383 research outputs found

    On the architecture of H.264 to H.264 homogeneous transcoding platform

    Get PDF
    2007-2008 > Academic research: refereed > Invited conference paperVersion of RecordPublishe

    CMOS VLSI circuits for imaging

    Get PDF

    Dyadic spatial resolution reduction transcoding for H.264/AVC

    Get PDF
    In this paper, we examine spatial resolution downscaling transcoding for H.264/AVC video coding. A number of advanced coding tools limit the applicability of techniques, which were developed for previous video coding standards. We present a spatial resolution reduction transcoding architecture for H.264/AVC, which extends open-loop transcoding with a low-complexity compensation technique in the reduced-resolution domain. The proposed architecture tackles the problems in H.264/AVC and avoids visual artifacts in the transcoded sequence, while keeping complexity significantly lower than more traditional cascaded decoder-encoder architectures. The refinement step of the proposed architecture can be used to further improve rate-distortion performance, at the cost of additional complexity. In this way, a dynamic-complexity transcoder is rendered possible. We present a thorough investigation of the problems related to motion and residual data mapping, leading to a transcoding solution resulting in fully compliant reduced-size H.264/AVC bitstreams

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Video transcoding: an overview of various techniques and research issues

    Full text link

    Millimeter-Wave Photonic Components for Broadband Wireless Systems

    Get PDF
    We report on advanced millimeter-wave (mm-wave) photonic components for broadband radio transmission. We have developed self-pulsating 60-GHz range quantum-dash Fabry-Perot mode-locked laser diodes (MLLD) for passive, i.e., unlocked, photonic mm-wave generation with comparably low-phase noise level of -76 dBc/Hz @ 100-kHz offset from a 58.8-GHz carrier. We further report on high-frequency 1.55-mu m waveguide photodiodes (PD) with partially p-doped absorber for broadband operation (f(3dB) similar to 70-110 GHz) and peak output power levels up to +4.5 dBm @ 110 GHz as well as wideband antenna integrated photomixers for operation within 30-300 GHz and peak output power levels of -11 dBm @ 100 GHz and 6-mA photocurrent. We further present compact 60-GHz wireless transmitter and receiver modules for wireless transmission of uncompressed 1080p (2.97 Gb/s) HDTV signals utilizing the developed MLLD and mm-wave PD. Error-free (BER = 10(-9), 2(31) - 1 PRBS, NRZ) outdoor wireless transmission of 3 Gb/s over 25 m is demonstrated, as well as wireless transmission of uncompressed HDTV signals in the 60-GHz band. Finally, an advanced 60-GHz photonic wireless system offering record data throughputs and spectral efficiencies is presented. For the first time, we demonstrate photonic wireless transmission of data throughputs up to 27.04 Gb/s (EVM 17.6%) using a 16-QAM OFDM modulation format resulting in a spectral efficiency as high as 3.86 b/s/Hz. Wireless experiments were carried out within the regulated 57-64-GHz band in a lab environment with a maximum transmit power of -1 dBm and 23 dBi gain antennas for a wireless span of 2.5 m. This span can be extended to some 100 m when using high-gain antennas and higher transmit power levels

    On the architecture of H.264 to H.264 homogeneous transcoding platform

    Full text link

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented
    corecore