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I. Introduction 

1. Foreword 

The development of magnetic resonance imaging (MRI) in the last two decades have 

propelled the investigation of the central nervous system (CNS) at an unprecedented rate. 

With the increasing availability of high‒quality equipment and the inventions of novel 

imaging and processing techniques, MRI has been pushed to the forefront of brain 

research, facilitating several large‒scale initiatives, such as the Human Connectome 

Project [1-3], the Human Brain Project [4], or the UK Biobank Project [5], and imaging 

was also given due attention in the Hungarian Brain Research Program (NAP).  

The ever‒growing amount of multimodal brain imaging data, especially with the 

introduction of diffusion and functional MRI, has been driving the development and use 

of novel processing and statistical methods. Since different modalities, even distinct MR 

contrast mechanisms, provide complementary information on brain structure and 

function, methods combining data from various approaches could aim for more accuracy 

and sensitivity by leveraging their advantages.  

The work behind the present Thesis was aimed at developing methods and new 

biomarkers using combinations of state of the art neuroimaging techniques with diffusion 

MRI. Although the machine learning‒based methods for image processing and analysis 

(some of which are referred to with the alluring term ‘radiomics’), that received an 

exponentially growing interest in the past few years are promising optimized, data‒based, 

automated feature selection, their general use is still hampered by, among other factors, 

the need for vast amounts of well‒annotated training data. The author firmly believes that 

knowledge‒driven studies addressing specific research questions, such as the ones 

presented in this Thesis, still hold merit, at least by forming basis for and interpreting the 

results of such endeavors. 

In the first study of the thesis, conventional whole brain two sample parametric 

statistics and correlation analyses, followed by subsequent white matter region‒level 

analyses were used to identify the brain structures where mild cognitive impairment 

inflicts substantial alterations on the diffusion profile, and measurements from these 
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structures were fed into stepwise logistic regression. Our results demonstrated that 

combining volumetry measurements from anatomical scans with robust region‒level 

diffusion tensor metrics significantly aids distinguishing patients from healthy subjects, 

and improves the differentiation between amnestic and non‒amnestic subtypes of mild 

cognitive impairment even more. 

In the second study a novel approach was proposed and demonstrated for single 

subject whole brain voxel‒level analyses, based on the squared Mahalanobis‒distance 

with analytically derived critical values. The problem of identifying epilepsy‒related 

structural abnormalities was implemented as a data‒driven detection problem, treating 

diffusion tensor eigenvalues from lesion voxels as outliers compared to the distribution 

derived from healthy controls. The expected detection rate and sensitivity to different 

effect strengths and lesion volumes was explored through simulations, and verified in 

select cases with malformations of cortical development. 
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2. Diffusion Magnetic Resonance Imaging 

2.1 Basics of diffusion MRI 

Diffusion magnetic resonance imaging (dMRI) is a general term referring to a group 

of methods widely used for the non‒invasive examination of biological samples and 

porous materials [6-8]. The term diffusion in dMRI refers to the random thermal motion 

of water molecules in the extracellular space, described by Einstein’s theory: the 

ensemble average translation is proportional to the elapsed time, and the ratio is called 

the diffusion coefficient: 

< (𝒓′ − 𝒓)2 >= 6𝐷𝑡 (𝐸𝑞. 1) 

By using spatially varying magnetic fields (referred to as diffusion encoding 

gradients), the magnetic resonance (MR) signal can be made sensitive to the microscopic 

motion of water molecules [9, 10]. An ‘encoding gradient’ means that the magnetic field 

component parallel to the polarizing field (B0) changes linearly across the sample space. 

This is achieved by generating additional magnetic fields much smaller than B0, using 

coils with special geometry. The gradient of the parallel component, denoted as g, 

describes the change in magnetic field along the direction of the pulsed magnetic field. 

By employing the encoding gradient, the Larmor frequencies (ω) of the nuclear magnetic 

spins of water molecules (at coordinates r) also vary linearly along the direction of g: 

𝜔(𝒓) =  𝛾𝐵0 + 𝛾𝒈 ∙ 𝒓 (𝐸𝑞. 2) 

where γ is the gyromagnetic ratio. The use of the gradient over an evolution time t 

results in an accumulated phase shift dependent on the position: 𝛥𝜑 = exp (𝑖𝛾𝒈 ∙ 𝒓𝑡). 

In practice, most diffusion‒weighted MR sequences follow the Stejskal‒Tanner 

encoding scheme [11] with a spin echo (Fig 1).  
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Fig 1 The Stejskal‒Tanner diffusion encoding scheme 

Two identical diffusion encoding gradients (g) are used, with pulse length δ and diffusion time Δ. The 180° 

RF pulse inverts the phase shift accumulated during the first gradient, thereby the second gradient 

effectively rewinds the phases for stationary spins, but displacement along the direction of the gradient 

results in remaining phase error. 

