model with per-polygon textures. Novel elements include:

� A new pipeline to generate a space-optimized texture atlas. Our approach has been conceived
to be integrated into a texture LOD management system..

� An e�cient algorithm for resizing each chart in accordance with the object-space size of the
surface the chart is mapped onto, and the perceptual importance of the chart's contents from
given viewing conditions.

� A BSP-based algorithm for packing rectangular charts into a single texture atlas which minimizes
unused space. In fact, our algorithm always achieve a 100% of atlas coverage.

� Several shader techniques providing within-chart tiling support for periodic textures. Our strat-
egy avoids unfolding periodic textures. Factoring repeated content through texture tiling helps
to reduce image data by several orders of magnitude when compared to conventional texture
atlases.

9

Part III

State of the art

In the following sections we review previous work related to texture atlas generation and parametriza-
tion techniques that provide a background to our packing algorithm. We also introduce some previ-
ous work on image comparison metrics and image compression techniques strongly related with our
perceptual-driven texture compression. A summary of urban and terrain visualization techniques is
also presented.

1 Image comparison metrics

Given two images a and b, the value returned by a metricM(a, b) is called the magnitude of di�erence
(MOD) under M . However, the MODs returned by di�erent metrics are not directly comparable.
Individual metrics may measure di�erent properties of the images concerned and operate in di�erent
sub-domains. Hualin et al.[80] present a study of image comparison metrics to quantify the magnitude
of di�erence between a visualization of a computer simulation and a photographic image captured from
an experiment. Normalization of MODs is thus necessary to make it comparable.

In this section, we describe and discuss several metrics classi�ed into three categories: spatial
domain, spatial-frequency and perceptually-based approaches.

1.1 Spatial domain metrics

This group of metrics operate in the spatial domain of images and derive an evaluation by examining
some statistical properties of images.

1.1.1 Mean squared error

The mean squared error or MSE of an estimator is one of many ways to quantify the amount by which
an estimator di�ers from the true value of the quantity being estimated. MSE measures the average
of the square of the error. The error is the amount by which the estimator di�ers from the quantity to
be estimated. The di�erence occurs because of randomness or because the estimator doesn't account
for information that could produce a more accurate estimate.

In the case of image analysis, we examine the MOD between two images pixel by pixel in the form
of the squared error of a pair of pixel intensities, and derive its measurement as:

MSE =
W∑
x=1

H∑
y=1

(ax,y − bx,y)2

RMSE =
√
MSE

Where a and b are two images of resolution W ×H; and ax,y and bx,y are the intensities at pixel
(x, y) in a and b respectively. The Root Mean Square Error is just the root of MSE. With colour
images the di�erence between two pixels can be calculated using di�erent colour spaces (RGB, LUV,
etc).

MSE is one of the simplest and popular comparison metrics because of their analytical tractability,
but it has long been accepted that it is inaccurate in predicting perceived distortion [31].

This is clearly illustrated in the following paradoxical example. Figure 1b and 1c were created
by adding di�erent types of distortions to the original image; the original image is shown on Figure
1a. The root mean squared error (RMSE) between each of the distorted images and the original was
computed.

10

Figure 1: Images analyzed with RMSE

(a) Original image (b) Less distorted image (c) More distorted image

The RMSE between the more distorted image and the original is 8.5 while the RMSE between the
less distorted image and the original is 9.0. Although the RMSE of the Figure 1b is less than that of
Figure 1c, the distortion introduced in the �rst is more visible than the distortion added to the second.
We see that the root mean squared error is a poor indicator of perceptual image �delity.

Zhou Wang et al. [73] state that MSE is not suitable in the context of measuring the visual
perception of image �delity. The next implicit assumptions are provided in order to demonstrate this
poor behaviour:

1. Signal �delity is independent of temporal or spatial relationships between the samples of the
original signal. In other words, if the original and distorted signals are randomly re-ordered in
the same way, then the MSE between them will remain unchanged.

2. Signal �delity is independent of any relationship between the original signal and the error signal.
For a given error signal, the MSE remains unchanged, regardless of which original signal it is
added to.

3. Signal �delity is independent of the signs of the error signal samples.

4. All signal samples are equally important to signal �delity.

Since all image pixels are treated equally in the formulation of the MSE, image content-dependent
variations in image �delity cannot be accounted for.

1.1.2 Normalized mean squared error

Normalized MSE tries to reduce the sensitivity of MSE to the global-shift of image intensities. The
compared images a and b are normalized prior to the error calculation. Let µa be the mean intensity
of image a. The mean of the image is �rst normalized to 0 by scaling the intensity of each pixel of a
as a

′

x,y = ax,y
µa
− 1. Let sa′be the standard deviation of the new image a

′
. The intensity of each pixel

of a
′
is further scaled as a

′′

x,y = a
′
x,y

s
a
′
. The resultant image a

′′
is thus of a standard deviation 1. the

MSE metric is then applied to a
′′
and b

′′
, after image b is normalized in the same manner.

1.1.3 Template matching

Template matching is a commonly used technique in pattern recognition [33]. The basic method uses
a convolution mask (template), tailored to a speci�c feature of the search image, which we want to
detect. The convolution output will be highest at places where the image structure matches the mask
structure, where large image values get multiplied by large mask values.

11

In order to compare two images we examine the cross-correlation (or auto-correlation) sequences
in order to determine if a testing image contains a template image. Consider two images without any
object shift. The conventional cross-correlation function of two images a and b is:

γ(a, b) =
W∑
x=1

H∑
y=1

ax,ybx,y

However γ is sensitive to the change of luminance of a and b. A better function is:

γ(a, b) =
∑
x,y

(ax,y − µa)(bx,y − µb)√∑
x,y(ax,y − µa)2

∑
x,y(bx,y − µb)2

Where µa and µb are the mean intensities of a and b, respectively. Then the MOD metric is de�ned
as:

TM(a, b) = γ(a, a)− γ(a, b) = 1− γ(a, b)

Hualin et al.[80] demonstrate that template matching is one of the most e�ective ways to separate
similar and di�erent image groups only surpassed by some fourier comparison metrics (see Section 1.2)
and visual di�erences predictor (see Section 1.3).

1.2 Spatial-frequency domain metrics

Many traditional image comparison metrics operate entirely in the spatial-frequency domain. Images
are �rst normalized and transformed to the Fourier Domain using FFT. A contrast sensitive function
(CSF), which models the sensitivity to spatial frequencies, is then applied to the resultant magnitudes.
The MOD between the two resultant images is then measured using MSE. In this section, we �rst
introduce CSF and examine di�erent CSF �lters in the literature.

1.2.1 Contrast sensitivity function

The contrast sensitivity function (CSF) tells us how sensitive we are to the various frequencies of visual
stimuli. If the frequency of visual stimuli is too high we will not be able to recognize the stimuli pattern
any more. To apply a CSF we need to know the dimensions of the screen and the distance from we
see it.

Imagine an image consisting of vertical black and white stripes. If the stripes are very thin we will be
unable to see individual stripes. All what we will see is a grey image. If the stripes then become wider
and wider, there is a threshold width from which we are able to distinguish the stripes. The reason why
we cannot distinguish patterns with high frequencies is the limited number of photoreceptors in our
eye. There are several functions proposed to construct the CSF but the most important are Mannos
and Sakrison, Daly and Ahumada �lters.

1.2.2 Mannos-Sakrison's �lter

Let f be an image matrix obtained after normalization and FFT, (u, v) be a direction in the Fourier
domain (in cycles/deg), and r =

√
u2 + v2. Mannos and Sakrison [55] proposed to �lter each fu,v using

a contrast sensitive function ΘM :

gu,v = fu,vΘM (r)

ΘM (r) = 2.6(0.0192 + 0.144r)e−(0.144r)1.1

12

The spatial frequency of the visual stimuli is de�ned by r and given in cycles/degree. The function
has a peak of value 1 approximately at f=8.0 cycles/degree, and is meaningless for frequencies above
60 cycles/degree. Figure 2 shows the contrast sensitivity function ΘM .

Figure 2: Mannos-Sakrison contrast sensitivity function

1.2.3 Daly's �lter

The Visible Di�erences Predictor (VDP) proposed by Daly [16] is one of the most well-established
algorithms for evaluating image �delity. It is presented in more depth in Section 1.3.2. Rushmeier et
al. [65] adapted the CSF of the VDP in a spatial-frequency domain pipeline for evaluating rendering
quality against a captured image. The CSF is applied to fu,v in a way similar to Mannos-Sakrison's
�lter, and has the following form:

ΘD(r) =
(

0.008
r3

+ 1
)−0.2

1.42re(−0.3r)
√

1+0.06e0.3r

1.2.4 Ahumada's �lter

Ahumada [40] proposed a CSF that is a balanced di�erence of two Gaussians as:

ΘA(r) = ace
(r
fc

)2

− ase(
r
fs

)2

where fc and fs are the center and surround lowpass cut-o� spatial frequency, respectively. ac
and as are the center and surround amplitudes. A default set of values may be ac = 1, as = 0.685,
fc = 97.32 and fs = 12.16, but these values can be modi�ed to adjust the sensivity (see paper for
further details). Like the Mannos-Sakrison's and Daly's �lter, Ahumada's �lter is sensitive to the
middle range of spatial-frequencies.

1.3 Perceptually-based metrics

A collection of image comparison metrics, commonly called perceptually-based or HVS metrics, have
been developed to simulate some features of the HVS. Many HVS metrics adopt a pipeline which in
principle can be viewed as an extension of the general pipeline described in Section 1.2.

These metrics are of great value for photorealistic rendering. Knowledge of the behaviour of the
HVS can be used to speed up rendering by focusing computational e�ort into areas of an image with
perceivable errors. Accounting for such HVS limitations enables computational e�ort to be shifted
from areas of a scene deemed to have a visually insigni�cant e�ect on the solutions appearance, and
shifted into those areas that are most noticeable. Several attempts have been made to incorporate
what is known about the HVS into the image synthesis process.

13

1.3.1 The human visual system

Perception is the process by which humans, and other organisms, interpret and organize sensation in
order to understand their surrounding environment.

The response of the human eye to light is a complex, still not well understood process. It is di�cult
to quantify due to the high level of interaction between the visual system and complex brain functions.
A sketch of the anatomical components of the human eye is shown in Figure 3.

Figure 3: Cross Section of the human Eye (Illustration by Mark Erickson)

The main structures are the iris, lens, pupil, cornea, retina, vitreous humor, optic disk and optic
nerve. The path of light through the visual system begins at the pupil, is focused by the lens, then
passes onto the retina, which covers the back surface of the eye. The retina is a mesh of photoreceptors,
which receive light and pass the stimulus on to the brain.

Some concepts are introduced when talking about Human Visual System:

� Visual acuity is the ability of the Human Visual System to resolve detail in an image. The
human eye is less sensitive to gradual and sudden changes in brightness in the image plane but
has higher sensitivity to intermediate changes. Acuity decreases increasing the distance.

� Depth perception is the ability to see the world in three dimensions and to perceive distance.
Images projected onto the retina are two dimensional, from these �at images three dimensional
worlds are constructed.

� Perceptual constancy is a phenomenon which enables the same perception of an object despite
it changes in the actual pattern of light falling on the retina.

A number of psychophysical experimental studies have demonstrated many features of how the Hu-
man Visual System works. However, problems arise when trying to generalize these results for use
in computer graphics. This is because experiments are usually conducted under limited laboratory
conditions and are typically designed to explore a single dimension of the HVS.

1.3.2 Visible di�erences predictor

Daly's VDP [16] is a HVS-based image quality metric, which takes two images as input and produces
a probability map for di�erence detection as output. It consists of three main functional components,
namely amplitude non-linearity, contrast sensitivity function and detection mechanisms.

� Amplitude non-linearity simulates the adaptation of HVS to local luminance. It applies a non-
linear response function to each pixel in the input images, assuming that the adaptation results
from an observer �xating a small image area.

� A contrast sensitivity function simulates the variations in visual sensitivity of HVS, and models
the variations as a function of spatial frequency. The process is similar to that described in
Section 1.2.3, applying a FFT, followed by Daly's CSF, to each image.

14

� Detection mechanisms simulate the spatial-frequency selectivity of HVS by decomposing each
image into 31 independent streams. Multiple detection mechanisms are then applied to the
corresponding streams of the two images. These mechanisms include computation of contrasts,
application of a masking function to increase the threshold of detectability, and use of a psy-
chometric function to predict the probability of detecting a di�erence at every location in each
stream. Finally, the detection probabilities for all streams are combined into a single image that
describes the overall probability for every location.

Figure 4: Block diagram of the Visible Di�erences Predictor. Heavy arrows indicate parallel processing
of the spatial frequency and orientation channels.

1.4 Tone mapping metrics

Tone mapping is a technique used to map a set of colours to another; often to approximate the ap-
pearance of high dynamic range images in media with a more limited dynamic range. Print-outs, CRT
or LCD monitors, and projectors all have a limited dynamic range which is inadequate to reproduce
the full range of light intensities present in natural scenes. Essentially, tone mapping addresses the
problem of strong contrast reduction from the scene values to the displayable range while preserving
the image details and colour appearance important to appreciate the original scene content.

The human eye is sensitive to relative luminance rather than absolute luminance. Taking advantage
of this allows the overall subjective impression of a real environment to be replicated on some display
media. Tone reproduction operators can be classi�ed according to the manner in which values are
transformed. Single-scale operators proceed by applying the same scaling transformation for each
pixel in the image, and that scaling only depends on the current level of adaptation, and not on the
real-world luminance. Multi-scale operators take a di�ering approach and may apply a di�erent scale
to each pixel in the image.

Tone reproduction operators are useful for giving a measure of the perceptible di�erence between
two luminance levels at a given level of adaptation. This function can then be used to guide algorithms
where there is a need to determine whether some process would be noticeable or not to the end user.

1.4.1 Single scale tone reproduction operators

Tumblin and Rushmeier [71] were the �rst to apply the dynamics of tone reproduction to realistic
image synthesis. Using a psychophysical model of brightness perception �rst developed by Stevens
and Stevens [67] they proposed a tone reproduction operator to match the brightness of the real scene
to the brightness of the computed image displayed on a CRT.

15

Applying Steven's equation, which relates brightness to target luminance, the perceived value of a
real world luminance Lw, is computed as:

Bw = 10β(La(w))(π × 10−4Lw)α(La(w))

Where α(La(w)) and β(La(w)) are functions of the real world adaptation level:

α(La(w)) = 0.4 log10(La(w)) + 1.519

β(La(w)) = −0.4(log10(La(w)))2 − 0.218 log10(La(w)) + 6.1642

If it is assumed that a display observer viewing a CRT screen adapts to a luminance,La(d), the
brightness of a displayed luminance value can be similarly expressed:

Bd = 10β(La(d))(π × 10−4Ld)α(La(d))

Where α(La(d)) and β(La(d)) are as before. To match the brightness of a real world luminance to
the brightness of a display luminance, Bw must equal Bd. The luminance required to satisfy this can
be determined:

Ld =
1

π × 10−4
10

βa(w)−βa(d)
αa(d) (π × 10−4Lw)

αa(w)
αa(d)

This represents the concatenation of the real-world observer and the inverse display observer model.
Ward [74] proposed a linear transform with similar result, while reducing computational expense,
transforming real world luminances, Lw, to display luminances, Ld, through m, a scaling factor:

Ld = mLw

The consequence of adaptation can be thought of as a shift in the absolute di�erence. The scaling
factor, m, dictates how to map luminances from the world to the display such that a Just Noticeable
Di�erence (JND) in world luminances maps to a JND in display luminances. JND is the smallest
detectable di�erence between a starting and secondary level of a particular sensory stimulus (the
luminance in the related case).

A critical aspect of tone mapping is the visual model used. As we move through di�erent envi-
ronments or look from place to place within a single environment our eyes adapt to the prevailing
conditions of illumination both globally and within local regions of the visual �eld. These adapta-
tion processes have dramatic e�ects on the visibility and appearance of objects and on our visual
performance.

