56,298 research outputs found

    The Radio Continuum, Far-Infrared Emission, And Dense Molecular Gas In Galaxies

    Full text link
    A tight linear correlation is established between the HCN line luminosity and the radio continuum (RC) luminosity for a sample of 65 galaxies (from Gao & Solomon's HCN survey), including normal spiral galaxies and luminous and ultraluminous infrared galaxies (LIRGs/ULIRGs). After analyzing the various correlations among the global far-infrared (FIR), RC, CO, and HCN luminosities and their various ratios, we conclude that the FIR-RC and FIR-HCN correlations appear to be linear and are the tightest among all correlations. The combination of these two correlations could result in the tight RC-HCN correlation we observed. Meanwhile, the non-linear RC-CO correlation shows slightly larger scatter as compared with the RC-HCN correlation, and there is no correlation between ratios of either RC/HCN-CO/HCN or RC/FIR-CO/FIR. In comparison, a meaningful correlation is still observed between ratios of RC/CO-HCN/CO. Nevertheless, the correlation between RC/FIR and HCN/FIR also disappears, reflecting again the two tightest FIR-RC and FIR-HCN correlations as well as suggesting that FIR seems to be the bridge that connects HCN with RC. Interestingly, despite obvious HCN-RC and RC-CO correlations, multi-parameter fits hint that while both RC and HCN contribute significantly (with no contribution from CO) to FIR, yet RC is primarily determined from FIR with a very small contribution from CO and essentially no contribution from HCN. These analyses confirm independently the former conclusions that it is practical to use RC luminosity instead of FIR luminosity, at least globally, as an indicator of star formation rate in galaxies including LIRGs/ULIRGs, and HCN is a much better tracer of star-forming molecular gas and correlates with FIR much better than that of CO.Comment: 11 ApJ pages, 7 figures; ApJ in pres

    The interstellar gas-phase chemistry of HCN and HNC

    Full text link
    We review the reactions involving HCN and HNC in dark molecular clouds to elucidate new chemical sources and sinks of these isomers. We find that the most important reactions for the HCN-HNC system are Dissociative Recombination (DR) reactions of HCNH+ (HCNH+ + e-), the ionic CN + H3+, HCN + C+, HCN and HNC reactions with H+/He+/H3+/H3O+/HCO+, the N + CH2 reaction and two new reactions: H + CCN and C + HNC. We test the effect of the new rate constants and branching ratios on the predictions of gas-grain chemical models for dark cloud conditions. The rapid C + HNC reaction keeps the HCN/HNC ratio significantly above one as long as the carbon atom abundance remains high. However, the reaction of HCN with H3+ followed by DR of HCNH+ acts to isomerize HCN into HNC when carbon atoms and CO are depleted leading to a HCN/HNC ratio close to or slightly greater than 1. This agrees well with observations in TMC-1 and L134N taking into consideration the overestimation of HNC abundances through the use of the same rotational excitation rate constants for HNC as for HCN in many radiative transfer models.Comment: Accepted for publication in MNRA

    A Search for Dense Molecular Gas in High Redshift Infrared-Luminous Galaxies

    Full text link
    We present a search for HCN emission from four high redshift far infrared (IR) luminous galaxies. Current data and models suggest that these high zz IR luminous galaxies represent a major starburst phase in the formation of spheroidal galaxies, although many of the sources also host luminous active galactic nuclei (AGN), such that a contribution to the dust heating by the AGN cannot be precluded. HCN emission is a star formation indicator, tracing dense molecular hydrogen gas within star-forming molecular clouds (n(H2_2) 105\sim 10^5 cm3^{-3}). HCN luminosity is linearly correlated with IR luminosity for low redshift galaxies, unlike CO emission which can also trace gas at much lower density. We report a marginal detection of HCN (1-0) emission from the z=2.5832z=2.5832 QSO J1409+5628, with a velocity integrated line luminosity of LHCN=6.7±2.2×109L_{\rm HCN}'=6.7\pm2.2 \times10^{9} K km s1^{-1} pc2^2, while we obtain 3σ\sigma upper limits to the HCN luminosity of the z=3.200z=3.200 QSO J0751+2716 of LHCN=1.0×109L_{\rm HCN}'=1.0\times10^{9} K km s1^{-1} pc2^2, LHCN=1.6×109L_{\rm HCN}'=1.6\times10^{9} K km s1^{-1} pc2^2 for the z=2.565z= 2.565 starburst galaxy J1401+0252, and LHCN=1.0×1010L_{\rm HCN}'=1.0\times10^{10} K km s1^{-1} pc2^2 for the z=6.42z = 6.42 QSO J1148+5251. We compare the HCN data on these sources, plus three other high-zz IR luminous galaxies, to observations of lower redshift star-forming galaxies. The values of the HCN/far-IR luminosity ratios (or limits) for all the high zz sources are within the scatter of the relationship between HCN and far-IR emission for low zz star-forming galaxies (truncated).Comment: aastex format, 4 figures. to appear in the Astrophysical Journal; Revised lens magnification estimate for 1401+025

    Observations of Dense Molecular Gas in a Quasar Host Galaxy at z=6.42: Further Evidence for a Non-Linear Dense Gas - Star Formation Relation at Early Cosmic Times