Diffusion encoding is achieved by two identical pulsed gradients preceding and 

following a 180° spin‒echo (SE) pulse. The SE‒pulse inverts the phase shift resulting 

from the first gradient, so the second one completely recovers the phase for stationary 

spins. For moving spins, with displacement R along the direction of the gradients, the 

remaining phase error is Φ = 𝛾𝐺𝛿𝑅, with gradient pulse strength G = |g|, and pulse length 

δ. The signal attenuation in a pulsed field gradient spin echo (PFGSE) sequence with 

short, rectangular gradient pulses and echo time TE, as shown in [11], is: 

𝐴(𝑇𝐸) = exp [−𝛾2𝐺2𝐷𝛿2 (𝛥 −
𝛿

3
)] (𝐸𝑞. 3) 

Parameters describing the diffusion encoding are generally merged in order to 

simplify the equation, defining the so‒called b‒value: 

𝑏 = 𝛾2𝐺2𝛿2 (𝛥 −
𝛿

3
) (𝐸𝑞. 4) 
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As diffusion means the flux of particles through a surface during a given period of 

time, its’ dimension is in the form of [area/time]. In order for the exponent –bD to be 

dimensionless, b is expressed as [time/area]. In practice, b‒values are given in units of 

𝑠/𝑚𝑚2, in the range of 0 – 10000. From the attenuated signal (Sb) corresponding to a 

given b‒value, and a reference measurement (S0) without diffusion encoding, the apparent 

diffusion coefficient (ADC) along the direction of the gradient can be calculated: 

𝐴𝐷𝐶(𝑏) =
ln (

𝑆𝑏

𝑆0
)

𝑏
(𝐸𝑞. 5)

 

It is important to note, that the mono‒exponential signal attenuation in (Eq.3) is only 

accurate for rectangular gradient pulses and free diffusion. In practice, gradient shapes 

are trapezoidal and the b‒values given by MR scanners are calculated slightly differently, 

accounting for the finite rise times and the auxiliary effects of imaging gradients as well. 

Free diffusion means that the displacement of water molecules can be described as a 

simple Gaussian process (i.e. the probability distribution of spin displacement can be 

described with a three dimensional Gaussian function). Strictly, this is only true for pure, 

homogenous liquid samples with infinite size, but the approximation also holds for water 

molecules in the extracellular space with most b‒values used in human studies, except for 

those specifically chosen to measure the non‒Gaussian behavior of the dMRI signal (see 

subsection 2.2.3). 

2.2 Diffusion MRI approaches in neuroimaging 

Even though diffusion only results in displacements on the microscopic scale, the 

degree, at which water molecules can move in the three‒dimensional space of the 

extracellular environment may be hindered due to the physical arrangement of obstacles 

in one, two, or all three directions, resulting in restricted, and in many cases anisotropic 

diffusion [12]. Therefore, the measured signal attenuation in biological samples reflects 

properties of tissue microstructure [6-8]. Measurement and data processing approaches 

can be described according to the level of information extracted about the diffusion 

pattern. By measuring ADC‒values in several directions, one can define the diffusion 

profile as a three dimensional surface describing the orientation distribution of the 

observed displacement in each voxel (Fig 2).  
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Fig 2 Diffusion profiles of several voxels in the deep parieto‒occipital white matter  

Apparent diffusion coefficients in each measured direction can be used to construct 3D surfaces, visualizing 

the orientation distribution of the observed mean displacement of extracellular water molecules. The 

difference between white matter structures with a single main orientation (e.g. the callosal fibers on the 

middle on the left side), with two or three orientations (on the bottom in the middle and the right side), in 

gray matter with no clear maxima (lower left corner), and in the cerebrospinal fluid (CSF ‒ upper left 

corner) can be measured and visualized. 

2.2.1 Diffusion weighted imaging 

The simplest approach of dMRI, called diffusion weighted imaging (DWI), quickly 

gained interest in the clinical field for its superior sensitivity detecting cerebral ischemia 

through the restricted diffusion signal of cytotoxic edema, appearing in minutes after the 

occlusion [13]. DWI has also been proven useful in onco‒radiology.  In DWI, diffusion‒

encoding gradients are applied separately in three perpendicular directions; restricted 

diffusion can be identified as high signal intensity after averaging the corresponding 

images. Due to averaging, directional, and therefore anisotropy information is not 

extracted; DWI can be viewed as measuring only the volume enclosed by the diffusion 

profile (with the three orthogonal directions, the corresponding surface is a cuboid). By 
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acquiring a reference image and calculating the ADC‒values from the averaged images, 

other biological and physics‒related phenomena (e.g. differences in T2‒relaxation times) 

can be disentangled from the effects of the diffusion process. 

2.2.2 Diffusion tensor imaging 

The most widely known (and simplest) technique, capable of handling anisotropy 

information, used in both clinical neuroradiology and for innumerable research questions 

about the CNS, is diffusion tensor imaging (DTI) [14, 15]. Since DTI was the method of 

choice in both research projects of the present Thesis, this section contains a detailed 

explanation of the approach, with emphasis on its strengths and limitations. 