1.4.2 Multi scale tone reproduction operators

After an investigation of the e�ects of tone mapping in a small scene illuminated only by a single
incandescent bulb, Chiu et al. [11] realized it was incorrect to apply the same mapping to each pixel.
By uniformly applying tone mapping operator across the pixel of an image, incorrect results are likely.
They noted that the mapping applied to a pixel should be dependent on the spatial position in the
image of that pixel. Using the fact that the human visual system is more sensitive to relative changes
in luminance rather than absolute levels, they developed a spatially non-uniform scaling function for
high contrast images. First the image is blurred to remove all the high frequencies, and the result is
inverted. This approach was capable of reproducing all the detail in the original image, but reverse
intensity gradients appeared in the image when very bright and very dark areas were close to each
other.

Larson et al [43] developed a histogram equalization technique to create an image with the dynamic
range of the original scene compressed into the range available on the display device which was subject
to certain restrictions regarding limits of contrast sensitivity of the human eye.

16

2 Image compression

Texture mapping is employed on rendering systems to increase the visual complexity of a scene without
increasing its geometric complexity [61]. Texture compression can help to achieve higher graphics
quality with given memory and bandwidth or reduce memory and bandwidth consumption without
degrading quality too much. There are many compression techniques for images, most of which are
geared towards compression for storage or transmission. In choosing a compression scheme for texture
mapping there are several issues to consider:

� Decoding speed. in order to render directly from the compressed representation, an essential
feature of the compression scheme is fast decompression so that the time necessary to access a
single texture pixel is not severely impacted.

� Random access. It is di�cult to know in advance how a renderer will access a texture. Thus,
texture compression schemes must provide fast random access to pixels in the texture.

� Compression rate and visual quality. While lossless compression schemes will perfectly preserve
a texture, they achieve much lower compression rates than lossy schemes. However, using a lossy
compression scheme introduces errors into the textures.

� Encoding speed. Texture compression, however, is an asymmetric application of compression,
since decoding speed is essential while encoding speed is useful but not necessary.

Image compression can be lossy or lossless. Lossless compression is sometimes preferred for arti�cial
images such as technical drawings, icons or comics. This is because lossy compression methods, espe-
cially when used at low bit rates, introduce compression artifacts. Lossless compression methods may
also be preferred for high value content, such as medical imagery or image scans made for archival pur-
poses. We classify image compression techniques in the next two sections. Finally we discuss several
approaches to compress textures with repeated content.

Texture compression is a specialized form of image compression designed for storing texture maps in
3D computer graphics rendering systems. Unlike conventional image compression algorithms, texture
compression algorithms are optimized for random access. Most texture compression algorithms involve
some form of �xed-rate lossy vector quantization of small �xed-size blocks of pixels into small �xed-size
blocks of coding bits, sometimes with additional extra pre-processing and post-processing steps. Block
Truncation Coding is a very simple example of this family of algorithms.

Because their data access patterns are well-de�ned, texture decompression may be executed on-the-
�y during rendering as part of the overall graphics pipeline, reducing overall bandwidth and storage
needs throughout the graphics system. As well as texture maps, texture compression may also be used
to encode other kinds of rendering map, including bump maps and surface normal maps. Texture
compression may also be used together with other forms of map processing such as MIP maps and
anisotropic �ltering.

2.1 Lossy compression methods

� Indexed colour. Indexed colour is the �rst texture compression algorithm proposed [8] as well as
the �rst to be considered for implementation in hardware [41]. A palettized texture has a colour
table, which contains a number of colours stored at high precision. For each texel an index into
the colour table is stored. This results in one indirection per texel lookup which is the reason
palettized textures are rarely used today. Indexed colour can be considered a special case of
vector quantization by treating the individual texels as vectors in colour space.

� Vector quantization. Images can be compressed using a codebook of image blocks [30, 4]. Vector
quantization uses small blocks (e.g. 4Ö4 pixels), because with larger blocks the codebook cannot
accurately capture the wide variety of block content. By operating on small blocks, vector
quantization is e�ectively exploiting local data correlation.

17

� Chroma subsampling. This technique takes advantage of the fact that the eye perceives spatial
changes of brightness more sharply than those of colour, by averaging or dropping some of the
chrominance information in the image [10].

� Block decomposition. Block decomposition approach is based on the subdivision of an image into
small blocks with local colours. S3 Texture Compression (S3TC), sometimes also called DXTn
or DXTC, is an implementation of block decomposition technique. It breaks a texture map into
4 x 4 blocks of texels. For opaque texture maps, each of these texels is represented by two bits in
a bitmap, for a total of 32 bits. In addition to the bitmap, each block also has two representative
16 bit colours in RGB565 format associated with it. These two explicitly encoded colours, plus
two additional colours that are derived by uniformly interpolating the explicitly encoded colours,
form a four colour lookup table. This lookup table is used to determine the actual colour at any
texel in the block. In total, the 16 texels are encoded using 64 bits, or an average of 4 bits per
texel. Decoding blocks compressed in S3TC format is straightforward. A two-bit index is signed
to each of the 16 texels. A four colour lookup table (see Figure 5) is then used to determine
which 16-bit colour value should be used for each texel. The decoder can be operated at very
high speeds and replicated to allow parallel decoding for very high performance solutions.

Figure 5: S3TC lookup table

� Transform coding. In transform coding, knowledge of the application is used to choose informa-
tion to discard, thereby lowering its bandwidth. The remaining information can be compressed
then via a variety of methods. When the output is decoded, the result may not be identical to
the original input, but is expected to be close enough for the purpose of the application. The
common JPEG image format is an example of a transform coding, one that examines small blocks
of the image and averages out the colour using a discrete cosine transform to form an image with
far fewer colours in total.

� Fractal compression. The fractal compression technique [37] relies on the fact that in certain
images, parts of the image resemble other parts of the same image. Fractal algorithms convert
these parts, or more precisely, geometric shapes into mathematical data called fractal codes
which are used to recreate the encoded image. Fractal compression di�ers from pixel-based
compression schemes such as JPEG, GIF and MPEG since no pixels are saved. Once an image
has been converted into fractal code its relationship to a speci�c resolution has been lost; it
becomes resolution independent.

2.2 Lossless compression methods

� Run-length encoding. Run-length encoding is a very simple form of data compression in which
runs of data (that is, sequences in which the same data value occurs in many consecutive data
elements) are stored as a single data value and count, rather than as the original run. This is
most useful on data that contains many such runs: for example, relatively simple graphic images
such as icons, line drawings, and animations. Recently, Carlos Andujar and Jonas Martinez [2]
developed a locally-adaptive texture compression scheme encoding homogeneous image regions
through arbitrarily-sized texel runs and using a cumulative run-length encoding supporting fast
random-access allowing real-time GPU decompression.

18

� Entropy encoding. Entropy coding creates and assigns a unique pre�x code to each unique symbol
that occurs in the input. These entropy encoders then compress data by replacing each �xed-
length input symbol by the corresponding variable-length pre�x codeword. The length of each
codeword is approximately proportional to the negative logarithm of the probability. Therefore,
the most common symbols use the shortest codes.

� Adaptive dictionary algorithms. LZW compression [81] is an example of an adaptive dictionary
algorithm. A particular LZW compression algorithm takes each input sequence of bits of a given
length and creates an entry in a table for that particular bit pattern, consisting of the pattern
itself and a shorter code. As input is read, any pattern that has been read before results in the
substitution of the shorter code.

2.3 Compression of images with repetitive patterns

Compression of images with repetitive patterns is an interesting problem on the �eld of image com-
pression. They can be readily observed in man-made environments: buildings, wallpapers, �oors, tiles,
windows, fabric, pottery and decorative arts; and in nature: the arrangement of atoms, honeycomb,
animal fur, gait patterns, feathers, leaves, waves of the ocean, and patterns of sand dunes. To simu-
late the real world on computers faithfully, textures with repetitive patterns deserve special attention.
Humans have an innate ability to perceive and take advantage of symmetry [50]. Rao and Lohse [64]
show that regularity plays an important role in human texture perception.

Mathematically speaking, regular texture refers to periodic patterns that present non-trivial trans-
lation symmetry, with the possible addition of rotation, re�ection and glide-re�ection symmetries [57].
When studying periodic patterns, a useful fact from mathematics is the answer to Hilbert's 18th prob-
lem: there is only a �nite number of symmetry groups for all possible periodic patterns in dimension
n. When n =1 there are seven frieze groups, and when n =2 there are 17 wallpaper groups. Here
group is referring to the symmetry group of a periodic pattern. A symmetry group is composed of
transformations that keep the pattern invariant.

Most of the work on compressing near-regular images is related to the �eld of texture synthesis:
the process of algorithmically constructing a large digital image from a small digital sample image by
taking advantage of its structural content. Procedural texture synthesis [59] is based on generative
models of texture. The sample-based approach does not require any previous texture model, yet has
the capability of reproducing textures with similar appearance as the input sample [34].

The class of textures that yield good results for texture-synthesis algorithms remains an open
question. Lin et al. [51] compare several texture-synthesis algorithms. Their results show that general
purpose synthesis algorithms fail to preserve the structural regularity on more than 40% of the tested
samples. These results demonstrate that faithful near-regular texture synthesis remains a challenging
problem.

Vector quantization (on page 17) is a good option when compressing near-regular textures, but the
di�culty is that even if the image content is highly repetitive, the rigid placement of the blocks implies
that they will most often be unique. Other techniques try to make more adaptive the placement of
the blocks. Liu et al. [77] and Hays et al. [38] analyze near-regular textures to infer lattice structures
and local deformations.

Epitomic analysis of the image is also used [39]. The epitome of an image is its miniature, condensed
version containing the essence of the textural and shape properties of the image and is built from the
patches of various sizes from the input image. Wang et al. [72] propose and epitomic analysis that
enables random-access reconstruction of the image, making it more suitable for interactive applications.

19

3 Texture atlases

The lack of batching decreases the performance of graphical applications. A batch consists of a number
of render-state changes followed by a draw-call. Submitting hundreds or worse, thousands of batches
per frame inevitably makes an application CPU-limited due to inherent driver overhead.

Figure 6: Example of a texture atlas

The use of texture atlases reduces the number of batches caused by having to repeatedly bind
di�erent textures. The atlas comprises a set of charts, each of which maps a connected part of the 3D
surface (a patch) onto a piece of the 2D texture domain. Models using these packed atlases need to
remap their texture coordinates.

One way proposed to generate an atlas is to make a chart for each triangle. The simpli�ed triangles
are then packed into texture space and sampled to generate texture maps [66]. However seams may
appear between triangles due to bilinear interpolation between adjacently packed triangle charts.

Alternatively, triangles may be clustered into patches which are then parameterized as charts [22].
However if the matching boundary edges di�er in length or orientation in the texture domain, it is still
di�cult to eliminate subtle seams along the boundaries (even if a one texel padding is applied just
outside the charts).

Recognizing that seams are an important problem with atlases, various approaches have been
developed to minimize their e�ect. The seams may be forced into regions of high negative curvature
[49] making them less apparent. As an alternative, an image �delity metric [79] can be used to minimize
the visual e�ect of seams.

Work on procedural solid texturing has produced a multi-resolution texture atlas [9], which uses
standard mip-mapping on graphics hardware. This texture atlas has several desirable properties,
including control of the sampling rate across the surface and e�cient use of the entire texture space.
However, the scheme used still generates seams between charts except at the highest-resolution mip-
map level.

Newer approaches avoid seams by parameterizing the surface onto regular charts [62]. While stored
discontinuously, neighbouring charts have corresponding samples and a continuous interpolation can
be de�ned along the surface. To avoid splitting the geometry along chart boundaries Tarini et al. [69]
parameterize surfaces on the faces of a regular polycube: a set of �xed size cubes surrounding the
object. Polycube maps de�ne a continuous, tileable texture space. However the �xed resolution has
to be carefully chosen to match the geometric features, the construction requires manual intervention
and a triangle mesh is required to encode the parameterization.

To enable texturing of implicit surfaces and avoid explicit parameterization altogether, Benson et
al. [5] and DeBry et al. [18] proposed to encode texture data in an octree surrounding the surface.
This provides low distortion and adaptive texturing, at the expense of a space and time overhead.
Such methods are particularly well suited for interactive painting on 3D objects, where the intrinsic
adaptive sampling of the octree structure reduces the waste of memory exhibited by �xed-resolution
2D maps. More recently, Lefebvre et al. [45] (see Figure 7) and Lefohn et al. [47] have proposed GPU

20

implementation of octree-textures, encoding them in simple 2D or 3D textures, adapted to e�cient
access by the fragment shader.

Figure 7: TileTree by Lefebvre et al. [45] Left: A torus is textured by a TileTree. Middle: The TileTree
positions square texture tiles around the surface using an octree.Right: The tile map holding the set
of square tiles.

Most of the existing literature focus on how to build seamless texture atlases for continuous photo-
metric detail, but little e�ort has been devoted to devise e�cient techniques for encoding self-repeating,
uncontinuous signals such as building facades. When each polygon of the input model has assigned a
di�erent texture, seam artifacts do not occur and more simple strategies for packing the charts into
an atlas are possible. In this thesis we focus on this type of models.

21

4 Terrain and urban visualization

Large terrain and city models may contain millions of triangles, still far too many to render interactively
by brute force. Moreover, rendering a uniformly dense triangulation can lead to aliasing artifacts,
caused by an un�ltered many-to-one map from samples to pixels, just as in texturing without mipmaps
[76]. Thus level-of-detail (LOD) control is necessary to adjust the terrain tessellation as a function of
the view parameters.

View-dependent LOD algorithms adaptively re�ne and coarsen the mesh based on screen-space
geometric error, the deviation in pixels between the mesh and the original terrain. Screen-space error
combines the e�ects of viewer distance, surface orientation, and surface geometry. In the next sections
we describe several methods to achieve LOD when rendering huge terrain and city models.

4.1 Geometry LOD techniques

Terrain LOD algorithms use a hierarchy of mesh re�nement operations to adapt the surface tessellation.
Algorithms can be categorized by the structure of these hierarchies as follows:

� Irregular meshes. This technique requires the tracking of mesh adjacencies and re�nement de-
pendencies but provides the best approximation for a given number of faces. Some hierarchies
visually softens the transition between two levels of triangulation [15] while others allow arbitrary
connectivities[17].

� Bin-tree hierarchies. This uses the recursive bisection of right triangles to simplify memory
layout and traversal algorithms [52]. However, these semi-regular meshes still involve random-
access memory references and immediate-mode rendering.

� Bin-tree regions. Bin-tree regions [48] de�ne coarser-grain re�nement operations on regions as-
sociated with a bin-tree structure. Precomputed triangulated regions are uploaded to bu�ers
cached in video memory boosting rendering throughput.

� Tiled blocks. Tiled blocks partitions the terrain into square patches that are tessellated at di�erent
resolutions [35, 12]. The main challenge is to stitch the block boundaries seamlessly.

� Geometry clipmaps. Geometry clipmaps [54] caches the terrain in a set of nested regular grids
centered about the viewer. These grids represent �ltered versions of the terrain at power-of-two
resolutions, and are stored as vertex bu�ers in video memory. As the viewpoint moves, the
clipmap levels shift and are incrementally re�lled with data. Rather than de�ning a world-space
quadtree, the geometry clipmap de�ne a hierarchy centered about the viewer. The approach
has parallels with the LOD treatment of images in texture mapping as it is based on texture
clipmaps [68] (see Section 4.2).

4.2 Texture LOD techniques

Huge urban models often require textures that exceeds the main memory capacity. The common
method for dealing with large textures requires subdividing a huge texture image into small tiles of sizes
directly supportable by typical graphics hardware. This approach provides good paging granularity
for the system both from disk to main memory and from main memory to texture memory.

The problem of texture complexity has been addressed in several approaches. Clipmaps of Tanner
et al. [68] use dynamic texture representation that e�ciently caches textures of arbitrarily large size
in a �nite amount of physical memory. Cline and Egbert [13] proposed a software approach for large
texture handling. At runtime, they determine the appropriate mipmap level for a group of polygons
based on the projected screen size of the polygons and the corresponding area in texture space. In
another terrain viewing application, Lindstrom et al. [60] use the angle at which textures are viewed
to reduce texture requests over using a simple distance metric.

22

Lefebvre et al. [46] proposed a GPU-based approach for large-scale texture management of arbitrary
meshes. The novel idea of their approach is to render the texture coordinates of the visible geometry
into texture space to determine the necessary texture tiles for each frame. However the method requires
a cost-intensive fragment shader and the geometry has to be rendered multiple times per frame.

