42 research outputs found

    Generalized hardi invariants by method of tensor contraction

    Get PDF
    pre-printWe propose a 3D object recognition technique to construct rotation invariant feature vectors for high angular resolution diffusion imaging (HARDI). This method uses the spherical harmonics (SH) expansion and is based on generating rank-1 contravariant tensors using the SH coefficients, and contracting them with covariant tensors to obtain invariants. The proposed technique enables the systematic construction of invariants for SH expansions of any order using simple mathematical operations. In addition, it allows construction of a large set of invariants, even for low order expansions, thus providing rich feature vectors for image analysis tasks such as classification and segmentation. In this paper, we use this technique to construct feature vectors for eighth-order fiber orientation distributions (FODs) reconstructed using constrained spherical deconvolution (CSD). Using simulated and in vivo brain data, we show that these invariants are robust to noise, enable voxel-wise classification, and capture meaningful information on the underlying white matter structure

    Development of High Angular Resolution Diffusion Imaging Analysis Paradigms for the Investigation of Neuropathology

    Get PDF
    Diffusion weighted magnetic resonance imaging (DW-MRI), provides unique insight into the microstructure of neural white matter tissue, allowing researchers to more fully investigate white matter disorders. The abundance of clinical research projects incorporating DW-MRI into their acquisition protocols speaks to the value this information lends to the study of neurological disease. However, the most widespread DW-MRI technique, diffusion tensor imaging (DTI), possesses serious limitations which restrict its utility in regions of complex white matter. Fueled by advances in DW-MRI acquisition protocols and technologies, a group of exciting new DW-MRI models, developed to address these concerns, are now becoming available to clinical researchers. The emergence of these new imaging techniques, categorized as high angular resolution diffusion imaging (HARDI), has generated the need for sophisticated computational neuroanatomic techniques able to account for the high dimensionality and structure of HARDI data. The goal of this thesis is the development of such techniques utilizing prominent HARDI data models. Specifically, methodologies for spatial normalization, population atlas building and structural connectivity have been developed and validated. These methods form the core of a comprehensive analysis paradigm allowing the investigation of local white matter microarcitecture, as well as, systemic properties of neuronal connectivity. The application of this framework to the study of schizophrenia and the autism spectrum disorders demonstrate its sensitivity sublte differences in white matter organization, as well as, its applicability to large population DW-MRI studies

    Segmentierung medizinischer Bilddaten und bildgestützte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusätzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen Fällen zu einem zufriedenstellenden Ergebnis zu führen. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfügbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfügbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-für-Schicht-Vermessung des Tumorvolumens in der Praxis unterstützt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur Unterstützung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, Durchführung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur Unterstützung der intraoperativen gynäkologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestützten interstitiellen gynäkologischen Brachytherapie, welches unter anderem die Registrierung eines gynäkologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module führten zur Vorstellung eines umfassenden bildgestützten Systems für die gynäkologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prä-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynäkologischen Brachytherapie ab

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Novel mathematical methods for analysis of brain white matter fibers using diffusion MRI

    Get PDF
    White matter fibers connect and transfer information among various gray matter regions of the brain. Diffusion Magnetic Resonance Imaging (DMRI) allows in-vivo estimation of fiber orientations. From the estimated orientations, a 3D curve representation of the trajectory of fibers can be reconstructed in a process known as tractography. Automatic classification of these \tracts" into classes of anatomically known fiber bundles is a very important problem in neuroimage computing. In this thesis, three automatic fiber classification methods are proposed. The first two are based on combining neuroanatomical priors with density-based clustering. The first method includes brainstem heuristics but the second is more general and can be applied to any fiber pathway in the brain. Further, the second method introduces a novel fiber representation, Neighborhood Resolved Fiber Orientation Distribution(NRFOD), that represents a tract as a set of histograms that encode the distribution of fiber orientations in its neighborhood. The third method utilizes the NRFOD representation to directly map a tract to a probability estimate for each bundle class in a supervised classification framework. A practical training and validation set creation methodology is proposed. Additionally, the thesis includes statistical significance tests to investigate whether the structural change between pre-operative and post-operative fiber bundles after a tumor resection operation are related to the change in patient's cognitive performance scores. To this end, a fiber bundle to fiber bundle registration method and various quantitative measures of the structural change are proposed. We present results over DMRI data with clinical evaluations of 30 patients with brainstem tumors

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging
    corecore