In the DTI representation, the 3D Gaussian model uses a 3‒by‒3 tensor D to describe 

diffusion anisotropy, instead of a scalar ADC: 

𝑫 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] 

Using the observed properties of molecular diffusion, the tensor describing the 

physical process must be real and symmetric, therefore Dxy = Dyx, Dxz = Dzx, and 

Dyz = Dzy. By writing the diffusion encoding b‒vectors in matrix format, and utilizing this 

symmetry, (Eq.5) takes the following form for DTI: 

ln (
𝑆𝒃

𝑆0
) = −(𝑏𝑥𝑥𝐷𝑥𝑥 + 2𝑏𝑥𝑦𝐷𝑥𝑦 + 2𝑏𝑥𝑧𝐷𝑥𝑧 + 𝑏𝑦𝑦𝐷𝑦𝑦 + 2𝑏𝑦𝑧𝐷𝑦𝑧 + 𝑏𝑧𝑧𝐷𝑧𝑧) (𝐸𝑞. 6) 

The six unknowns in (Eq. 6) means that at least six measurements with diffusion 

encoding in non‒collinear directions are required in a dMRI measurement indented for 

DTI processing.  In typical DTI‒studies 30 – 40 directions are used [16] and tensor fitting 

usually forgoes simple least squares methods; iterative approaches with outlier rejection 

strategies [17] benefit from the higher number of measurements. 

This representation means that the diffusion profile is modeled as an ellipsoid in each 

voxel (Fig 3), which is understandable after the eigenvalue decomposition of the tensors: 
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𝑫 = [ 

─ 𝒗𝟏 ─
─ 𝒗𝟐 ─
─ 𝒗𝟑 ─

 ] [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] [
| | |

𝒗𝟏 𝒗𝟐 𝒗𝟑

| | |
] (𝐸𝑞. 7) 

The lengths of the ellipsoids half‒axes are the eigenvalues (λ1, λ2, λ3) of D and the 

corresponding eigenvectors (v1, v2, v3) determine their orientation. 

The principal eigenvector (v1) signals the direction in which the measured diffusion 

displacement is largest and is used by convention for color coding the voxels: right‒left 

direction is red, anterior‒posterior is green, superior‒inferior is blue, and their mixtures 

represent in‒between orientations (Fig 3). 

 

Fig 3 Diffusion ellipsoids in the deep parieto‒occipital white matter  

The tensor representation in DTI means that the 3D diffusion displacement profile is approximated as an 

ellipsoid in each voxel. This approach handles the anisotropy and directionality information, measured in 

dMRI, but fails to resolve the geometry of crossing fibers and to capture the signal behavior of non‒

Gaussian diffusion processes.  
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Diffusion tensor data can be utilized with two distinct approaches: the orientation 

information facilitates tractography, while the eigenvalues can be used to derive 

anisotropy and diffusivity‒related measures that reflect tissue microstructure.  

In tractography, neighboring voxels are linked sequentially, following the ellipsoids 

angulation, to form fiber tracts (i.e. supposed axonal bundles in the white matter of the 

brain and spinal cord), using interpolation with sub‒voxel step size [18]; methods similar 

to those describing flow patterns in fluid dynamics.  

Tracts are identified through the following logic: so‒called seeds voxels act as starting 

points, and tracts are propagated while considering limits on anisotropy and geometric 

parameters (e.g. angulation). There are two distinct approaches for propagation: 

deterministic [19], when a single tract follows the direction determined by v1 and 

probabilistic [20, 21], when a large number of tracts are observed simultaneously, 

sampling the diffusion profile for the selection of propagation direction in each step 

following a Monte Carlo procedure. Tractography results have been used in innumerable 

clinical and research applications, e.g. studying specific white matter regions for 

neurosurgical planning [22] and in developmental studies [23, 24]. By defining seed 

points throughout the entire brain parenchyma, whole brain tractography (Fig 4) enables 

network‒studies with quantitative measures on connectivity between different structural 

or functional regions [25, 26].  
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Fig 4 Result of whole brain, deterministic DTI tractography on a healthy volunteer  

Conventional color‒coding, defined by the direction of the primary eigenvector: right‒left direction is red, 

anterior‒posterior is green, and superior‒inferior is blue 

Although after its introduction, DTI‒based tractography gained substantial interest, it 

has been shown that its approach of identifying one primary direction per voxel is overly 

simplistic, since the vast majority of white matter voxels contain two or more distinct 

fiber bundles [27]. A brief overview on the more recent approaches surpassing these 

limitations is given in subsection 2.2.3. 

DTI data has also been used to probe tissue microstructure through rotationally 

invariant scalar metrics, derived from the tensor eigenvalues [28]. The most well‒known 

are the diffusivity measures and fractional anisotropy (FA). The first eigenvalue, 

representing diffusion strength along the primary direction, is usually referred to as axial 

diffusivity. Following the same logic, the arithmetic mean of λ2 and λ3 is radial diffusivity 

(RD), measuring diffusion perpendicularly to the main direction; and the average of all 
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three is mean diffusivity (MD), which can be interpreted similarly to the ADC‒value in 

DWI, but, with the high number of measurements and subsequent model‒fitting, is less 

prone to imaging errors and noise. FA measures diffusion anisotropy in the voxel in the 

range [0, 1], with FA = 0 representing isotropic, FA = 1 perfectly anisotropic diffusion. 