Carr and Hart [9] introduced a texture atlas for real-time procedural solid texturing. They partition
the mesh surface into a hierarchy of surface regions that correspond to rectangular sections of the
texture atlas. This structure supports mipmapping of the texture atlas because textures of triangles
are merged only for contiguous regions on the mesh surface.

Frueh et al. [27] described an approach to create texture maps for 3D city models. The technique
includes the creation of a specialized texture atlas for building facades and supports e�cient rendering
for virtual �y-throughs. Hesina et al. [29] described a texture caching approach for complex textured
city models. Their approach is restricted to interactive walk-throughs.

Lakhia [42] proposed an out-of-core rendering engine which applies the cost and bene�t approach of
the Adaptive Display algorithm by Funkhouser and Sequin [28] to hierarchical levels of detail (HLOD)
[23] achieving interactive rendering of detailed city models. To support texturing, they store down-
sampled versions of the original scene textures with each HLOD.

Buchholz and Döllner [6] presented a level-of-detail texturing technique that creates a hierarchical
data structure for all textures used by scene objects (see Figure 8), and it derives texture atlases at
di�erent resolutions. At runtime, their texturing technique requires only a small set of these texture
atlases, which represent scene textures in an appropriate size depending on the current camera position
and screen resolution.

Figure 8: Distance-dependent texture selection proposed by Buchholz and Döllner [6]

Another way to handle large textures the use of a large virtual texture as a stochastic tiling of a
small set of texture image tiles [14]. The tiles may be �lled with texture, patterns, or geometry that
when assembled create a continuous representation. Li-Yi Wei [75] extended the tile-based texture
mapping on graphics hardware.

23

5 Texture atlas packing

Building a texture atlas from a set of rectangular images involves allocating this set of rectangular
images into a larger rectangular image by minimizing the unused space. This is commonly known as
the bin packing problem [53]. In two-dimensional bin packing problems these units are �nite rectangles,
and the objective is to pack all the items into the minimum number of units.

The bin packing is a combinatorial NP-hard problem. The most e�cient known algorithms use
heuristics to accomplish results which, though very good in most cases, may not be the optimal solution.
For example, the �rst �t algorithm provides a fast but often non optimal solution, involving placing
each item into the �rst bin in which it will �t. It requires O(nlog(n)) time, where n is the number
of elements to be packed. The algorithm can be made much more e�ective by �rst sorting the list of
elements into decreasing order, although this does not guarantee an optimal solution, and for longer
lists may increase the running time of the algorithm. Most of the contributions in the literature are
devoted to the case where the items to be packed have a �xed orientation with respect to the stock
unit, one is not allowed to rotate them.

5.1 Two-dimensional models

The �rst attempt to model two-dimensional packing problems was made by Gilmore and Gomory
[58]. They proposed a column generation approach based on the enumeration of all subsets of items
(patterns) that can be packed into a single bin. Let Aj be a binary column vector of n elements
aij(i = 1, ..., n) taking the value 1 if item i belongs to the jth pattern, and the value 0 otherwise. The
set of all feasible patterns is then represented by the matrix A, composed by all possible Aj columns
(j = 1, ...,M), and the corresponding mathematical model is:

min

M∑
j=1

xj

Subject to:

M∑
j=1

aijxj = 1, (i = 1, ..., n)

xj ∈ {0, 1}, j = (1, ...,M)

Where xj takes the value 1 if pattern j belongs to the solution, and the value 0 otherwise. Is easy
to see the immense number of columns that can appear in A so the only way for handling the model
is to dynamically generate columns when needed.

Beasley [3] considered a two dimensional cutting problem in which a pro�t is associated with each
item , and the objective is to pack a maximum pro�t subset of items into a single bin.

Figure 9: The Fekete and Schepers modeling approach

A completely di�erent modeling approach has been proposed by Fekete and Schepers [26], through
a graph-theoretical characterization of the packing of a set of items into a single bin. Let Gw = (V,Ew)

24

be an interval graph with a vertex vi associated with each item i in the packing and an edge between
two vertices (vi, vj) if and only if the projections of items i and j on the horizontal axis overlap (see
Figure 9). They proved that, if the packing is feasible then:

1. For each stable set S of Gw,
∑
v∈S wi ≤W

2. Ew ∩ Eh = ∅

5.2 Approximation algorithms

In the next sections we present o�-line algorithms (algorithms which have full knowledge of the input).
Two classical constructive heuristics algorithms and metaheuristics techniques are presented.

5.2.1 Strip packing

Co�man et al. [21]extended two classical approximation algorithms for one dimension to the two
dimensional strip packing problem. They assume that the items are sorted by non-increasing height
and packed in levels:

� Next-Fit Decreasing Height (NFDH) algorithm packs the next item, left justi�ed, on the current
level (initially, the bottom of the strip), if it �ts. Otherwise, the level is closed, a new current
level is created (as a horizontal line drawn on the top of the tallest item packed on the current
level), and the item is packed, left justi�ed, on it.

� The First-Fit Decreasing Height (FFDH) algorithm packs the next item, left justi�ed, on the
�rst level where it �ts, if any. If no level can accommodate it, a new level is created as in NFDH.
Figure 10 shows the result of an FFDH packing.

Figure 10: First-Fit Decreasing Height algorithm

5.2.2 Bin packing

Chung et al. [24] studied the following two-phase approach. The �rst phase of algorithm Hybrid First-
Fit (HFF) consists of executing algorithm FFDH of the previous section to obtain a strip packing.
Consider now the one dimensional instance obtained by de�ning one item per level, with size equal to
the level height, and bin capacity H. It is clear that any solution to this instance provides a solution
to two dimensions. Hence, the second phase of HFF obtains a two dimensional solution by solving the
induced one dimensional instance through the First-Fit Decreasing one-dimensional algorithm. The
same idea can also be used in conjunction with NFDH and BFDH. The time complexity of the resulting
algorithm remains O(nlog(n)).

5.2.3 Metaheuristics

Metaheuristic techniques are nowadays a frequently used tool for the approximate solution of hard
combinatorial optimization problems. We refer to Aarts and Lenstra [20] for an in introduction to this
area.

25

Dowsland [19] presented one of the �rst metaheuristic approaches. His algorithm explores both
feasible solutions and solutions in which some of the items overlap. During the search, the objective
function is thus the total pairwise overlapping area, and the neighbourhood contains all the solutions
corresponding to vertical or horizontal items shifting. As soon as a new feasible solution improving
the current one is found, an upper bound is �xed to its height.

5.3 Exact algorithms

An enumerative approach for �nding the optimal solution of bin packing was proposed by Martello et
al. [56]. Initially, the items are sorted by non increasing height, and a reduction procedure determines
the optimal packing of a subset of items in a portion of the strip, thus possibly reducing the instance
size.

Fekete and Schepers [25] recently developed an enumerative approach, based on their model (see
Section 5.1), to the exact solution of the problem of packing a set of items into a single bin by
determining, through binary search, the minimum height such that all the items can be packed into a
single bin of base W and height H.

26

Part IV

Space-optimized texture atlases

In this section we present an e�cient technique for generating space-optimized texture atlases for
the particular case of 3D buildings. Our method allows the visualization of a huge city in real-time.
We also encode self-repeating and uncontinuous signals such as building facades reducing the spatial
redundancy and compress these self-repeating details according perceptual measures.

Texture atlases are a well-known technique used to reduce the lack of batching (see Section3). With
the introduction of Texture Arrays it is possible to store a collection of images with identical size and
format, arranged in layers. An array texture is accessed as a single unit in a programmable shader,
using a single coordinate vector. A single layer is selected, and that layer is then accessed as though it
were a one or two-dimensional texture. Some articles used this technique to replace the use of typical
texture atlas. Sylvain Lefebvre [44] presents an approach to display properly �ltered tilings. Although
the bene�ts of texture arrays are clear (transparent integration, only one binding per array) we still
used texture atlas for two main reasons:

1. Texture arrays require all the layered images to have the same dimension. Our approach sup-
ports varying texture dimensions to bene�t from perceptual-driven and user-de�ned texel size
compression (see Section 7.1 and 7.2).

2. Texture arrays require DirectX 10 or higher disabling the compatibility with several graphical
cards.

6 Overview of the technique

Our technique have two main di�erent parts: the creation of the texture atlas and the real-time
visualization of the textured buildings. Given a set of textures that are assigned to polygons of the
scene, we have to compress and pack them into a single texture atlas. Once we have packed all the
required texture atlas, then we are able to visualize the buildings.

6.1 Creation of texture atlases

Our optimization scheme takes as input a tuple (M, I), where M is a textured polygonal mesh and
I = {Ii} is a collection of color textures. We assume M contains well-de�ned edges and thus texture
coordinates (s, t) are speci�ed per-corner. We also allow input (s, t) coordinates in M to be outside
the range [0, 1] to support repeating textures. Without loss of generality we assume s ≥ 0 , t ≥ 0.

In order to facilitate the integration of our scheme with LOD techniques, the user must provide
a parameter l with an upper bound of the desired texel size in object space. This parameter can be
easily computed from the viewing range associated with each geometry LOD level so that the screen
projection of each texel approximately matches one on-screen pixel.

We introduce in this Section a new pipeline, depicted on Figure 11 to generate a texture atlas:

1. Computation of object-space texture coverage. For each texture image, we count the number of
times r it is repeated, and the largest surface area ws × hs each tile it is mapped onto. For
example, an input image being referenced by a 48 × 48 quad with texture coordinates (0, 0),
(4, 0), (4, 6), (0, 6) has a repeat factor of 24 and each tile maps onto a 12× 8 patch of the surface
(see Section 7.1).

2. Image downsampling to match viewing conditions. Each input image I is downsampled according
to the user-de�ned texel size l (see Section 7.1). For example, the texture atlas for a detailed
LOD can be generated using e.g. l = 5cm/texel, whereas the texture atlas for a coarse LOD
might use l = 50cm/texel.

27

3. Image downsampling to match image saliency. For each image we compute horizontal and vertical
stretch factors according to perceptual-based image saliency measures (see Section 7.2). This
allows to further reduce the size of some textures with little perceptual impact on the rendered
image.

4. Texture packing. Texture images are packed into a single texture atlas while minimizing unused
space (see Section 7.3.2). We restrict ourselves to rectangular tiles as most tiled textures used in
modeling are rectangular to mimic 3D APIs REPEAT wrapping modes.

5. DXT1 compression [optional]. We also provide support to DXT1 compression minimizing the
artifacts and enabling mipmapping (see Section 8.1.5).

Figure 11: Texture atlas creation scheme

6.2 Real-time visualization

As we created all the required texture atlas, we are able to visualize in real-time the whole tridimen-
sional model. Three di�erent parts are described of this process:

� Texture wrapping. This stage, which is described in Section 8.1, involves the process of wrapping
each chart of the atlas onto the polygons of the scene and achieve a wrapping scheme able to
compress e�ciently the repetitive patterns. We present a wrapping scheme supporting mip-
mapping and DXTC compression.

� Building visualization. We describe the application fo our atlases to large city visualization. The
set of input buildings are partitioned using a quadtree presented in Section 8.2.1. The control
of level of detail is done with a texture atlas tree and guarantees a maximum number of texture
batches increasing the performance.

� Terrain visualization. The terrain is represented with a collection of tiles (see Section 8.2.3).
Each tile have associated a set of textures from lowest to highest resolution. The control of level
of detail is done in a way similar to the building visualization.

28

7 Creating optimized texture atlases

7.1 Image downsampling to match viewing conditions

We �rst downsample the textures according the texture coverage and a user-de�ned texel size l. Let
wi × hi be the dimensions of the input image Ii, and let ws × hs be the surface area each tile of Ii
is mapped onto. If lwi > ws or lhi > hs then we downsample the input image to (ws/l,hs/l) using
a bilinear �lter. Since the resulting downsampled image respects the user-de�ned texel size in object
space, we can safely assume that the image detail lost in this step will be visually indistinguishable
under the viewing conditions associated with the LOD level the texture atlas will be used for.

For a set of polygons P = p1, p2, ..., pn that have associated the same texture we assume that all
of them have similar area precision (meters/pixel). We want to obtain a new dimension of the texture
that will be inserted in the atlas �tting the new l. In general we have that the texel size coverage lp
of a polygon p is:

lpwidth(p) =
pwidth

ptextureWidth
lpheight(p) =

pheight
ptextureHeight

And we want the next conditions to match it with the user-de�ned texel size coverage:

lwidth = min (lpwidth (Pi)) lheight = min (lpheight (Pi))

So the new dimensions for the downsample image I
′
are calculated as:

I
′

width = min
(
Iwidth,max

(
lpwidth(Pi)
lwidth

))

I
′

height = min
(
Iheight,max

(
lpheight(Pi)
lheight

))
Notice that we get the minimum between the downsampled dimension and the available texture

space to avoid the use of unnecessary memory space.

29

7.2 Image downsampling to match image saliency

In Section 1 we reviewed di�erent metrics used to obtain a measure of the similarity between two
images. We also have seen that di�erent metrics may measure di�erent properties so it is di�cult to
compare them. In our case we want to measure the error introduced by the further subsampling of an
image. Then, given an image and a maximum error threshold we want to return a new subsampled
image with an error not greater than the selected maximum error.

The objective is to construct a perceptual-driven texture compression bounded by a given maximum
error. This will let us decrease the image quality within a tolerance. In the next sections we will
present a generic texture compression approach and two di�erent image comparison metrics used by
our method.

Given an input image Ii, our algorithm must �nd its smallest downsampled version Io such that
the di�erence between Ii and its reconstruction Ĩo from Io is below an user-de�ned error threshold,
measured by some perceptual-based metric. Therefore our algorithm must search for a pair (wo, ho)
representing the �nal size of Io. We restrict (wo, ho) to multiple-of-four values (the motivation of this
restriction is explained in detail in Section 8.1.4).

7.2.1 Generic image metric texture compression

We implemented a texture compression algorithm that reduces the dimensions of an image without
surpassing a given error threshold. Let Ii be the input image, Io the output compressed image, M
an image error metric and α the maximum user-de�ned error. An error value of zero returned by M
means that the two images are identical and an error value of one means that they are totally di�erent
from the viewpoint of the metric. So we must accomplish the next condition:

M
(
Ii, Ĩo

)
≤ α, α ∈ [0, 1] (1)

Since analytical formulae expressing the perceptual image di�erence in terms of downsampling
factor are rather complex, we adopt a much simple approach. Our algorithm performs a search of the
optimum (wo, ho) values using a dicotomic search. A �rst option is to �rst perform a dicotomic search
for the minimum width wo ∈ [4..wi] satisfying the error threshold, and then repeat the process for
�nding the minimum height ho ∈ [4..wi]. This algorithm requires log2 (wi)+log2 (hi) comparisons. For
typical 512×512 input size, this amounts for 18 image di�erence evaluations per input image. However,
since(wo, ho) are correlated, this approach tends to produce anisotropically-scaled images depending on
which coordinate is optimized �rst. Therefore we adopted a di�erent approach, consisting in searching
for the optimum (wo, ho) simultaneously, using wo and ho alternatively at each step of the binary search
(i.e. instead of recursively splitting the 1D interval [4..wi] and then 1D interval [4..hi], we split the
2D rectangular interval [4..wi] × [4..hi] alternating horizontal and vertical subdivisions. An example
of how the search space for the optimum (wo, ho) is reduced at each step of the binary search is shown
in Figure 12.

To approximate the dimensions of the output image Io that satis�es Equation 1, we perform a
binary search to detect the minimum size that has an error less or equal than the desired threshold.
The algorithm �rst decreases the image width while the error does not exceed the threshold (see
Algorithm 1). Then it decreases the height using the same method. The subsampling of an image is
done using a bilineal �lter. For better results, the pass is also done decreasing �rst the image height and
then the width (see Algorithm 2). Indeed we have not seen signi�cant di�erences between the output
images when swapping the order of the decrease at each iteration. In order to make it possible the
comparison between the subsampled image and the original image, we have to resize the subsampled
image to the original size also using a bilineal �lter.