    Full text link
    We report a sensitive search for the HCN(J=2-1) emission line towards SDSS J1148+5251 at z=6.42 with the VLA. HCN emission is a star formation indicator, tracing dense molecular hydrogen gas (n(H2) >= 10^4 cm^-3) within star-forming molecular clouds. No emission was detected in the deep interferometer maps of J1148+5251. We derive a limit for the HCN line luminosity of L'(HCN) < 3.3 x 10^9 K km/s pc^2, corresponding to a HCN/CO luminosity ratio of L'(HCN)/L'(CO) < 0.13. This limit is consistent with a fraction of dense molecular gas in J1148+5251 within the range of nearby ultraluminous infrared galaxies (ULIRGs; median value: L'(HCN)/L'(CO) = 0.17 {+0.05/-0.08}) and HCN-detected z>2 galaxies (0.17 {+0.09/-0.08}). The relationship between L'(HCN) and L(FIR) is considered to be a measure for the efficiency at which stars form out of dense gas. In the nearby universe, these quantities show a linear correlation, and thus, a practically constant average ratio. In J1148+5251, we find L(FIR)/L'(HCN) > 6600. This is significantly higher than the average ratios for normal nearby spiral galaxies (L(FIR)/L'(HCN) = 580 {+510/-270}) and ULIRGs (740 {+505/-50}), but consistent with a rising trend as indicated by other z>2 galaxies (predominantly quasars; 1525 {+1300/-475}). It is unlikely that this rising trend can be accounted for by a contribution of AGN heating to L(FIR) alone, and may hint at a higher median gas density and/or elevated star-formation efficiency toward the more luminous high-redshift systems. There is marginal evidence that the L(FIR)/L'(HCN) ratio in J1148+5251 may even exceed the rising trend set by other z>2 galaxies; however, only future facilities with very large collecting areas such as the SKA will offer the sensitivity required to further investigate this question.Comment: 5 pages, 2 figures, 2 tables, to appear in ApJL (accepted October 24, 2007

    A multi-transition HCN and HCO+ study of 12 nearby active galaxies: AGN versus SB environments

    Full text link
    Recent studies have indicated that the HCN-to-CO(J=1-0) and HCO+-to-HCN(J=1-0) ratios are significantly different between galaxies with AGN (active galactic nucleus) and SB (starburst) signatures. In order to study the molecular gas properties in active galaxies and search for differences between AGN and SB environments, we observed the HCN(J=1-0), (J=2-1), (J=3-2), HCO+(J=1-0) and HCO+(J=3-2), emission with the IRAM 30m in the centre of 12 nearby active galaxies which either exhibit nuclear SB and/or AGN signatures. Consistent with previous results, we find a significant difference of the HCN(J=2-1)-to-HCN(J=1-0), HCN(J=3-2)-to-HCN(J=1-0), HCO+(J=3-2)-to-HCO+(J=3-2), and HCO+-to-HCN intensity ratios between the sources dominated by an AGN and those with an additional or pure central SB: the HCN, HCO+ and HCO+-to-HCN intensity ratios tend to be higher in the galaxies of our sample with a central SB as opposed to the pure AGN cases which show rather low intensity ratios. Based on an LVG analysis of these data, i.e., assuming purely collisional excitation, the (average) molecular gas densities in the SB dominated sources of our sample seem to be systematically higher than in the AGN sources. The LVG analysis seems to further support systematically higher HCN and/or lower HCO+ abundances as well as similar or higher gas temperatures in AGN compared to the SB sources of our sample. Also, we find that the HCN-to-CO ratios decrease with increasing rotational number J for the AGN while they stay mostly constant for the SB sources.Comment: accepted for publication in ApJ; 20 pages, 7 figures; in emulateApJ forma

    Minimal HCN emission from Molecular Clouds in M33

    Full text link
    Since HCN emission has been shown to be a linear tracer of ongoing star formation activity, we have searched for HCN (J = 1->0) emission from known GMCs in the nearby galaxy M33. No significant HCN emission has been found along any of the lines of sight. We find two lines of sight where CO-to-HCN integrated intensity ratios up to 280, nearly a factor of 6 above what is found in comparable regions of the Milky Way. Star formation tracers suggest that the HCN-to-star formation rate ratio (L_HCN/M_SFR) is a factor of six lower than what is observed in the Milky Way (on average) and local extragalactic systems. Simple chemical models accounting for the sub-solar N/O ratio suggest that depletion cannot account for the high CO-to-HCN ratios. Given HCN formation requires high extinction (A_V > 4), low metallicity may yield reduced dust shielding and thus a high CO/HCN ratio. The turbulence and structure of GMCs in M33 are comparable to those found in other systems, so the differences are unlikely to result from different GMC properties. Since lower CO-to-HCN ratios are associated with the highest rates of star formation, we attribute the deficits in part to evolutionary effects within GMCs.Comment: Accepted for publication in MNRA

    Evidence for a chemically differentiated outflow in Mrk 231

    Get PDF
    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO+^+ J=10J=1\rightarrow0 and J=21J=2\rightarrow1 of the ultraluminous infrared galaxy Mrk~231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+^+ J=10J=1\rightarrow0 and J=32J=3\rightarrow2, and HNC J=10J=1\rightarrow0 in the same source. Results: In the line wings of the HCN, HCO+^+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+^+ outflow emission we find an average abundance ratio X(HCN)/X(HCO+)1000X(\mathrm{HCN})/X(\mathrm{HCO}^+)\gtrsim1000. Assuming a clumpy outflow, modelling of the HCN and HCO+^+ emission produces strongly inconsistent outflow masses. Conclusions: Both the anti-correlated outflow features of HCN and HCO+^+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+^+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+^+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+^+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium (ISM) in the galaxy.Comment: 12 pages, 8 figures, accepted for publication in A&
    corecore