Defining equations for the above described diffusivity measures and FA are as follows:   

𝑅𝐷 =
𝜆2+𝜆3

2
;  𝑀𝐷 =

𝜆1+𝜆2+𝜆3

3
;  𝐹𝐴 = √

3

2

(𝜆1−𝑀𝐷)2+(𝜆2−𝑀𝐷)2+(𝜆3−𝑀𝐷)2

𝜆1
2+𝜆2

2+𝜆3
2    

A vast number of DTI‒based studies have used these metrics as indicators of 

neuropathological progress with popular interpretations for various findings. FA is 

generally viewed as a measure of fiber coherence in the white matter (WM), and has been 

shown to increase with brain maturation [29], supposedly reflecting axon myelination. 

The same process results in concordantly observed decreases in MD and RD. On the other 

hand, neurodegenerative diseases has been shown to inflict opposing changes in white 

matter: reduced FA and increased RD, possibly indicating demyelination [30]. Decreased 

axial diffusivity has also been confirmed in cases with axonal damage [31]. More details 

and examples regarding DTI‒related findings and interpretations concerning our research 

topics, i.e. mild cognitive impairment and malformations of cortical development, are 

given in subsections 5.1.2 and 5.2.1. 

The straightforward interpretations and seemingly clear connections between various 

pathological processes and the observed changes in these scalar parameters made DTI 

popular in the field of neuroimaging, but limitations of the tensor representation also stand 

for such microstructural applications, and must be considered when discussing highly 

diverse or even controversial findings. These limitations stem from the fact that scalar 

metrics are calculated from the volume‒averaged signal attenuation, which reflects the 

mixed behavior of the various contents of voxels. A simple example is when a voxel 

contains two perpendicular fiber populations, and the demyelination of one results in 

increasing FA [32]. Such considerations do not necessarily undermine past or novel 

findings using the DTI approach, but instead demonstrate the limits on the complexity of 

processes it can interpret. 
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With the various diffusivity and anisotropy measures calculated from the same three 

eigenvectors, deciding which of them are of interest in any given study has also been a 

highly debated topic, especially considering the problem of multiple comparisons. In [33], 

the second article behind this thesis, we proposed a novel and more straightforward 

approach for statistical evaluation of DTI data that works with the raw eigenvalues 

themselves and utilizes all of the scalar information in the diffusion tensor using 

multidimensional statistics. 

2.2.3 Outlook on dMRI methods beyond DTI 

Several, more complex methods have been proposed to surpass the above described 

limitations of DTI [34]; the common prerequisite for all is the need for collecting more 

data, i.e. more diffusion encoding directions and strengths [35]. For the complete 

description of the three dimensional diffusion displacement function, especially the non‒

monoexponential signal attenuation at high b‒values, the so‒called q‒space imaging 

formalism was introduced [36]. The q‒vector describes the encoding strength, similarly 

to the previously described b‒vector: 𝒒 = 𝜸𝜹𝒈/2𝜋, and can be used to describe the 

Fourier‒relationship between signal attenuation (A(Δ, 𝐪)) and the average displacement 

function (�̅�(𝑹, 𝛥)) for given mixing time Δ and net displacement R: 

A(Δ, 𝐪) = ∫ �̅�(𝑹, 𝛥) exp(𝑖2𝜋𝒒 ∙ 𝑹) 𝑑𝑹 (𝐸𝑞. 8) 

In theory, the displacement function itself can thus be measured by sampling the 

whole of q‒space in a Cartesian fashion and subsequently applying the three dimensional 

Fourier‒transform ‒ analogously to the sampling and reconstruction of k‒space in MR 

image formation. Such a measurement, however, would require short gradient pulses that 

cannot be fully achieved with clinical scanners, and total scan times that are not tolerable, 

even to highly motivated subjects. Therefore, complete q‒space imaging (also referred to 

as diffusion spectrum imaging – DSI [37]) has only been seldom applied in human studies 

[38], but several, more or less simplified approximations has been proposed, which may 

all be illustrated in the q‒space formalism (Fig 5). 

DOI:10.14753/SE.2021.2464



20 
 

 

Fig 5 The q‒space sampling schemes of different dMRI methods 

A: Diffusion spectrum imaging (DSI) aims to sample the whole q‒space to reconstruct the complete 

diffusion displacement function (DDF). B and C: with less demanding scan times, q‒space imaging (QSI) 

resolves displacement along one and three (or more) directions. D: Diffusion weighted imaging (DWI) 

samples only four points in q‒space (one along each main axis plus the origin). E: a typical measurement 

for diffusion tensor imaging (DTI) essentially means the sampling of a half‒sphere (shell) in q‒space and 

the origin. F: the majority of recent dMRI processing methods use data with one or multiple q‒shells 

(multiple b‒values) along many encoding directions; common terms are q‒ball imaging (QBI), or high 

angular resolution diffusion imaging (HARDI). 