30

Figure 12: Example of search space reduction using binary search. Each point of the square represents
a texture size (w, h). Upper row : search on w (�rst three steps) followed by search on h (three
more steps). Lower row : alternating search on w, h. Note that in general both approaches are not
guaranteed to �nd the same (wo,ho).

Algorithm 1 Subsampling image in one direction with error metric

function subsample_image(I, α, direction)
αlower = 0 {lower bound}
αupper = 1 {upper bound}
αc = 0 {current error}
while αc /∈ [α− λ, α+ λ] do {λ is a tolerance threshold}

φ = (αlower+αupper)
2

if decrease direction width then

Io =downsample_image_width(I, φ)
Ĩ = restore_original_image_width (Io)

else if decrease direction height then

Io =downsample_image_height(I, φ)
Ĩ = restore_original_image_height(I, φ)

end if

αc = M
(
I, Ĩ
)

if αc > α then

αlower = φ
else

αupper = φ
end if

end while

return last valid subsampled image

Algorithm 2 Compression of an image with error metric

function visual_metric_compression(image,error)
subsampled_wh =subsample_image(image, error, width)
subsampled_wh =subsample_image(subsampled_wh, error, height)
subsampled_hw =subsample_image(image, error, height)
subsampled_hw =subsample_image(subsampled_hw, error, width)
if size(subsampled_wh) > size(subsampled_hw) then

return subsampled_hw
else

return subsampled_wh
end if

31

7.2.2 Mean squared error metric compression

The �rst error metric we tested for the compression is the mean squared error di�erence that operates
on the spatial domain (see Section 1.1.1). For a pair of two pixels we take their intensity and calculate
the squared deviation. The global mean squared error is a value between 0 and 1 that quanti�es the
amount by which the metric estimator di�ers from the true value of the quantity being estimated.
We try to reduce the sensitivity of RMSE to the global-shift of image intensities using the normalized
squared error metric (see Section 1.1.2) instead of the typical RMSE.

In Figure 13 we see an estimation of the error caused by subsampling using the RMSE. The original
image is a facade detail on the lower right part of the �gure. The upper left graphic shows the error
due to the width subsampling and the right one because the height. The lower left graphic shows
simultaneous subsampling of width and height.

We see that the error tends to increase too much slowly as we increase the subsampling level. This
is a well-known problem of RMSE (see Zhou Wang et al. [73]). The di�erence between one pixel
and the corresponding subsampled and resampled pixel of a lower detail level will change slowly; the
subsampled colour is interpolated using a bilineal �lter and tends to be similar to the pixel with more
level of detail. In fact the comparison is done in a locally manner and this is not a desirable property if
we are trying to quantify the error of subsampling. So we clearly see that mean squared error does not
distinguish well the critical decrease of detail and the perceptual impact that has on the user. More
comparisons that illustrates this behaviour are shown in Section 10.1.

Figure 13: RMSE error of the subsampling of a facade detail

7.2.3 Human visual system metric compression

In order to improve the sensitivity of the RMSE metric we focused on the HVS-based metrics (see
Section 1.3).

Our human visual system metric is based on the paper of Yee et al. [78] that describes a perceptu-
ally based image comparison process that can be used to tell when images are perceptually identical
even though they contain imperceptible di�erences. Their technique has shown much utility in the

32

production testing of rendering software and focus on the VDP (see Section 1.3.2). The VDP gives the
per-pixel probability of detection given two images to be compared and a set of viewing conditions.
Daly's model takes into account three factors of the Human Visual System (HVS) that reduce the sen-
sitivity to error. The �rst, amplitude non-linearity, states that the sensitivity of the HVS to contrast
changes decreases with increasing light levels. This means that humans are more likely to notice a
change of a particular magnitude at low light conditions than the same change in a brighter environ-
ment. Secondly, the sensitivity decreases with increasing spatial frequency. For example, a needle is
harder to spot in a haystack than on a white piece of paper due to the higher spatial frequency of the
haystack. Finally, the last e�ect, masking, takes into account the variations in sensitivity due to the
signal content of the background. Yee et al. [78] also use an abridged version of the VDP in the same
way as Ramasubramanian et al. [63] in which they drop the orientation computation when calculating
spatial frequencies and extend VDP by including the colour domain in computing the di�erences.

Figure 14: Framework of the CIELAB colour model

We are assuming that the reference image and the image to be compared are in the RGB colour
space, so the �rst step will be the conversion of the images into XY Z and CIELAB space. XY Z is a
colour space where Y represents the luminance of a pixel and X, Z are colour coordinates. CIELAB is
a colour space designed to be perceptually uniform, where the Euclidean distance between two colours
corresponds to perceptual distance (see Figure 14). L also represents luminance and A, B are colour
coordinates This conversion step is described in Glassner [32].

To compute the threshold elevation factor F , or how much tolerance to error is increased a spatial
frequency hierarchy is constructed from the Y channel of the reference image. This step is e�ciently
computed using the Laplacian pyramid of Burt and Adelson [7]. The pyramid enables to compute the
spatial frequencies present the image to determine how much sensitivity to contrast changes decreases
with increasing frequency. The pyramid is constructed by convolving the luminance Y channel with a
separable �lter.

Following Ramasubramanian et al. [63] we compute the normalized Contrast Sensitivity Function
(CSF) multiplied by the masking function given in [16] to obtain the combined threshold elevation
factor, F . We compute some of the intermediate variables from the �eld of view (fov) and the image
width with the following from Ward et al. [43]:

pixelsPerDegree =
width× π

360 tan
(
fov
2

)
cyclesPerDegree =

pixelsPerDegree

2
Where fov is the horizontal �eld of view in radians, width is the number of pixels across the screen.

The top level of the Laplacian pyramid corresponds to frequencies at cycles per degree and each level

33

thereafter is half the frequency of the preceding level. Typical values for fov and width are discussed
in the next section. The CSF is computed as a function of cycles per degree and luminance.

Finally two tests are performed to know if the images are perceptually di�erent. If the di�erence
of luminance between two corresponding pixels in the reference and test images is greater than a
threshold, then the �rst test fails. The threshold is de�ned by the average of pixels in a one degree
radius from the Y channel of the reference image. The second test is performed on the A and B
channels of the reference and test images using a scale factor that turns o� the colour test in the
mesopic and scotopic luminance ranges (nigh time light levels) where colour vision starts to degrade.

We have done some modi�cations in the original algorithm of Yee et al. [78] to adapt it for our
requirements. We do not want to decide only if two images are di�erent or not as we want to quantify
this di�erence. So we take the total number of pixels that failed the HVSE test and divide it by the
total number of pixels of the image giving us a value between 0 and 1. Then a value of 0 means that
the images are identical and 1 that are totally di�erent in terms of human perception.

Figure 15: HVSE error of the subsampling of a facade detail

In Figure 15 we see an estimation of the error caused by subsampling using the HVSE with the
same presentation scheme as used in Figure 13. The luminance for the HVS calculations has been
established at a default 100cmd−2. It is important to notice that the y axis of Figure 15has more error
range than the y axis of Figure 13.

As we see HVSE has more sensitivity to the e�ect of subsampling compared with RMSE in all the
three tests and is more reactive to the increase of subsampling. As we have more range of error with
HVSE it also means that we have more resolution and furthermore it is designed to react better with
the human visual system conditions. So we decided to use HVSE for our compression scheme based on
visual tolerance, although it is slower than the classical RMSE. In Section 10.1 we show more examples
of this low RMSE sensivity.

34

7.3 Texture atlas packing

We need to pack a set of rectangular textures with varying sizes into a single texture atlas. The size
of a texture atlas must be a power of two to make an e�cient use of texture hardware memory. We
use a Binary Space Partition [70] to de�ne the space occupied by each input texture. An overview of
our bin packing is shown in Algorithm 3. The input parameters are a collection of textures, an area
precision (meters per pixel) and visual metric tolerance.

We �rst sort the input textures from the biggest to the smallest. This is a common step also used
by strip bin packing [21] to optimize the occupied space. The next step, consist in predicting the
minimum size of texture atlas and increase it while we do not have enough space. Finally we optimize
the size of the inserted textures growing them progressively. In the next sections we will explain in
detail each of these mentioned steps.

Algorithm 3 Texture atlas bin packing

Sort textures from biggest to smallest
Calculate the minimum size of texture atlas
valid_size = Insert all the textures in the atlas
while (not valid_size) do

Increase size of atlas
valid_size = Insert all the textures in the atlas

end while

Optimize inserted textures

7.3.1 Predicting the minimum size of texture atlas

We de�ne the initial size of the texture atlas taking in account the sum of all the sizes of input textures.
Let I = i1, i2, ..., in be the input set of textures. The initial width and heigh are de�ned as:

α = log2

 n∑
j=1

iwidthj × iheightj


width = 2[α2] height = 2α−[α2]

This formula returns a width and height potency of two and minimum size to contain the input
textures. To increase the size of the texture atlas to the next greater valid size, we just sum one unit
to α and update the corresponding widht and height.

7.3.2 Texture atlas binary tree

A node of the texture atlas binary tree de�nes a rectangular region of the texture atlas. The root of
the tree de�nes the whole texture space. If a node is a leaf, it may be either occupied by a single
texture or unoccupied. If not, has two child nodes that overlap all the space of the parent node (see
Figure 16).

We call the insert function (see Algorithm 4) passing it the root node and the width and height
of the texture atlas. If the texture is too small we just return. We accept if it �ts perfectly on the
node. Otherwise we split the node in the direction (by width or height) that provides more space for
the input image and recursively call the insert function. So the insertion time takes O(log(n)).

35

Figure 16: Binary tree structure

Algorithm 4 Inserting an image

function insert (nod)
if node is empty and is a leaf then

if is too small then
return

end if

if is just right then

accept node and return
end if

split the node in the direction with more space
insert (node.left)

else

insert (node.left)
insert (node.right)

end if

7.3.3 Optimizing texture space

We also optimize the occupied space of input textures after we have inserted them on the hierarchy.
Since we have the restriction to only deal with texture sizes power of two, a considerable amount of
unused space may appear. The optimization process has two steps explained below.

First we perform a binary search taking the lower bound as the current size of each inserted textures
and the upper bound the maximum size of the texture. We just iterate trying to optimize the stretch
and obtain the maximum occupied space (see Algorithm 6).

Then for each pair of leafs of the BSP tree, in the case we have one �lled with a texture and the
other one empty, we just expand the �lled one to occupy the empty space (see Algorithm 5). This
enables us to obtain a �nal 100% occupation of the texture atlas. Packing results are described in
Section 10.2.

36

Algorithm 5 Filling the space between leafs

function �ll_leaf_space (node)
if node has leafs then

if right node is empty and left node is �lled then

Expand left node to occupy also right node
else if left node is empty and right node is �lled then

Expand right node to occupy also left node
end if

else

�ll_leaf_space (node.left)
�ll_leaf_space (node.right)

end if

Algorithm 6 Optimizing texture stretch

repeat

for each texture do

New texture size equals (lower bound size + upper bound size) / 2
end for

Insert stretched textures to atlas
for each texture do

if valid atlas then

Update texture lower bound
else

Update texture upper bound
end if

end for

until not convergence of lower and upper bound

37

8 Rendering optimized texture atlases

8.1 Texture wrapping

Once we have all the textures packed into a single texture atlas we want an e�cient method to wrap each
self-repeating texture onto the geometry. Furthermore we want to support mipmaps: a pre-calculated,
optimized collections of images that accompany a main texture, intended to increase rendering speed
and reduce aliasing artifacts [76]. Our method is based on the use of an specialized texture coordinate
that compactly represents the repetitive textures. In addition we add a border to each packed texture
in order to transparently support mipmapping. In the next subsections we will present �rst the process
of mapping and compression of the original textures, the real-time decompression, the developed way
to use mipmapping and �nally the requirements to adapt the wrapping using DTXC compression.

8.1.1 Mapping of the texture coordinates

We have tested several ways to encode the texture coordinates of the charts packed into a texture
atlas. For any chart we have the next constraints (all the dimensions are in the normalized range [0, 1]
):

1. Origin of the chart O

2. Size of the chart S

Our texture atlases support periodic texture tiling by mimicking OpenGL's GL_REPEAT wrapping
mode. Since all the charts are rectangular, this support can be e�ciently implemented on a fragment
shader with minimum processing overhead. Suppose that, in the input model, a primitive had assigned
a periodic texture T . After packing, image T occupies a certain rectangular region of the texture atlas.
Let O,S be the origin and the size of T in the texture atlas, in normalized coordinates (see Figure
17). Typically, texture atlas construction implies replacing the local (s, t) coordinates of the primitive
by global (s′, t′) coordinates to re�ect the new parameterization. In our texture atlases all charts are
axis-aligned rectangles, so conversion to global coordinates can be done using this equation,

[
s′

t′

]
=
[
Sx 0 Ox
0 Sy Oy

] s
t
1



Figure 17: Packed texture coordinates on the atlas

Unfortunately, the above conversion from local to global coordinates is valid only for input (s, t)
coordinates in the range [0, 1], which is not the case for tiled textures. Therefore we let the application

38

Encoding of (O,S) Memory Space App⇒GPU Vertex Program VBO compatibility

Option 1 uniform vec4 4 �oats/T 4 �oats/T none No

Option 2 attribute vec4 4 �oats/T 12 �oats/T copy vec4 to varying Yes

Option 3 As part of s,t coords none none decode s,t,origin,size Yes

Table 1: Space and processing overheads of the three options considered for tiling periodic images

keep the input coordinates (s, t) in local space. During rasterization, these local coordinates will be
interpolated on a per-fragment basis. We then let the fragment shader perform the conversion to global
coordinates using this straightforward formula,

[
s′

t′

]
=
[
Sx 0 Ox
0 Sy Oy

] fract(s)
fract(t)

1

 (2)

where now (s, t) are per-fragment interpolated values.
We are multiplying the fractional part of original textures by the chart size and then adding

the o�set of the origin. The new coordinates (s
′
, t
′
) can be used to query the value on the atlas

associated with the original coordinates (s, t). This local transformation can be easily integrated using
the programmable rendering pipeline. We just need to transform in the fragment shader the (s, t)
coordinates and use them for the texture lookup.

The algorithm 7 of the appendix shows the simple GLSL shader code of the texture mapping using
the mapping function of Equation 2. With the standard texture lookup functions the implicit level of
detail is selected as follows: for a texture that is not mip-mapped, the texture is used directly but if it
is mip-mapped and running in a fragment shader, the LOD computed by the implementation is used
to do the texture lookup. If it is mip-mapped and running on the vertex shader, then the base texture
is used. But that is not valid using a texture atlas because we are referring a local coordinate for each
chart and we need to specify the derivatives using the local coordinates. So we enable the extension
GL_ARB_shader_texture_lod in order to use the function texture2DGrad that makes a texture
lookup with explicit gradients (visit www.opengl.org/registry/doc/GLSLangSpec.Full.1.40.05.pdf for
more information).

We have explored three di�erent options for passing the tuple (O,S) to the fragment shader (see
table 1). In the following discussion we use GLSL terminology. A �rst option that suggests itself
is to encode (O,S) in a vec4 uniform variable that the application must send for each textured
primitive. This implies an overhead of storing and transmitting 4 �oats per triangle. Unfortunately,
the current OpenGL speci�cation does not support binding uniform variables to bu�er objects, i.e.,
uniforms cannot be modi�ed in a vertex array. Therefore this approach is not compatible with using
Vertex Bu�er Objects (VBOs) for rendering groups of primitives, which is the most e�cient rendering
mode in current graphics hardware.

A second option is to send (O,S) data as attributes. The main advantage is that attributes can be
bound to bu�er objects and hence the option is compatible with VBOs. The memory requirements for
the application are the same as in the previous option. The transmission overhead, though, depends
on the rendering mode. For VBOs, the attribute must be speci�ed on a per-corner basis (OpenGL
only supports a single index bu�er for vertex-arrays). This leads to a transmission overhead of 12
�oats per triangle.

The third option we considered attempts to minimize space and transmission overheads (see Section
8.1.2). A key observation is that texture coordinates are represented in 32-bit single precision �oating-
point format. However, the maximum texture size supported by state-of-the-art graphics hardware
is 4096×4096. Addressing a texel on such a texture requires only 12 bits. Therefore, we can use the
unused bits to encode (O,S) data. In our implementation, each (s, t) coordinate is replaced by the

39

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.40.05.pdf

following 32-bit mask.