With measurements along one or several axes with different q‒values (Fig 5, panels 

B and C), the diffusion displacement function (DDF) for the corresponding direction(s) 

can be reconstructed. This model‒free approach, called q‒space imaging (QSI) has been 

used in examining certain diseases of the central nervous system, e.g. multiple sclerosis 

[39, 40]. From the q‒space sampling patterns, it is evident how little of the available 

information is collected in conventional DWI (Fig 5, panel D) and even in typical 

measurements for DTI (Fig 5, panel E). 
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With technical and methodological improvements, such as parallel imaging and, more 

recently, simultaneous multi‒slice imaging, the acquisition time needed for a single whole 

brain image has been substantially reduced, enabling tolerable scan times for high angular 

resolution (typically around 60 – 130 directions) and multi‒shell dMRI data [41-43], with 

b‒values in the order of 0 – 10000 𝑠/𝑚𝑚2 [44] (Fig 5 panel F). The term ‘high angular 

resolution diffusion imaging’ (HARDI) became generally accepted for such 

measurements over the last two decades [45], and numerous processing approaches and 

models were proposed leveraging the increased quality and quantity of information.  

The higher number of encoding directions facilitates higher order fitting methods that 

can resolve complex fiber geometry (e.g. crossing fibers) in tractography. Examples of 

such methods are Q‒ball imaging [46] (the name referencing the fact that measurements 

with a single b‒value along several directions correspond to a sphere or shell in q‒space), 

or the more recent and currently most popular constrained spherical deconvolution (CSD) 

approach [47, 48], in which the fiber orientation distribution function (fODF) is 

reconstructed using symmetrical spherical harmonic functions. 

With at least three different b‒values or even more complex encoding schemes, tissue 

microstructure can be described more accurately, as well. A relatively simple extension 

to DTI is diffusional kurtosis imaging (DKI) that requires at least three different b‒values 

(e.g. 0, 1000, and 2000 𝑠/𝑚𝑚2) and is able to separate multiple water compartments by 

quantifying the non‒Gaussian behavior of the diffusion signal [49]. Several model‒based 

methods has also been proposed, such as the straightforward biexponential model [50], 

or geometric models using ensembles of spheres, cylinders, ellipsoids, and planes to 

describe the microstructural environment of neural tissue, with or without exchange of 

water molecules between various compartments. A few notable examples are 

CHARMED [51], NODDI [52], and the diffusion tensor distribution approach by 

Szczepankiewicz et al. [53]. 

Although in both papers providing the basis of this theses the processing of dMRI 

data was performed with DTI, the proposed multidimensional statistical approaches are 

also applicable when working with more advanced methods, yielding more sophisticated 

descriptions of tissue microstructure or connectivity. 
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2.2.4 Imaging, correction, and data processing in dMRI 

Image formation for dMRI acquisitions is a complex problem since several conflicting 

requirements have to be met simultaneously. The use of the diffusion sensitizing gradients 

and the need for adequate mixing time demands longer echo times (in the order of 

100 ms), which requires a spin echo (SE) based technique. Conventional SE, or fast SE 

sequences would be preferential for their high signal to noise ratio, excellent image 

contrast, and since they are mostly free form geometric distortions, but their use is 

inadequate for multiple reasons.  

First, the diffusion weighting brings a new set of steps into the pulse sequence that 

needs to be performed for each k‒space line; this would naturally lead to intolerable 

acquisition times. More importantly, the diffusion sensitizing gradients cause random, 

spatially varying phase differences over the field of view (FOV), therefore multi‒shot 

techniques would be tainted by these phase errors between k‒space lines, resulting in 

uncontrollable image ghosting and signal voids. Thus, the need for a single‒shot imaging 

approach is evident; historically the most popular of such sequences has been echo planar 

imaging (EPI) [54].  

In EPI, all the two dimensional (2D) k‒space data is read after a single excitation, 

thereby diffusion weighting only needs to be performed once for each slice, facilitating 

short acquisition times and ghost‒free images. On the other hand, single‒shot EPI has 

several limitations and inherent artefacts that need to be acknowledged and/or corrected. 

Since the whole k‒space is to be acquired in one readout, the number of phase encoding 

steps, therefore spatial resolution is limited: typical dMRI acquisitions for whole brain 

imaging achieve 2 mm isotropic voxel size by the aid of parallel imaging or partial Fourier 

techniques.  

The consecutive reading of k‒space lines leads to the accumulation of phase errors, 

resulting in distortions along the phase encoding direction. These errors are most severe 

in brain regions with strong variations in magnetic susceptibility, for example, around the 

edges of the frontal and temporal lobes.  
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Furthermore, the strong diffusion sensitizing gradients often induce eddy currents in 

the gradient coils and other conductive elements of the MRI scanner. These eddy currents 

generate spatially and temporally varying magnetic fields that could taint the EPI readout, 

resulting in shifting, shearing, or scaling of the image, visible over the whole FOV. 

These image distortions, as well as other types of artefacts, such as insufficient fat 

suppression, ghosting from timing errors, patient motion, gradient nonlinearities etc. all 

lead to inaccuracies in dMRI processing, hindering all types of inference [55]. 

Fortunately, most systemic errors can be aided to some degree and typical dMRI 

processing pipelines usually include corrections, preferentially also conserving the 

directional information of the diffusion measurement while performing various spatial 

transformations on the data [56]. By using the non‒diffusion weighted (b = 0) image(s) 

as reference, distortions caused by eddy‒currents or patient motion can be mitigated 

through linear and non‒linear transformations. If an additional image, preferentially a 

high‒resolution, T1‒weighted, anatomical scan is available in the processing pipeline, it 

can be used as a target for registration in order to correct susceptibility and EPI‒related 

distortions.  

With sophisticated interpolation approaches, the description of tissue microstructure 

and tractography can even benefit from the higher resolution [57]. Both studies of the 

present thesis leveraged this and a further advantage of this approach: the spatial 

correspondence between dMRI and anatomical data enables high performance 

coregistration between subjects and identification of various brain regions by using 

methods that were developed for anatomical scans [58]. 
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3. Statistics in brain MRI studies 

3.1 Univariate statistics 

Since the inception of brain MRI, numerous approaches has been employed to utilize 

its superior image quality and various contrast mechanisms for studying brain structure, 

morphology, maturation, and the effects of various diseases. The simplest methods 

measure the size or volume of specific structures, e.g. the hippocampus and either 

compare it between individuals or cohorts of different diseases [59, 60] and healthy 

control subjects; or correlate it with specific, often neuropsychology‒related measures 

[61]. Information about tissue microstructure, e.g. average DTI scalar metrics can also be 

extracted from manually or automatically delineated regions of interest (ROIs), and 

compared with conventional parametric or non‒parametric tests [62].  

Explorative methods also emerged for identifying systemic effects throughout the 

brain. Structural and functional atlases have been proposed as the extension of the ROI‒

based approach, yielding automated labeling of white [63] or gray matter structures [64]. 

In conjunction with the advances in processing functional MRI data, standard coordinate 

systems gained wide acceptance for identifying brain structures: so called template 

spaces, of which the most well‒known were the single subject – based Talairach–space 

[65, 66] and the Montreal Neurological Institute (MNI) template [67], the latter created 

from the average of the structural images from hundreds of subjects. Nowadays, the latter 

became almost exclusively used, being the default coordinate system of the two most 

popular MRI processing software: FSL [68] and SPM [69].  

Templates are used by spatially registering the individual’s data through linear and 

non‒linear volumetric transformations [70, 71], and the resulting spatial correspondence 

across subjects not only means that the structures can be labeled automatically with the 

use of atlases, but also facilitates statistical inference on the voxel level. Such methods 

are called voxel‒based analysis (VBA) or, particularly, when working with measures 

describing gray matter structure, voxel‒based morphometry (VBM) [72]. Along the VBA 

methods that work with scalar values, other approaches have also been proposed to utilize 

the information of the spatial deformations called deformation‒based morphometry [73] 

and tensor‒based morphometry [74, 75].  
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In cohorts with certain diseases or specific age groups, the widely used templates may 

not be accurate, as they were derived from images of healthy adult brains. Such could be 

the case e.g. with the atrophied GM of the elderly or patients with Alzheimer’s disease. 

In these avenues of research, study‒specific templates yield better spatial coregistration 

performance and therefore more homogeneous samples. The DARTEL method [58] for 

defining such specific common coordinate systems was used in both studies of the present 

thesis. 

3.2 The problem of multiple comparisons 

With the high number of ROIs in finer atlases and even more so with VBA methods, 

the problem of multiple comparisons has severe impact on neuroimaging studies [76, 77]. 

Performing a large number of statistical tests simultaneously (mass univariate testing) 

inherently degrades the reliability of the inference as the likelihood of false positives 

increases. Remedies for this problem generally follow one of the following three 

approaches: (1) reducing the number of the performed tests by the limiting the number of 

examined structures or volume, (2) utilizing the fact that the measured values in the brain 

are not independent, or (3) applying conservative thresholds for inference in order to 

control the rate of false positives. 

An example for the first approach, designed for dMRI‒studies is the tract based spatial 

statistics (TBSS) [78] method, which projects DTI‒scalars onto the center of WM 

regions, defined as the so‒called FA‒skeleton, and performs statistical inference on this 

limited volume. Methods of the second approach, such as the cluster‒level inference 

based on random field theory in SPM, are widely accepted in functional MRI (fMRI) 

processing, when the assumption holds, that the observed blood oxygen level dependent 

(BOLD) signal alteration of neighboring voxels is linked, as it follows from the nature of 

hemodynamic response [79]. 

Historically the oldest, simplest, and most conservative is the third approach, 

generally associated with the name of Bonferroni, and is based on simple probability. 

With 𝑛 measurements converted to probability values using some null distribution, if all 

n samples are from the null distribution, then, with a threshold (level of significance) α, 
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the probability of all tests being less then α is (1 ‒ α)n. The probability of one or more of 

the n test values being greater than α is called the family‒wise error rate (FWE): 

𝑃𝐹𝑊𝐸 = 1 − (1 − 𝛼)𝑛 (𝐸𝑞. 9) 

This can be approximated for a small α as PFWE ≤ nα, from which it follows that in 

order to achieve a given desired error rate, the probability threshold has to be adjusted as 

α = PFWE / n. This procedure, called the Bonferroni‒correction was used in in both studies 

of the present thesis.  