8.1.2 Compression of the texture coordinates

We make some assumptions on the size and position of the charts in order to allow texture coordinate
compression. First of all we consider that the maximum size of a texture atlas is 4096x4096 pixels and
the maximum size of each chart is of 512x512 pixels. Also the size of the atlas and the charts must be
multiple of four so we only need 10 bits to encode the origin and 7 bits to encode the size. About the
original (s, t) coordinates, the integer part must be in the [0..63] range (6 bits) and the fractional part
in the [0..511] range (9 bits). All these restrictions allows us to encode with two unsigned integers (32
bits) all the required information for texture mapping (see Figure 18):

1. Original texture coordinate s or t (15 bits)

(a) Integer part (6 bits)

(b) Fractional part (9 bits)

2. The origin of the chart Owidth or Oheight (10 bits)

3. The size of the chart Swidht or Sheight (7 bits)

So we only have to send two packed components per vertex. We have seen that generally this memory
layout �ts well with our test application but the amount of bits used for each encoded attribute can
be modi�ed to match the requirements of another application.

Figure 18: Encoding of a compressed texture coordinate

8.1.3 Decompression of the texture coordinates

The decompression of the packed coordinates (see Section 8.1.2) is done in the vertex program stage.
The two encoded unsigned integers composed by (s,Owidth, Swidth) and (t, Oheight, Sheight) are decom-
pressed using the integer operators incorporated in the extension EXT_gpu_shader4 of Nvidia (visit
http://www.opengl.org/registry/specs/EXT/gpu_shader4.txt for more information).

The algorithm 7 of the appendix shows the simple GLSL shader code of the decompression of
coordinates.

8.1.4 Texture mipmapping and �ltering

Mip-mapped textures are essential for achieving any kind of rendering performance. Packing mip-
mapped textures into an atlas, however, seems to imply that the mipmaps of these charts combine,
until eventually the lowest mip-level of 1 × 1 resolution smears all textures of an atlas into a single
texel. We see that the use of texture mipmapping in combination with texture atlas is a more complex
problem than using a single image.

So the �rst problem arises when we want to determine the lowest mip-level that we are able to use.
In the Figure 19 we see a texture atlas with a set of charts represented by di�erent colours. When we

40

http://www.opengl.org/registry/specs/EXT/gpu_shader4.txt

generate the mip-level with a 1 : 8 reduction, we get three texels with an unexpected colour due the
incorrect mix of the upper level charts.

Figure 19: Uninitialized texels at the 2x2 and 1x1 mipmaps for an atlas containing 8x8 and 4x4 textures

When we pack textures directly into an atlas texels they are never combined (just copied) and no
smearing or cross-pollution occurs. But when we generate the mip-map chain, uninitialized texels may
appear. In the technical report of Nvidia [1] related to texture atlas, they propose a simple solution for
this problem. Even generating mip-map chains of atlases on the �y with a two-by-two box �lter does
not pollute mip-maps with neighbouring texels, if the atlas is a power-of two texture and contains only
power-of-two textures that do not unnecessarily cross power-of-two lines. As the various mip-levels are
generated, texels of separated textures do not combine. Also because textures can di�er in size and
large textures have longer mip-chains than smaller textures, the largest texture packed into an atlas
determines the number of mip-map levels in the atlas. So they abridge the mip-chain of an atlas to the
length of the mip-chain of the smallest texture contained in the atlas. However, that would typically
have severe performances and image quality implications. Furthermore, the restriction that each chart
must have a power-of two dimension drastically reduces the available sizes of charts.

More problems overcome when we want to support texture �ltering: the method used to determine
the texture colour for a texture mapped pixel, using the colours of nearby texels. Artifacts may appear
at the borders as we use texels from foreign textures to �lter. For the highest resolution mip-level,
a possible solution is to clamp to the edge the texture coordinates sampling a texel at its center on
the border: even when bilinear �ltering (in this method the four nearest texels to the pixel center are
sampled at the closest mipmap level, and their colours are combined by weighted average according to
distance) is enabled only that texel contributes to the �ltered output. So the new texture coordinates
must be in the range:

(s, t) ∈
(

1
2width

. . . 1− 1
2width

,
1

2height
. . . 1− 1

2height

)
While bilinear �ltering of the highest resolution mip-level is safe, anisotropic �ltering of the same

mip-level does potentially access unrelated neighbouring texels. Worse, bilinear and anisotropic �lter-
ing of all lower mip-maps also access unrelated neighbouring texels, as Figure 20 demonstrates. The
most left �gure shows the sampling of corner texels at the highest mip-level clamping to the edge, so
we do not have neighbour contribution to the �ltering. But at the two next �gures, corresponding to
lower mip-levels, the same coordinates are no longer dead-center, producing an incorrect �ltering.

41

Figure 20: Bilinear �ltering of lower mip-levels accesses texels from unrelated neighbouring textures

Taking account of all this mentioned problems, we developed a mipmapping and texture atlas
�ltering scheme capable to do bilinear �ltering and generate a mip-map chain, without the restriction
of having only power-of two dimensions of the charts.

The �rst constraint is introduced by the texture coordinate compression (see Section 8.1.2). Each
chart must have a dimension multiple by four. Indeed, this restriction is less hard than to have a
power-of two dimension. For example, in a texture atlas with 1024 pixels of width, we have 256
possible dimensions with our method. With the power-of two restriction we have only ten. Indeed, the
maximum mip-map levels per atlas is two, as the smallest dimension we may have is four. But that
is not a signi�cant problem, as we are using a progressive representation of the level of detail through
a hierarchy (see Section 8.2). We use a two-by-two box �lter for the mip-map chain generation,
guaranteeing that texels of separate textures do not combine until we do not reach more than two
mip-levels.

To provide bilinear �ltering we thought about two di�erent techniques:

1. The �rst solution is to use a fragment shader to clamp atlas coordinates to corresponding charts
taking into account which mip-level the texture operation is about to access. For the highest
mip-level the atlas coordinates remain unchanged, yet for lower mip-levels the atlas coordinates
are remapped closer to the center. This technique requires pixel shader 2.0 support and a
comparatively complex and expensive shader.

2. The second solution is to pad textures and their mip-chains with border texels. That consumes
more space, but provides a transparent integration in the texture �ltering pipeline and the mip-
map chain does not involve any special requirement aside the typical box subsampling. In the
next section we will explain in detail this approach and the integration with our technique.

8.1.5 Texture atlas �ltering

We add a border for each chart that replicates the repeating e�ect. Let b be the size of the border,
(Owidth, Oheight) the chart origin and (Dwidht, Dheight) the height. Then we have that the �nal origin
(Ofwidth, Ofheight) and size (Dfwidht, Dfheight) is:

(Ofwidth, Ofheight) = (Owidth − b,Oheight − b)

(Dfwidht, Dfheight) = (Dwidht + 2b,Dheight + 2b)

The cost of increasing the size with this padding is:

DfwidhtDfheight = DwidthDheight + 2b (Dwidth +Dheight) + 4b2

So we have an additional cost of 2b (Dwidth +Dheight)+4b2. In our case b ∈ [0, 2] , so the maximum
size penalty is approximately four times the sum of width and height of a chart. We are sacri�cing
spatial cost to transparently integrate the method in the graphical pipeline. But as we said, this
amount of extra size will not be critical as long as the maximum mip-levels per atlas is two.

42

This padding enables us to select the available mip-levels depending on the border. Let M ∈ N be
the number of mip-map levels supported (where 0 is the base texture and M is the lowest mip-level)
and fb (M)a function that returns the border used for M mip-levels, we have in general that:

fb (M) =

{
0 M = 0
2M−1 M > 0

(3)

If we do not have mip-maps no border will be required thanks to the clamp to edge technique. If
we have one mip-map a border of on texel will be enough. With two mip-levels we will use a border of
two texels. We want that the interpolation in the lower mip-levels takes only the colours of the chart
(not the neighbours). As we see in the Figure 21, we have a texture with 4×4 pixels and we also want
to support two mip-levels, so we add a border with two pixels. As we reduce the resolution through
the lower mip-levels the corner points clamped to the edge never reaches further from the dead-center.
This property ensures us that the �nal interpolated colour of the borders will always take the proper
colours.

Figure 21: Correct bilinear �ltering scheme in a 16x16 chart with 2 border texels and 2 mip-levels

We see in the Figure 22 an incorrect bilinear �ltering scheme using only one border and storing
two mip-levels. In the �rst mip-level reduction the corners still get valid colours, but at the lowest
mip-level the corners will take colours from neighbouring charts, giving us incorrect results.

Figure 22: Incorrect bilinear �ltering scheme in a 16x16 chart with 1 border texel and 2 mip-levels

Finally we have that the required border for a given mip-level M is given by fb (M) and is the
result of a power-of two exponential function (see Equation 3).

8.1.6 Texture atlas support for DXTC compression

The DXTC system introduced in Section 2.1 provides a method to compress textures and decompress
them in real-time. Furthermore, graphical hardware has and optimized support to make this decom-
pression faster. Thanks to these advantages, we decided to use it to encode our texture atlas using a
DXTC compression scheme.

43

But a problem appeared when we enabled one or two mip-levels per atlas. Instead we applied the
constraints described at Section 8.1.4 smaller artifacts appeared in some boundaries of the textures.
However in most of the cases the error was somewhat imperceptible, we tried to �nd the underlying
problem. That problem is clearly focused on the compression stage as we do not have any boundary
error without using DXTC compression.

If we analyze the system used for compression by DXTC, we see that it converts a 4 × 4 block of
pixels to a 64-bit or 128-bit quantity resulting in a lossy compression algorithm. So we have a lossy
mixing for each 4× 4 cell of the image. In the case of DXT1 (used to encode only colour) we store 16
input pixels in 64 bits of output, consisting of two 16-bit RGB 5:6:5 colour values and a 4x4 two bit
lookup table. In the decompression stage, if the �rst colour value c0 is numerically greater than the
second colour value c1, then two other colours are calculated, such that:

c2 =
2
3
c0 +

1
3
c1 c3 =

1
3
c0 +

2
3
c1

Otherwise, if c0 ≤ c1then:

c2 =
1
2
c0 +

1
2
c1

And c3 is transparent black corresponding to premultiplied alpha format. The lookup table is then
consulted to determine the colour value for each pixel, with a value of 0 corresponding to c0 and a value
of 3 corresponding to c3. The DXT1 does not store alpha data enabling higher compression ratios.
So taking account that the cell used for the block decomposition has a dimension 4× 4 we introduce
the next additional condition: for every mip-level and chart, the block decomposition only a�ects each
chart so the mixing is never done between neighbour charts. This ensures us that the boundaries will
not have artifacts because there is no incorrect interaction between charts.

So instead to having a dimension multiple per four it will be di�erent depending on the maximum
available mip-levelM . What we want is to have in the lowest mip-level a set of charts with a dimension
multiple and not less of four. Let fd (M,α) be a function that returns the possible dimension of a
chart given a maximum mip-level M and a scale factor α we have that:

fd (M,α) = 4α (M + 1) α ≥ 1 (4)

We see that this is a constraint less �exible than the introduced in Section 8.1.4. If we do not have
mip-maps (M = 0) the dimension constraint will be those introduced by the coordinate compression
(multiple of four), but for a maximum mip-level of one or two we have the condition to having a
dimension multiple of eight and sixteen respectively. Instead for two levels the restriction is hard than
having a power-of two dimension, we have less dimensions available for each chart, then loosing some
compression power. However, there are two points that make them more preferable than to do not use
texture compression:

1. Higher compression ratios varying between 4:1 to 8:1 that fully compensates the cost to truncate
to a valid size of the charts.

2. Thanks to the hierarchical scheme (see Section 8.2) a maximum number of two mip-levels are
required for each texture atlas node of the quadtree. This reduces the strenght of the limitation
described in Equation 4 to make suitable the DXTC compression for the atlas.

44

8.2 Real-time visualization

We developed a method to visualize a huge collection of buildings with several textures in real-time
using our space-optimized texture atlas. Most of the performance gain comes from the fact that texture
batching is heavily decreased. Furthermore, we can guarantee that this batching will never reach a
given threshold thanks to the space subdivision. In the next sections, we will present the hierarchical
representation of the set of buildings and the level of detail technique used for the texture mapping of
repetitive details.

8.2.1 Texture atlas tree

A texture atlas tree, introduced by Buchholz and Döllner [6] de�nes a quadtree subdivision of the scene
in the x-z-plane and a corresponding hierarchy of texture atlases. Each node represents a part of the
scene geometry and stores its bounding box. The atlas of an inner node contains downsampled versions
of its child nodes. The scene geometry is stored in the leaf nodes. For each frame, the tree provides
a small collection of texture atlases containing each visible texture of the scene at an appropriate
resolution. The computation of the necessary texture resolution is explained in more detail in Section
8.2.2.

Our texture atlas compression algorithm has been designed to be used in combination with a
hierarchical subdivision of the scene. In the case of urban models, we use a quadtree encoding a
hierarchy of multiresolution texture atlases. This hierarchy can be seen as a coarse-level collection of
mipmapped texture atlases (we say it is coarse-level because all primitives associated with a quadtree
node share the same �mipmap� level). The geometry associated with each quadtree node is rendered
using a pre-�ltered texture atlas whose charts have been scaled down so that their size approximately
matches the size of the screen-projection of the polygons they are mapped onto (see Section 7.1),
under the viewing conditions causing the quadtree node to be selected for drawing. We use a texture
atlas tree to represent all the buildings and consider that they are placed in a two dimensional space
and classi�ed by the building height. Let B be a set of buildings and n the maximum deep of the
subdivision, we de�ne a criteria that classi�es each building of B in a di�erent quadrant taking account
the proximity of the quadrant center. The Algorithm 9 referred on the annex clearly illustrates this
process.

Figure 23: Hierarchical texture atlas representation

However there are some di�erences between the texture atlas tree proposed by [6] and our system.
Their scheme requires that all the atlas have equal size but our system does not have this limitation.
Furthermore, with their solution two sets of texture coordinates are speci�ed for the triangles, one

45

referring to the original textures, and the other referring to the texture atlas of the leaf node: we only
use one set of compressed textures (see Section 8.1.2) per atlas.

In the Figure 23 we see an example of a texture atlas tree using a bin-tree hierarchy. In the upper
level N we have a texture atlas containing the subsampled textures of the level N − 1. As we see, this
system provides a level of detail technique that tries to minimize the texture batching lack. We also
see that the total number of texture atlas required for a quadtree with deep n is

∑n
i=0 4i.

For each node we store a value that de�nes the area precision (meters/texel) of the associated
texture atlas. In the preprocessing stage, where we build each texture atlas, we use this area precision
to scale the charts to an appropriate dimension. We �rst de�ne the area precision of the leaf nodes
of the texture atlas tree and then recursively set the upper levels with a lower area precision. Let
L ∈ [1..Nr] be the current level in the atlas hierarchy (where L = 1 refers to the leaf nodes and L = Nr
to the global root node), λl the area precision selected for the level 1 and λ (L) a function that returns
the area precision for a given level L. We set this function as:

λ (L) = αL−1λl

Where α > 1 is a scale factor of the subsampling force. The clever selection of the deep tree N and
the value of α is a key to achieve better visual results and performance. We also have to consider the
mipmapping when selecting α: di�erent mip-levels may be applied to a level L considering the area
precision λ(L+ 1) of the upper level.

For our implementation, we set α = 8, Nr = 2 and λl = 0.05. That means that the highest
precision is set to 0.05 m/texel and we do not subdivide more than two levels on the quadtree. The α
factor progressively subsamples lower resolution levels multiplying by eight the area precision.