Another method with similar logic, which was also employed in our work as a more 

liberal point of reference, is controlling the false discovery rate (FDR). In FDR‒

correction, instead of constraining the probability of one false positive result, only the 

rate at which type I error occurs is controlled, resulting in less conservative testing and 

yielding less false negatives.  

Although it has been demonstrated that when spatial correlation is present in the 

samples, therefore the performed tests are not independent, FWE and even FDR‒

correction methods tend to be overly strict. Thus, several, more liberal approaches have 

been proposed to deal with the problem of multiple comparisons, yet both FWE and FDR 

are both still widely used as conservative approaches to retain specificity in statistical 

testing. Moreover, results ‘surviving’ Bonferroni‒correction are generally considered to 

signal substantial effects. 

3.3  Multivariate approaches 

Multidimensional studies aim to combine information from independent sources in 

order to raise statistical power; a feat sought after in the neuroimaging literature. Several 

strategies were employed to implement such combination at different levels of statistical 

analysis throughout the past two decades, using (and sometimes combining) voxelwise, 

surface‒based, or ROI‒level methods. The performance of this pooling of information 

has been evaluated on the level of p‒values [80, 81], T‒score maps [82], and by using 

multivariate [83, 84] and, as in the first study, logistic regression [85] analyses.  
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The lowest level at which neuroimaging information can be combined is achieved by 

working with raw data, or derived parameter maps. Such was the approach e.g. in [86], 

working with voxelwise MD and volumetry data. More recently, the performance of 

machine learning based classifiers in the scope of lesion detection was demonstrated with 

satisfying performance, e.g. on the voxel level, working on T1‒weighted data using a one‒

class support vector machine‒based classifier and outlier detection approach [87]; or on 

the vertex‒level, working with morphologic and intensity‒based metrics, using surface‒

based methodology [88] [89].  

Although the aforementioned models and studies demonstrated (further detailed in 

subsection 2.1) that multidimensional approaches can increase statistical power by 

combining the sensitivity profiles of independent modalities, their usage is often 

complicated, computationally expensive, and includes arbitrary choices (for example the 

choice of combining functions in [82] or the selection of weighting factors for 

multivariate linear regression). 

The second study of the Thesis was aimed at developing a more straightforward and 

easier to use method, based on the Mahalanobis‒distance for testing neuroimaging 

(specifically DTI) data in the context of lesion detection when comparing a single patient 

to a group of healthy controls. 
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4. The Mahalanobis‒distance 

4.1 Definition 

The Mahalanobis‒distance is a measure of dissimilarity, commonly used in 

multivariate outlier detection problems [90-92], which we employed in our second study 

as the basis for epileptic lesion detection, searching for abnormal voxels as outliers when 

comparing a single subject to a group of controls.  

Following the original definition by Mahalanobis [93], in a P dimensional statistical 

field (constructed from P separate variables) the squared distance between an observed 

distribution with mean μ = (μ1, μ2, … μP) and covariance matrix S, and any point X = (X1, 

X2, …XP) is expressed in the form: 

𝐷𝑀
2 = (𝑿 − 𝝁)𝑇𝑺−1(𝑿 − 𝝁) (𝐸𝑞. 10) 

Multiplication with the inverse of the covariance matrix maps the inter‒point 

distances to a standard L2 – norm (i.e. Euclidean space), cleared of any possible 

correlations and differences in standard deviations (σ1, σ2,… σP) between the dimensions 

(Fig 6); therefore D2 values reflect how far a given point is from the underlying 

multivariate distribution. 

 

Fig 6 The effect of the multiplication with the inverse of the covariance matrix. 

The multidimensional distribution is cleared of possible correlations and differences in standard deviation, 

therefore the distances are effectually calculated in a Euclidean space. 
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This mapping feature is potentially useful in diffusion weighted image processing and 

the detection of pathological tissue microstructure in the DTI framework, as different 

tensor eigenvalues are sensitive to different pathologies but they generally exhibit strong 

correlations [94-96]. 

By definition, the Mahalanobis‒distance is related to Hotelling’s T2 (e.g. used in [86]) 

with the exception that the latter compares a group of subjects to the reference 

distribution, by using 𝑿 (the group average of Xi = (X1, X2, …XP) vectors, each 

corresponding to an individual subject) instead of a single X. Like Hotelling’s T2 is often 

referred to as the multidimensional equivalent of Fischer’s two‒sample T‒test, one may 

view the squared Mahalanobis‒distance as a multidimensional one‒sample T‒statistic. 

4.2 The Mahalanobis‒distance in neuroimaging 

The Mahalanobis‒distance has been employed in neuroimaging in relation to various 

disorders and at different levels of information processing: in discrimination between 

normal tissue types and brain tumors [97]; in ordering the eigenvectors of discriminatory 

principal component analysis, differentiating Schizophrenia patients from controls using 

whole brain FA [98]; in combining DTI‒scalar metrics with T1 and T2‒weighted images 

in WM‒ROIs, quantifying brain maturation [99]; in discerning subtypes of mild cognitive 

impairment based on T1, T2, and proton density‒weighted images [100]; and, more 

recently, in quantifying the difference between patients with autism spectrum disorder 

and subjects with normal aging, using different sets of DTI scalars from major WM tracts 

[101].  