Buchholz and Döllner also add a texture border area (see Section 21) to the required texture
area to avoid mixing adjacent textures in downsampled versions of the texture atlas. But for their
implementation they use a constant border width of eight texels guaranteeing the avoidance of texture
pollution for the �rst three down-sampling levels. Indeed, that supposes heavy waste of memory. So
we decided to minimize the amount of memory used for the mipmapping, and designed an adaptive
scheme capable to use texture atlas with di�erent mip-levels. We will need more mip-levels in the
texture atlas with highest area precision than for example in the texture atlas of the parent node,
where in our implementation reaches a 3.2 meters/texel area precision. Let Mip (L) be the number of
mip-levels associated to a level L of the tree, we can limit the necessary number of mip-levels seeing
how the mipmapping subsampled is done: the reduction is done dividing by two the dimensions of the
texture atlas. So we de�ne Mip (L) as:

Mip (L) =

{
0 L = N

log2 (α)− 1 L < N

For the node with lowest resolution we do not need any mipmap. For the next nodes with more
precision, Mip (L) is de�ned by the scale factor between the lower and upper level of resolution. We

see that this scale is in fact the scale factor α = λ(L+1)
λ(L) . So in our case we have a �xed requirement on

the number of mip-levels for all the levels (Mip (L) = 2) except for the lowest resolution level. So we
are storing the pyramid of subsampled texture atlas explicitly in the quadtree hierarchy and implicitly
in the mip-levels associated to each texture atlas. Table 2 shows the resulting λ (L) values associated
by each L level, and the mip-level deep Mip (L) used.

Table 2: Area precision and mip-level associated to each atlas tree level of our implementation

L λ (L)(m/texel) M (L)
0 0.05 2
1 0.4 2
2 3.2 0

46

Indeed, we have seen that is enough to assignMip (1) = 1 for the middle level, because the �ltering
artifacts are less noticeable than in the highest resolution level, where we use two mip-levels.

8.2.2 Building rendering

The rendering is performed by a top-down traversal of the texture atlas tree. For each traversed node
we perform a view frustum test: if the bounding box is completely outside the view frustum the node
is skipped. If it is visible, we compute the point of the bounding box node nearest to the viewer and
the distance d to this point. This information is used to calculate the screen projection Sproj given an
area precision λ. For simplicity, we assume identical scale factors for both screen axes (see Figure 24).
The screen projection of a line segment of the length world viewed from the distance d has maximum
size if it is oriented orthogonal to the viewing direction. Let w be the viewport widht, and f the �eld
of view angle in the y direction, we obtain a projection factor:

Sproj =
λw

2d tan
(
f
2

) (5)

If Sproj is less or equal than a texture resolution threshold tres (texel/pixel), the texture atlas of
the current level of resolution is binded and used to wrap the textures. The texture resolution is chosen
in a way that the texel-per-pixel ratio is always near to one (tres = 1) in order that the amount of
necessary texture data remains diminished. However the texel-per-screen pixel ratio can be increased
to decrease the texture quality and increase the performance.

Figure 24: Screen projection factor scheme

The quadtree subdivision guarantees that for a given maximum deep, we also have a maximum
texture binding switches. In general for a deep n the maximum texture batches is from the order of 4n.
So if we have two maximum levels of deep of our quadtree, the maximum number of texture batches is
only sixteen. In some applications with several textures it means a very signi�cant performance gain.
Furthermore, for huge environments this batching bound is rarely reached because it only occurs when
we are seeing all the scene and we require the maximum resolution for each node.

8.2.3 Terrain visualization

We render the terrain using aerial photos projected on a planar surface. We use a regular partition
subdivision of the terrain in tiles. For each tile we have associated a collection of photos with di�erent
resolutions that represents the tile region. To increase the performance, we use a quadtree where the
leafs are the tiles and the root represents the whole terrain. The rendering is performed by a top-down
traversal of the tile tree. As with building rendering (see Section 8.2.2) for each traversed node we
perform a view frustum test and discard it if is completely outside from the view frustum. When we
reach the visible leafs, we have to select the appropriate resolution of the texture. We also use the
Sproj(see equation 5) with λ = 1 as we want to determine the screen projection of one meter of the

47

tile at the minimum distance d. Let tlenght be the length of the tile and vy the vertical component of
the vector joining the viewer and the nearest point of the tile. Then, the required resolution Sres in
pixels is de�ned as:

Sres = Sprojtlenghtvy

The value Sres give the required resolution for a distance and viewer orientation. To take advantage
of the graphical pipeline we recommend to use power-of two textures to represent the di�erent levels
of detail of each tile. In our implementation, we used for the highest level of detail a resolution of
512× 512 and the successive downsampled versions until the 32× 32 resolution. In the Figure 25 we
can see a simple 2D scheme of the level of detail used in terrain rendering. The nearest tiles use higher
resolution tiles and as we get far lower resolution textures are used.

Figure 25: Terrain rendering LOD example

Highest to lowest resolution: blue, orange, green and purple

One advantage to load separately each resolution version of a tile (instead to store implicitly in
a mipmap pyramid) is that at each rendering time we only load the necessary texture tiles. We use
a simple texture cache scheme that loads onto the memory the used texture tiles and unloads them
when the cache reaches a prede�ned maximum amount of memory or number of texture units.

48

Part V

Results

9 Test speci�cations

9.1 Test model

The model we used to test our technique covers an area of 234.4 km2 of Barcelona. The Tables 3 and
4 show the geometry and texture information respectively of the test model. The Figure 26 shows a
set of thumbnails of the facade textures.

Table 3: Test model geometry information

Triangles 3,266,469
Vertices 6,307,109
Buildings 93,111

Building blocks 13.879
Terrain area 108.43 km2

Total surface area (facades+ceilings) 234.4 km2

Table 4: Test model texture information

Number of distinct textures 23,939
Memory space without compression 18 GB (3 bytes/texel)

Memory space with DXT1 compression 3 GB (0.5 bytes/texel)
Memory space with JPEG compression 0.5 GB (36:1)

Average resolution 0.5 cm2/texel
Needed texture memory space for all the city withouth wrapping 4.2 Tera texels

Needed memory space for all the city without compression 12.6 TB (3 bytes/texel)
Needed memory space for all the city with DXT1 compression 2.1 TB (0.5 bytes/texel)

Figure 26: Thumbnails of a set of Teleatlas textures

49

9.2 Hardware tested

The hardware used for all the tests was:

Table 5: Hardware speci�cations

Graphics card Nvidia Geforce GTX 260
CPU Intel Core 2 Quad 2.33 Ghz

RAM memory 3.25 GB

50

10 Space compression

Space compression results analyzes the image dowmsampling and compression of a set of eight test
images. Also tests the compression achieved by the test model varying the tolerance and the error
metric. The speci�cation of the test images are follows:

Table 6: Test image speci�cations

Name Dimensions Snapshot

Window 512x512
(a)

Rocktile 500x375
(b)

Bricktile 499x366
(c)

Fabrictile 400x300
(d)

Textureatlas 400x400
(e)

Crayons 516x341
(f)

Boat 500x336
(g)

Aerialphoto 521x512
(h)

51

10.1 Image downsampling

10.1.1 Downsampling function of test images

The next �gures show the associated downsampling function of each test image. The vertical coordinate
indicates the metric error obtained and the horitzontal one the downsampling direction (width, height
and both). The root mean square error is denoted by a red line and the human visual system metric
by a green line. The original test image is shown on the lower right region of the �gures.

Figure 27: Window downsampling function

Figure 28: Rocktile downsampling function

52

Figure 29: Bricktile downsampling function

Figure 30: Fabrictile downsampling function

53

Figure 31: Textureatlas downsampling function

Figure 32: Crayons downsampling function

54

Figure 33: Boat downsampling function

Figure 34: Aerial photo downsampling function

As said in Section 7.2, we see that HVSE has more sensitivity to the e�ect of downsampling
compared with RMSE. That is a desirable property because we want to distinguish between di�erent
tolerance levels. RMSE poorly reacts to the downsampling also with a reduction of 90% or greater.

However we also see that HVSE have in some cases high sensitivity applying a little downsampling.
That may be a restriction if we de�ne error thresholds not greater than the initial minimum threshold.
Per example, in the Figure 30 only reducing by 1% the width and height we obtain more than 50% of
error so if we do not have an error threshold greater we will not have any compression. In the Figure

55

33 we have a di�erent case, all the two metrics start with similar error but another time, HVSE is
more sensitive to the downsampling increase.

In general, as depicted in Section 1, we see that RMSE is not suitable in the context of measuring the
visual perception of image �delity: since all image pixels are treated equally image content-dependent
variations in image �delity cannot be accounted for. The Sections 10.1.2 and 10.1.3 also include more
tests that demonstrates this poor beahviour.

10.1.2 Reconstruction of test images with varying RMSE visual tolerance

The next �gures show in the upper row the test image downsampled and resized to the original size by
di�erent factors. The lower rows show, �rst for a given error metric tolerance L, the downsampled image
to match image saliency placed in the bounding box (represents the original image area downsampled
to the column factor) and in the next row the image resized to the original size. We can appreciate
the increase of the downsampling as we have a bigger error metric tolerance L.

In the Section 10.1.3 we present the same tests using the HVS error metric used by our implemen-
tation.

Figure 35: Window reconstruction using RMSE

56

Figure 36: Rocktile reconstruction using RMSE

Figure 37: Bricktile reconstruction using RMSE

57

Figure 38: Fabrictile reconstruction using RMSE

Figure 39: Textureatlas reconstruction using RMSE

58

Figure 40: Crayons reconstruction using RMSE

Figure 41: Boat reconstruction using RMSE

59

Figure 42: Aerialphoto reconstruction using RMSE

We see that RMSE downsamples too much fast the size of the textures while increasing the visual
error tolerance. In some cases, even at 10% of error tolerance we obtain a full downsampling of 1x1
chart size. With a 20% all the tests downsample to 1x1. This implies that we have a limited range of
image compression using the method described at Section 7.2.

60

10.1.3 Reconstruction of test images with varying HVSE visual tolerance

We use the same kind of schemes explained at the Section 10.1.2 to analyze the downsampling varying
the visual tolerance. HVS metric is used for our implementation thanks to his better reaction to the
downsampling e�ect and adaptation to the HVS conditions.

Figure 43: Window reconstruction using HVSE

61

Figure 44: Rocktile reconstruction using HVSE

62

Figure 45: Bricktile reconstruction using HVSE

63

Figure 46: Fabrictile reconstruction using HVSE

64

Figure 47: Textureatlas reconstruction using HVSE

65

Figure 48: Crayons reconstruction using HVSE

66

Figure 49: Boat reconstruction using HVSE

67

Figure 50: Aerialphoto reconstruction using HVSE

68

We use di�erent L values for the tests of this section and Section 10.1.2 because RMSE slowly
reacts to the downsampling and have less error tolerance resolution.

As we see, because HVSE has more sensitivity to the downsampling it provides more resolution in
the range of error metric tolerance. That is also clearly illustrated in Section 10.1.1.

Compared with RMSE, that downsamples to a 1x1 chart until it reaches the 20% error tolerance,
we have more range using HVSE. In some cases, the compression starts at tolerance error levels greater
than 30-40% (e.g. in the Figure 50), so HVS seems to be more restrictive in the initial steps of the user-
de�ned error tolerance. This happens when the images contain more visual perceptual information
(see Section 7.2.3 for detailed explanation of the criteria).

We also detect that the stretching is sometimes anisotropic depending on the downsampling direc-
tion (e.g. in the Figure 45) meaning that the downsampling process distincts between the amount of
information provided separately by width and height.

10.1.4 Test images compression results

The next tables show for each test image the compression ratios achieved by the image downsampling
thanks to the matching to view conditions and image saliency. We consider that each image project
on a space of 20x15 meters. Each row identi�ers denote:

� View size: size after the match to view conditions (see Section 7.1).

� View CR: compression ratio due the match to view conditions.

� Visual size: size after the saliency matching.

� Visual CR: compression ratio with respect to view size.

� Total CR: total compression ratio achieved.

Window compression results

0.05 meter/texel
View size 400x300
View CR 2.18:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 350x75 12x1 1x1 398x298 398x298 398x298 225x290 100x103
Visual CR 4.57:1 10000:1 120000:1 1.01:1 1.01:1 1.01:1 1.83:1 11.65:1
Total CR 9.98:1 21845:1 262144:1 2.21:1 2.21:1 2.21:1 4.01:1 25.45:1

0.4 meter/texel

View size 50x37

View CR 141.69:1

RMSE HVSE

5% 10% 20% 10% 20% 30% 40% 50%

Visual size 43x18 6x1 1x1 48x35 48x35 48x35 48x18 37x5

Visual CR 2.39:1 308.33:1 1850:1 1.10:1 1.10:1 1.10:1 2.14:1 10:1

Total CR 338.68:1 43960:1 262144:1 156:1 156:1 156:1 303:1 1416:1

69

3.2 meter/texel
View size 6x4
View CR 10922.7:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x4 4x4 4x3 4x2 4x2
Visual CR 1:1 1:1 2:1 1:1 1.5:1 2:1 3:1 3:1
Total CR 10922:1 10922:1 21845:1 10922:1 16384:1 21845:1 32768:1 32768:1

Rocktile compression results

0.05 meter/texel
View size 400x300
View CR 1.56:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 375x298 56x93 1x1 362x262 201x126 104x63 62x30 39x12
Visual CR 1.07:1 23:1 120000:1 1.26:1 4.73:1 18.31:1 64.51:1 256.4:1
Total CR 1.67:1 36:1 187500:1 1.97:1 7.40:1 28.61:1 100.8:1 400:1

0.4 meter/texel
View size 50x37
View CR 101.35:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 48x35 25x18 1x1 48x35 48x35 43x35 37x18 6x13
Visual CR 1.10:1 4.11:1 1850:1 1.1:1 1.1:1 1.22:1 2.77:1 23.71
Total CR 111.6:1 416:1 187500:1 111.6:1 111.6:1 124.58:1 281.5:1 2403.85:1

3.2 meter/texel
View size 6x4
View CR 7812.5:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x4 6x4 3x2 1x2 1x2
Visual CR 1:1 1:1 2 1:1 1:1 4:1 12:1 12:1
Total CR 7812.5:1 7812.5:1 15625:1 7812.5:1 7812.5:1 31250:1 93750:1 93750:1

Bricktile compression results

0.05 meter/texel
View size 400x300
View CR 1.52:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 25x150 1x1 1x1 312x298 150x253 73x164 40x103 21x58
Visual CR 32:1 120000:1 120000:1 1.29:1 3.16:1 10.02:1 29.12:1 98.52:1
Total CR 48.1:1 182634:1 182634:1 1.96:1 4.81:1 15.25:1 44.32:1 149.94:1

70

0.4 meter/texel
View size 50x37
View CR 98.72:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 1x18 1x1 1x1 48x35 48x35 37x35 3x35 1x1
Visual CR 102.7:1 1850:1 1850:1 1.1:1 1.1:1 1.42:1 17.61:1 1850:1
Total CR 10146:1 182634:1 182634:1 108.71:1 108.71:1 141:1 1739:1 182634:1

3.2 meter/texel
View size 6x4
View CR 7609.75:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 1x4 6x4 1x4 1x1 1x1 1x1
Visual CR 1:1 1:1 6:1 1:1 6:1 24:1 24:1 24:1
Total CR 7609.75:1 7609.75:1 45658:1 7609:1 45658:1 182634:1 182634:1 182634:1

Fabrictile compression results

0.05 meter/texel
View size 400x300
View CR 1:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 225x187 1x9 1x1 398x298 398x298 398x298 343x248 243x154
Visual CR 2.85:1 13333:1 120000:1 1.01:1 1.01:1 1.01:1 1:1.41 3.2:1
Total CR 2.85:1 13333:1 120000:1 1.01:1 1.01:1 1.01:1 1:1.41 3.2:1

0.4 meter/texel
View size 50x37
View CR 64.86:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 25x18 1x4 1x1 48x35 48x35 48x35 48x35 48x35
Visual CR 4.11:1 462.5:1 1850:1 1.1:1 1.1:1 1.1:1 1.1:1 1.1:1
Total CR 4.11:1 30000:1 120000:1 71.4:1 71.4:1 71.4:1 71.4:1 71.4:1

3.2 meter/texel
View size 6x4
View CR 5000:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x3 4x4 4x3 4x3 4x3
Visual CR 1:1 1:1 2:1 1:1 1.5:1 2:1 2:1 2:1
Total CR 5000:1 5000:1 10000:1 5000:1 7500:1 10000:1 10000:1 10000:1

71

Textureatlas compression results

0.05 meter/texel
View size 400x300
View CR 1.33:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 398x298 125x56 1x1 400x300 400x300 398x298 262x243 131x152
Visual CR 1.01:1 17.14:1 120000:1 1:1 1:1 1.01:1 1.88:1 6.02:1
Total CR 1.34:1 22.85:1 160000:1 1.33:1 1.33:1 1.34:1 2.51:1 8.03:1

0.4 meter/texel
View size 50x37
View CR 86.48:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 48x34 25x18 1x1 50x37 50x37 50x37 48x35 48x35
Visual CR 1.13:1 4.11:1 1850:1 1:1 1:1 1:1 1.10:1 1.10:1
Total CR 98:1 355:1 160000:1 64.86:1 64.86:1 64.86:1 95.23:1 95.23:1

3.2 meter/texel
View size 6x4
View CR 6666:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x4 4x4 4x3 3x3 3x3
Visual CR 1:1 1:1 2:1 1:1 1.5:1 2:1 2.66:1 2.66:1
Total CR 6666:1 6666:1 13333:1 6666:1 10000:1 133333.3 17777:1 17777:1

Crayons compression results

0.05 meter/texel
View size 400x300
View CR 1.46:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 350x225 87x56 1x3 400x300 399x298 275x298 153x199 90x121
Visual CR 1.52:1 24.63:1 20000:1 1:1 1.01 1.46:1 3.94:1 11.01:1
Total CR 2.23:1 36.11:1 58652:1 1.46:1 1.48:1 2.14:1 5.77:1 16.15:1

0.4 meter/texel
View size 50x37
View CR 95.11:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 48x36 48x18 1x2 50x37 48x35 48x34 48x34 48x34
Visual CR 1.1:1 2.14:1 925:1 1:1 1.1:1 1.1:1 1.1:1 1.1:1
Total CR 104.73:1 203.65:1 87978:1 95.11:1 104.73:1 107:1 107:1 107:1

72

3.2 meter/texel
View size 6x4
View CR 7331:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x4 4x4 4x3 4x3 4x3
Visual CR 1:1 1:1 2:1 1:1 1:5 2:1 2:1 2:1
Total CR 7331:1 7331:1 14663:1 7331:1 10997:1 14663:1 14663:1 14663:1

Boat compression results

0.05 meter/texel
View size 400x300
View CR 1.4:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 100x75 4x11 1x1 143x65 60x22 32x12 7x18 4x12
Visual CR 16:1 2727.27:1 120000:1 12.91:1 90.9:1 312.5:1 952.3:1 2500:1
Total CR 22.4:1 318.18:1 168000:1 18.07:1 127.27:1 437.5:1 1333:1 3500:1

0.4 meter/texel
View size 50x37
View CR 90.81:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 25x18 12x9 1x1 50x37 25x27 14x13 9x6 4x4
Visual CR 4.11:1 17.12:1 1850:1 1:1 2.74:1 10.16:1 34.25:1 115.62:1
Total CR 373.33:1 1555.56:1 168000:1 90.81:1 248.88:1 923:1 3111:1 10500:1

3.2 meter/texel
View size 6x4
View CR 7000:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 3x4 6x4 4x4 4x3 4x3 3x3
Visual CR 1:1 1:1 7000:1 1:1 1.5 2:1 2:1 2.66:1
Total CR 7000:1 7000:1 14000:1 7000:1 10500:1 14000:1 14000:1 18666:1

Aerialphoto compression results

0.05 meter/texel
View size 400x300
View CR 2.18:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 400x300 398x262 1x1 400x300 400x300 400x300 312x267 225x196
Visual CR 1:1 1.15:1 120000:1 1:1 1:1 1:1 1.44:1 2.72:1
Total CR 2.18:1 2.51:1 262144:1 2.18:1 2.18:1 2.18:1 3.14:1 5.94:1

73

0.4 meter/texel
View size 50x37
View CR 141.69:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 25x18 1x1 1x1 50x37 50x37 48x27 43x4 1x4
Visual CR 4.11:1 1850:1 1850:1 1:1 1:1 1.42:1 10.75:1 462.5:1
Total CR 582.54:1 262144:1 262144:1 141.69:1 141.69:1 202.27:1 1524:1 65536:1

3.2 meter/texel
View size 6x4
View CR 10922:1

RMSE HVSE
5% 10% 20% 10% 20% 30% 40% 50%

Visual size 6x4 6x4 1x4 6x4 3x4 1x1 1x1 1x1
Visual CR 1:1 1:1 6:1 1:1 2:1 24:1 24:1 24:1
Total CR 10922:1 10922:1 65536:1 10922:1 21845:1 262144:1 262144:1 262144:1

Wee see that RMSE achieves high compression ratios because his low sensitivity to the downsam-
pling e�ect, also demonstrated on Section 10.1.1,10.1.2 and 10.1.3. This commonly supposes a heavy
loss of image information for error metric tolerances greater than 10% or even less.

In the case of HVSE, we see in some cases low reaction to downsampling with the lowest tolerance
level, but the correlation between the reduction of size and the user-de�ned error tolerance is higher
than RMSE correlation. We �nd more utility to use compression using HVSE for the levels with the
highest area precision. In the test examples, using 0.05m/texel area precision, the compression ratio
with respect to the compression to match to view conditions goes from the range of 1:1 to 2500:1, but
in the average case reacts much more to the downsampling e�ect than RMSE.

It is interesting to see that in some cases, the visual size is greater when downsampling the levels
with less area precision (e.g. the Aerialphoto using RMSE at 20% and 3.2 meter/texel have a visual
size of 1x4, and using 0.05meter/texel just 1x1). This behaviour appears only when using RMSE and
is another sign of its poor ability to measure the visual perception of image �delity.

10.1.5 Image downsampling results of test model

The next table show the compression results with the test model without using any error metric. The
area precision of the levels are the default speci�ed in Table 2.

Table 7: Texture compression with the whole city

Uncompressed size (MB) View matching size (MB) CR View matching
Level 0 622130.85 437460.93 14.22:1
Level 1 622130.85 3860.91 1611:1
Level 2 622130.85 16.41 379000:1
Total 1866395.80 441396.86 42.28:1

We see that the view matching downsampling involves a signi�cant compression of the space used
to represent each LOD level. The next six tables show the compression obtained by introducing the
image saliency matching. The second row indicates the compression ratio with respect to the view
matching size and the third one the total compression.

74

Table 8: City downsampling RMSE 5%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 1732016.76 2.53:1 35:92
Level 1 3811.55 1.01:1 1632:1
Level 2 15.87 1.03:1 391738:1
Total 177016.07 2.49:1 105:1

Table 9: City downsampling RMSE 10%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 13079.76 33:1 475:1
Level 1 3337.20 1.16:1 1864:1
Level 2 15.87 1.03:1 391738:1
Total 16432. 26:1 1135:1

Table 10: City downsampling RMSE 20%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 90.02 4859:1 69102:1
Level 1 220.42 17.52:1 28224:1
Level 2 15.87 1.03:1 391738:1
Total 326.33 1352:1 57192:1

We see that RMSE obtains too much high compression ratios thanks to his poor reaction to the
downsampling e�ect. In the level with 20% of error tolerance the total CR reaches 57192:1 causing an
unnaceptable loss of information.

Table 11: City downsampling HVSE 10%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 243120.43 1.8:1 25:1
Level 1 3642.16 1.06:1 1708:1
Level 2 15.56 1.05:1 399599:1
Total 246778.16 1.79:1 75:1

Table 12: City downsampling HVSE 30%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 56194.18 7.79:1 110:1
Level 1 1449.67 2.66:1 4291:1
Level 2 15.56 1.05:1 399599:1
Total 57659.43 7.66:1 323:1

75

Table 13: City downsampling HVSE 50%

Saliency matching size (MB) CR wrt view matching (MB) Total CR
Level 0 17174.39 25.48:1 362:1
Level 1 805.83 4.79:1 7720:1
Level 2 15.56 1.05:1 399499:1
Total 17995.80 24.53:1 1037:1

As we see, image saliency matching is also capable to compress the space using di�erent metric
tolerances and maintaining the visual �delity. The total compression ratios go from 75:1 with 10% to
1037:1 with 50% and are more correlated compared with RMSE.

76

10.2 Packing

The next �gures show for di�erent packing sets the texture atlas obtained using four di�erent con�g-
urations. An atlas is optimized if it uses the Algorithm 6 and is stretched if uses the Algorithm 5,
both presented in Section 7.3.3. A close-up view is also shown in order to appreciate the unused space
between the packed charts.

Figure 51: Texture set 1 packing

Figure 52: Texture set 2 packing

77

Figure 53: Texture set 3 packing

Figure 54: Texture set 4 packing

78

Figure 55: Texture set 5 packing

The Table 14 and Figure 56 shows for each texture set the occupancy of the packing of each of the
four methods. We see that the best option is the optimized and stretched, obtaining always a 100%
coverage of the atlas.

Figure 56: Texture packing results

79

Table 14: Texture set packing occupancy

Texture set 1 2 3 4 5

Resolution 2048x2048 2048x2048 4096x4096 4096x4096 4096x4096
Number of subtextures 192 378 1107 1689 2897

meters/texel 0.02 0.03 0.03 0.04 0.05
Not optimized / not stretched 72.37% 81.85% 75.56% 83.65% 92.20%
Not optimized / stretched 78.14% 85.44% 77.96% 85.58% 94.32%
Optimized / not stretched 89.48% 95.29% 95.34% 96.36% 96.96%
Optimized / stretched 100% 100% 100% 100% 100%

80

10.3 Encoding texture chart coordinates

We have tested the three chart encoding options listed in Table 1 of Section 8.1.1. We rendered the
whole test model (see Section 9.1) to extract the results shown on the Figure 15. The vertices per
second are measured using a viewport of 1×1 with the camera facing the whole geometrical dense city.
The frames per seconds are measured with the maximum size of the viewport (in our case 1440× 900)
and facing the whole city. Finally, the fragments per second are measured rendering one building and
facing a textured facade with a maximum size of the viewport. Since Option 1 in Table 1 does not
have VBO support we adapted the rendering scheme to use VBO to make it comparable with the other
two options. We introduced the additional condition to have the same chart per vertex bu�er. This
increases the number of required VBO bu�ers and the fragmentation reducing the performance.

The results are better than we predicted. The option that uses packed coordinates (Option 3) have
the highest vertices/s and frames/s rate although it have to decompress each vertex information (see
Section 8.1.3). The Option 2 do not have any decompression step but has 20.76% and 23.67% less
vertices/s and frames/s rate respectively. The option 1 fails with both intensive geometry tests but
has the best fragments/s rate because it has the simplest fragment shader. So we see that the option
3 has more performance reducing the memory bandwidth instead it have an additional decompression
cost per vertex.

Table 15: Chart encoding performance (for more information of the encoding techniques see Table 1)

Encoding technique Vertices/s Fragments/s Frames/s

Option 1 44,032,002 1,570,752,000 14.57
Option 2 436,739,971 1,382,832,000 132.37
Option 3 527,426,950 1,362,096,000 163.71

Figure 57: Chart encoding performance (vertices/s)

81

Figure 58: Chart encoding performance (fragments/s)

Figure 59: Chart encoding performance (frames/s)

82

11 Time Performance

To evaluate the time performance we have de�ned a walkthrough of the city going from far to a close
view of a building. We show the results for each rendering technique. When we do not use texture
atlas, we tried to load the original textures but it was just imposible to load all of them so we switched
to a subsampled version with 256x256 and DXT1 compression for the results provided in this section.
We do not use visual improvements (see Section VII) and disable terrain rendering to just evaluate
the texture atlas rendering.

The Figure 61 shows the evolution of the framerate during the walk. The snapshots show the
evolution of the walkthrough in steps of two seconds.

Table 16: Resulting framerate for each technique (walkthrough)

Technique Minimum FPS Maximum FPS Average FPS

Encoding option 1 20 30.36 24.63
Encoding option 2 136 210.16 174.55
Encoding option 3 158 251.5 206.89

VBO / No texture atlas 10.3 14.22 12.34
Inmediate / No texture atlas 1.16 1.59 1.16

Figure 60: Resulting framerate for each technique (walkthrough)

83

Figure 61: Framerate evolution of walkthrough

As in Section 10.3, we see that the encoding option 3 has the best framerate, followed by the
encoding option 2. Both have similar evolution during the walkthrough. However, the encoding option
1 fails in the test (obtains FPS nearly the other two options that do not use texture atlas) because the
heavy VBO fragmentation. Comparing the average FPS of the encoding option 2 and the technique
that use VBO without texture atlas, we have an speed-up factor of 17, very signi�cant in a real-time
rendering system.

84

12 Selected snapshots

The next �gures are selected snapshots of the city using the visual improvements described at Section
VII and enabling terrain rendering.

Figure 62: Barcelona snapshot 1

Figure 63: Barcelona snapshot 2

85

Figure 64: Barcelona snapshot 3

Figure 65: Barcelona snapshot 4

86

Figure 66: Barcelona snapshot 5

Figure 67: Barcelona snapshot 6

87

Part VI

Conclusions

We have developed a novel technique that generates space-optimized texture atlas encoding repetitive
texture details of the geometry and implemented an application able to render in real time a huge
city with thousands of textures achieving interactive framerates. Our contributions are summarized
as follows:

� Creating optimized texture atlas

� An algorithm for resizing each chart in accordance with the object-space size of the surface
the chart is mapped onto and the perceptual importance under a given viewing conditions.

� An algorithm to pack rectangular charts into a single texture that minimizes the unused
space.

� Rendering optimized texture atlas

� A compressed texture coordinate format designed to support tiled textures avoiding the un-
folding of periodic textures. Several shader techniques providing within-chart tiling support
and decompression of texture coordinates.

� Full support to DXTC formats avoiding artifacts due the texture atlas compression.

� A texture atlas hierarchy supporting implicit mipmap levels per atlas and providing explicit
user-de�ned texture LOD.

� A visual improvement in the particular case of the city of Barcelona mixing with the facade
details the extracted characteristic colours.

88

Part VII

Appendix

Texture wrapping GLSL code

Algorithm 7 Texture wrapping vertex program (see Section 8.1.1)

#extension GL_EXT_gpu_shader4 : enable

// bit mask

// bits 31..22 (10 bits): O/4;

// all subimages start at multiple-of-four positions

// bits 21..15 (7 bits): S/4;

// all subimages have multiple-of-four dimensions

// bits 14.. 9 (6 bits): integer part of original tex coordinate

// (max repeat factor: 63)

// bits 8.. 0 (9 bits): fract part of original tex coordinate

//(max subimage size: 512)

const uint exp2_22 = 4194304u;

const uint exp2_22_div4 = 1048576u;

const uint exp2_15 = 32768u;

const uint exp2_15_div4 = 8192u;

const uint exp2_9 = 512u;

varying vec4 rc; //input compressed coordinates

uniform vec2 textureSize; //texture atlas size

uniform int border; //texture atlas charts border size

void main(){

// Decode input packed coordinates

uvec2 rem;

rc.st = vec2((input/exp2_22*4u)+border)/textureSize;

rem = input % exp2_22;

rc.pq = vec2((rem/exp2_15*4u)-2u*border)/textureSize;

rem = rem % exp2_15;

gl_TexCoord[0].st=vec2(rem/exp2_9)+vec2(rem%exp2_9)/vec2(exp2_9);

gl_Position = ftransform();

}

Algorithm 8 Texture wrapping fragment program (see Section 8.1.3)

#extension GL_ARB_shader_texture_lod : enable

varying vec4 rc; //The decompressed texture coordinates

uniform sampler2D tex; //The input texture atlas

void main(){

gl_FragColor=texture2DGrad(tex,rcv.pq*fract(gl_TexCoord[0].st)

+rcv.st,dFdx(gl_TexCoord[0].st),dFdy(gl_TexCoord[0].st));

}

89

Quadtree generation

Algorithm 9 Quadtree generation (see Section 8.2.1)

//Quadtree constructor
//Each variable beginning with the name quadtree, refers to variables
//of the quadtree object
constructor Quadtree(B,n)
if n = 0 then

// Base case
quadtree.B = B

else

// Recursive case
for h = 0..4 do

// For each son collect buildings in the center of the quadrant
vector Building subset;
for i = 0..B.size() do

c = 0
if B[i].center.x > B.center.x then

c = c+ 1
end if

if B[i].center.z > B.center.z then

c = c+ 2
end if

if c = h then

subset.push(B[i]);
end if

end for

quadtree.children[h] = new QuadtreeNode(subset,n− 1)
end for

end if

90

Visual improvements

We have noticed that rendering the Barcelona model using the provided textures is quite unrealistic:
the textures contains several details but the colours used do not correspond in some cases to the
characteristic colours of Barcelona facades. Thanks to Jordi Moyes and Carlos Andujar, the most
present colours of the buildings have been extracted. In total we have twenty-four di�erent colours,
some of them represented in the Figure 68.

Figure 68: Some characteristic colours of Barcelona facades

We want to mix this colour with the facade texture to improve the visual realism. The mixing is
done in the fragment program stage. We mathematically de�ne a subdivision of the XZ coordinates
(the Y represents de building height) that changes above a variable step parameter β (meters). Let C
be the collection with n characteristic colours and pfrag the fragment position, we have that:

t =
|pfragx| |pfragz|

β

colourmix = C[btc mod n] (t− btc) + C[(btc+ 1) mod n] (1− t+ btc)

Where colourmix is the colour used for the mixing with the texture colour.
For the shading we only consider local di�use and ambient shading and try to place the light

position in a similar way that seems to be in the aerial photos.

91

References

[1] Improve batching using texture atlases. Technical report, Nvidia Corporation, 2004.

[2] Carlos Andujar and Jonas Martinez. Locally-adaptive texture compression. Congreso Español de
Informática Grá�ca, 2009.

[3] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure. Operations
Research, 33:49�64, 1985.

[4] Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. Rendering from compressed textures.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series,
pages 373�378, August 1996.

[5] David Benson and Joel Davis. Octree textures. ACM Trans. Graph., 21(3):785�790, 2002.

[6] Henrik Buchholz and Jürgen Döllner. View-dependent rendering of multiresolution texture-atlases.
In Proceedings of the IEEE Visualization 2005, pages 215�222, 2005.

[7] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact image code. pages
671�679, 1987.

[8] Graham Campbell, Thomas A. DeFanti, Je� Frederiksen, Stephen A. Joyce, and Lawrence A.
Leske. Two bit/pixel full color encoding. SIGGRAPH Comput. Graph., 20(4):215�223, 1986.

[9] Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural solid texturing. ACM
Trans. Graph., 21(2):106�131, 2002.

[10] Glenn Chan. Towards better chroma subsampling. SMPTE journal, 2008.

[11] K Chiu, M Herf, P Shirley, S Swamy, C Wang, and K Zimmerman. Spatially nonuniform scaling
functions for high contrast images. In Graphics Interface, pages 245�253, 1993.

[12] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio, and Roberto
Scopigno. Planet-sized batched dynamic adaptive meshes (p-bdam). In VIS '03: Proceedings of the
14th IEEE Visualization 2003 (VIS'03), page 20, Washington, DC, USA, 2003. IEEE Computer
Society.

[13] David Cline and Parris K. Egbert. Interactive display of very large textures. In VIS '98: Proceed-
ings of the conference on Visualization '98, pages 343�350, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

[14] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang tiles for image and
texture generation. ACM Trans. Graph., 22(3):287�294, 2003.

[15] Daniel Cohen-Or and Yishay Levanoni. Temporal continuity of levels of detail in delaunay trian-
gulated terrain. In VIS '96: Proceedings of the 7th conference on Visualization '96, pages 37�42,
Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[16] Scott Daly. The visible di�erences predictor: an algorithm for the assessment of image �delity.
pages 179�206, 1993.

[17] Leila De Floriani, Paola Magillo, and Enrico Puppo. Building and traversing a surface at variable
resolution. In VIS '97: Proceedings of the 8th conference on Visualization '97, pages 103��., Los
Alamitos, CA, USA, 1997. IEEE Computer Society Press.

92

[18] David DeBry, Jonathan Gibbs, Devorah DeLeon Petty, and Nate Robins. Painting and rendering
textures on unparameterized models. In SIGGRAPH '02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, pages 763�768, New York, NY, USA,
2002. ACM.

[19] K. Dowsland. Some experiments with simulated annealing techniques for packing problems. Eu-
ropean Journal of Operational Research, 68:389�399, 1993.

[20] J.K. Lenstra E. Aarts. Local Search in Combinatorial Optimization. Wiley, 1997.

[21] M. R. Garey D. S. Johnson E. G. Co�man, Jr. and R. E. Tarjan. Performance bounds for level-
oriented two-dimensional packing algorithms. SIAM Journal on Computing, 9:808�826, 1980.

[22] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and Werner
Stuetzle. Multiresolution analysis of arbitrary meshes. In SIGGRAPH '95: Proceedings of the
22nd annual conference on Computer graphics and interactive techniques, pages 173�182, New
York, NY, USA, 1995. ACM.

[23] Carl Erikson, Dinesh Manocha, and William V. Baxter, III. Hlods for faster display of large static
and dynamic environments. In I3D '01: Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 111�120, New York, NY, USA, 2001. ACM.

[24] M. R. Garey F. R. K. Chung and D. S. Johnson. On packing two-dimensional bins. SIAM. J. on
Algebraic and Discrete Methods, 3:66�76, 1982.

[25] Sandor P. Fekete and Jörg Schepers. On more-dimensional packing i: Exact algorithms, 1997.

[26] Sandor P. Fekete and Jörg Schepers. On more-dimensional packing i: Modeling, 1997.

[27] Christian Frueh, Russell Sammon, and Avideh Zakhor. Automated texture mapping of 3d city
models with oblique aerial imagery. In 3DPVT '04: Proceedings of the 3D Data Processing,
Visualization, and Transmission, 2nd International Symposium, pages 396�403, Washington, DC,
USA, 2004. IEEE Computer Society.

[28] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display algorithm for interactive frame
rates during visualization of complex virtual environments. In SIGGRAPH '93: Proceedings of
the 20th annual conference on Computer graphics and interactive techniques, pages 247�254, New
York, NY, USA, 1993. ACM.

[29] Stefan Maierhofer Gerd Hesina and Robert F. Tobler. Texture management for high-quality city
walk-throughs. Proceedings of CORP -International Symposion on Information and Communica-
tion Technologies in Urban and Spatial Planning, 25:305�308, 2004.

[30] Allen Gersho and Robert M. Gray. Vector quantization and signal compression. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[31] Bernd Girod. What's wrong with mean-squared error? pages 207�220, 1993.

[32] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1994.

[33] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edition). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2006.

[34] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
'95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,
pages 229�238, New York, NY, USA, 1995. ACM.

93

[35] Lewis E. Hitchner and Michael W. McGreevy. Methods for user-based reduction of model com-
plexity for virtual planetary exploration. Proc. SPIE, 1913:622�636, 1993.

[36] Hugues Hoppe. Optimization of mesh locality for transparent vertex caching. ACM SIGGRAPH,
pages 269�276, 1999.

[37] Arnaud E. Jacquin. Image coding based on a fractal theory of iterated contractive image. IEEE
Transactions on Image Processing, vol. 1, issue 1, pp. 18-30, 1:18�30, 1992.

[38] Alexei A. Efros James Hays, Marius Leordeanu and Yanxi Liu. Discovering texture regularity as
a higher-order correspondence problem. ECCV, 3952:522�535, 2006.

[39] Nebojsa Jojic, Brendan J. Frey, and Anitha Kannan. Epitomic analysis of appearance and shape.
In ICCV '03: Proceedings of the Ninth IEEE International Conference on Computer Vision,
page 34, Washington, DC, USA, 2003. IEEE Computer Society.

[40] A. J. Ahumada Jr. Simpli�ed vision models for image quality assessment. SID International
Symposium Digest of Technical Papers, 27:397�400, 1996.

[41] G. Knittel, A. Schilling, A. Kugler, and W. Strasser. Hardware for superior texture performance.
Computers & Graphics, 20:475�481, 1996.

[42] Ali Lakhia. E�cient interactive rendering of detailed models with hierarchical levels of detail.
In 3DPVT '04: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd
International Symposium, pages 275�282, Washington, DC, USA, 2004. IEEE Computer Society.

[43] Gregory Ward Larson, Holly Rushmeier, and Christine Piatko. A visibility matching tone re-
production operator for high dynamic range scenes. IEEE Transactions on Visualization and
Computer Graphics, 3(4):291�306, 1997.

[44] Sylvain Lefebvre. Filtered Tilemaps (in Shader X6), chapter ., page (to appear). Shader X6.
Charles River Media, 2008.

[45] Sylvain Lefebvre and Carsten Dachsbacher. Tiletrees. In I3D '07: Proceedings of the 2007 sym-
posium on Interactive 3D graphics and games, pages 25�31, New York, NY, USA, 2007. ACM.

[46] Sylvain Lefebvre, Jerome Darbon, and Fabrice Neyret. Uni�ed texture management for arbitrary
meshes. Technical report, INRIA, 2004.

[47] Aaron E. Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and John D. Owens. Glift:
Generic, e�cient, random-access gpu data structures. ACM Trans. Graph., 25(1):60�99, 2006.

[48] Joshua Levenberg. Fast view-dependent level-of-detail rendering using cached geometry. In VIS
'02: Proceedings of the conference on Visualization '02, pages 259�266, Washington, DC, USA,
2002. IEEE Computer Society.

[49] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares conformal maps
for automatic texture atlas generation. ACM Trans. Graph., 21(3):362�371, 2002.

[50] M. Leyton. Symmetry, Causality, Mind. The MIT Press, 1992.

[51] Wen-Chieh Lin, James H. Hays, Chenyu Wu, Vivek Kwatra, and Yanxi Liu. A comparison study
of four texture synthesis algorithms on regular and near-regular textures. Technical Report CMU-
RI-TR-04-01, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, January 2004.

[52] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust, and Gregory A.
Turner. Real-time, continuous level of detail rendering of height �elds. In SIGGRAPH '96:
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages
109�118, New York, NY, USA, 1996. ACM.

94

[53] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional packing problems: A
survey. European Journal of Operational Research, 141(2):241�252, September 2002.

[54] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using nested regular
grids. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, pages 769�776, New York, NY, USA,
2004. ACM.

[55] J. L. Mannos and D. J. Sakrison. The e�ects of a visual �delity criterion on the encoding of
images. IEEE Transactions on Information Theory, 20:522, 1974.

[56] Silvano Martello, Michele Monaci, and Daniele Vigo. An exact approach to the strip-packing
problem. INFORMS J. on Computing, 15(3):310�319, 2003.

[57] W. Jr. Miller. Symmetry Groups and Their Applications. Academic Press: New York, 1972.

[58] R.E. Gomory P.C. Gilmore. A linear programming approach to the cutting stock problem. Op-
erations Research, 9:849�859, 1961.

[59] Ken Perlin. An image synthesizer. In SIGGRAPH '85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, pages 287�296, New York, NY, USA, 1985.
ACM.

[60] Larry F. Hodges William Ribarsky Nick Faust Peter Lindstrom, David Koller and Gregory Turner.
Level-of-detail management for real-time rendering of phototextured terrain. Technical report,
Georgia Institute of Technology, 1995.

[61] Paul Heckbert Pixar and Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics
and Applications, 6:56�67, 1986.

[62] Budirijanto Purnomo, Jonathan D. Cohen, and Subodh Kumar. Seamless texture atlases. In SGP
'04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,
pages 65�74, New York, NY, USA, 2004. ACM.

[63] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. A perceptually
based physical error metric for realistic image synthesis. In SIGGRAPH '99: Proceedings of the
26th annual conference on Computer graphics and interactive techniques, pages 73�82, New York,
NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[64] A. Ravishankar Rao and Gerald L. Lohse. Identifying high level features of texture perception.
CVGIP: Graph. Models Image Process., 55(3):218�233, 1993.

[65] Holly E. Rushmeier, Gregory J. Ward, Christine D. Piatko, Phil Sanders, and Bert Rust. Com-
paring real and synthetic images: Some ideas about metrics. In Rendering Techniques, pages
82�91, 1995.

[66] Marc Soucy, Guy Godin, and Marc Rioux. A texture-mapping approach for the compression of
colored 3d triangulations. The Visual Computer, 12(10):503�514, 1996.

[67] J.C Stevens and S.S Stevens. Brightness function: E�ects of adaptation. Journal of the Optical
Society of America, 53:375�385, 1963.

[68] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The clipmap: a virtual
mipmap. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pages 151�158, New York, NY, USA, 1998. ACM.

[69] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-maps. In In Pro-
ceedings of SIGGRAPH 2004, pages 853�860, 2004.

95

[70] William C. Thibault and Bruce F. Naylor. Set operations on polyhedra using binary space parti-
tioning trees. SIGGRAPH Comput. Graph., 21(4):153�162, 1987.

[71] Jack Tumblin and Holly Rushmeier. Tone reproduction for realistic images. IEEE Computer
Graphics and Applications, 13(6):42�48, 1993.

[72] Huamin Wang, Yonatan Wexler, Eyal Ofek, and Hugues Hoppe. Factoring repeated content within
and among images. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 1�10, New York,
NY, USA, 2008. ACM.

[73] Zhou Wang and Alan C. Bovik. Mean Squared Error: Love It or Leave It? IEEE Signal Processing
Magazine, 1998.

[74] Gregory J. Ward. The radiance lighting simulation and rendering system. In SIGGRAPH '94:
Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages
459�472, New York, NY, USA, 1994. ACM.

[75] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In HWWS '04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 55�63, New York,
NY, USA, 2004. ACM.

[76] Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph., 17(3):1�11, 1983.

[77] Wen-Chieh Lin Yanxi Liu and James H. Hays. Near-regular texture analysis and manipulation.
ACM SIGGRAPH, 23, 2004.

[78] Yangli Hector Yee and Anna Newman. A perceptual metric for production testing. In SIGGRAPH
'04: ACM SIGGRAPH 2004 Sketches, page 121, New York, NY, USA, 2004. ACM.

[79] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based surface parameterization
and texture mapping. ACM Trans. Graph., 24(1):1�27, 2005.

[80] Hualin Zhou, Min Chen, and Mike F. Webster. Comparative evaluation of visualization and
experimental results using image comparison metrics. In VIS '02: Proceedings of the conference
on Visualization '02, pages 315�322, Washington, DC, USA, 2002. IEEE Computer Society.

[81] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24:530�536, 1978.

96

	I Abstract
	II Introduction
	III State of the art
	Image comparison metrics
	Spatial domain metrics
	Mean squared error
	Normalized mean squared error
	Template matching

	Spatial-frequency domain metrics
	Contrast sensitivity function
	Mannos-Sakrison’s filter
	Daly's filter
	Ahumada's filter

	Perceptually-based metrics
	The human visual system
	Visible differences predictor

	Tone mapping metrics
	Single scale tone reproduction operators
	Multi scale tone reproduction operators

	Image compression
	Lossy compression methods
	Lossless compression methods
	Compression of images with repetitive patterns

	Texture atlases
	Terrain and urban visualization
	Geometry LOD techniques
	Texture LOD techniques

	Texture atlas packing
	Two-dimensional models
	Approximation algorithms
	Strip packing
	Bin packing
	Metaheuristics

	Exact algorithms

	IV Space-optimized texture atlases
	Overview of the technique
	Creation of texture atlases
	Real-time visualization

	Creating optimized texture atlases
	Image downsampling to match viewing conditions
	Image downsampling to match image saliency
	Generic image metric texture compression
	Mean squared error metric compression
	Human visual system metric compression

	Texture atlas packing
	Predicting the minimum size of texture atlas
	Texture atlas binary tree
	Optimizing texture space

	Rendering optimized texture atlases
	Texture wrapping
	Mapping of the texture coordinates
	Compression of the texture coordinates
	Decompression of the texture coordinates
	Texture mipmapping and filtering
	Texture atlas filtering
	Texture atlas support for DXTC compression

	Real-time visualization
	Texture atlas tree
	Building rendering
	Terrain visualization

	V Results
	Test specifications
	Test model
	Hardware tested

	Space compression
	Image downsampling
	Downsampling function of test images
	Reconstruction of test images with varying RMSE visual tolerance
	Reconstruction of test images with varying HVSE visual tolerance
	Test images compression results
	Image downsampling results of test model

	Packing
	Encoding texture chart coordinates

	Time Performance
	Selected snapshots

	VI Conclusions
	VII Appendix