In [33], the second study behind the thesis, 3 dimensional distributions were 

constructed in each voxel from the eigenvalues of the diffusion tensor, and the voxelwise 

squared Mahalanobis‒distance was calculated using empirical μ and S from samples 

containing one patient and a group of control subjects (Fig 7). 
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Fig 7 Mahalanobis‒distance in the 3D space of DTI eigenvalues. 

Outlying diffusion profile in a given voxel of a single subject under examination (red) is detectable through 

the distance (D2) from a group of controls (blue and green) in the three dimensional parameter space of the 

diffusion tensor eigenvalues. Common alterations of the diffusion profile, such as a higher first eigenvalue 

(as in the case of point A; usually detected through increased fractional anisotropy in univariate tests); an 

increase in all three eigenvalues (B; commonly observed as increased mean diffusivity); or an altered 

diffusion profile with normal‒appearing diffusion strength (like in the case of C, when MD equals to the 

average MD of the controls, but the eigenvalues differ) are all detectable in the multivariate framework 

with a single test. 

4.3 Statistical inference based on critical values 

Critical values for detecting a single multivariate outlier at a desired level of 

significance, as shown in [102], can be calculated using Wilks’s criterion [103], with the 

following formula: 

𝐷𝑐𝑟𝑖𝑡
2 =

𝑝(𝑛 − 1)2𝐹
𝑝,𝑛−𝑝−1;

𝛼
𝑛

𝑛 (𝑛 − 𝑝 − 1 + 𝑝𝐹
𝑝,𝑛−𝑝−1;

𝛼
𝑛

)
, (𝐸𝑞. 11) 
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where p is the number of dimensions, n is the number of observations (subjects) and 

F is the distribution function of the F statistics, with the appropriate numerator and 

denominator degrees of freedom at the desired significance level α. By selecting a 

sufficiently conservative α, i.e. one aiming to control the FWE or the FDR, the problem 

of multiple comparisons (high number of voxels under examination) may also be 

addressed. Although the distributions of the diffusion tensor eigenvalues are usually not 

strictly Gaussian, this generally does not affect the calculation of Mahalanobis‒distance 

significantly, however, it may result in an overestimation of the critical values somewhat 

reducing sensitivity with the unintendedly more conservative inference. With the 

analytically derived critical values accounting for sample size, statistical significance is 

not likely to be affected by the bias described in [104], however, as with conventional 

statistical approaches, using larger control samples is desirable to increase specificity. 
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5. Research topics – Clinical importance 

5.1 Mild Cognitive Impairment 

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder among 

the aging population [105], which is already an enormous but still a growing economic 

burden in western societies such as countries of the European Union or the United States. 

While we do not have effective treatment for AD at the moment, but future 

interventions will likely be effective in an early stage of the disease, many research efforts 

are focused on the early detection of symptoms. Converging evidence from many 

previous investigations revealed that pathologic process of AD starts decades before the 

first symptoms of cognitive decline [106]. Therefore, the intermediate stage between the 

mild decrease of cognitive functioning in physiological aging and the severe decline in 

dementia known as ‘mild cognitive impairment’ (MCI) has gained a lot of interest in the 

last decade. “In MCI mild impairment of cognitive skills can be revealed by 

neuropsychological tests, while global cognitive functions and everyday activities are 

preserved” [107]. The higher conversion rate to AD in MCI gives the clinical significance 

of this pre‒disease condition. The annual conversion rate is 10 ‒ 15% in MCI compared 

to the annual rate of 1 ‒ 4% in the average elderly population; hence, most MCI patients 

develop clinical AD [108, 109]. Further subtypes of MCI can be differentiated such as 

the amnestic (aMCI) and non‒amnestic subtypes (naMCI) with distinct structural features 

[110]. The conversion rate from the aMCI subtype to Alzheimer Disease is much higher 

[111] compared to the naMCI subtype, which underlines the significance of 

differentiation between the two. Patients with the naMCI subtype tend to develop other 

dementia variants (e.g. vascular). 

5.1.1 MRI diagnostics of MCI 

Though atrophy of grey matter (GM) structures in the medial temporal lobe have been 

the most studied feature [110, 112-114], degradation of white matter tracts, especially the 

fornix may precede it [115, 116] and has become detectable in preclinical states with use 

of DTI and other complimentary imaging techniques [117]. Indeed, the cingulum and the 

fornix carry the axons projecting from the CA1 and CA3 pyramidal neurons of the 
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hippocampus, and there is further published evidence underlining their predictive 

potential [118, 119]. 

5.1.2 The role of DTI in MCI diagnostics  

DTI is a relatively new and promising neuroimaging technique in the early diagnosis 

of Alzheimer Disease and in the identification of early at‒risk groups such as patients 

with MCI. FA and MD were found to be good indices of fiber density, axonal diameter 

and myelination, and proved to be useful as early signals of cognitive decline [120, 121]. 

FA is greater and MD is decreased in organized white matter tracts, while both measures 

go to the opposite direction in CSF and disorganized fibers [122, 123]. Findings of 

previous studies suggest a specific pattern in MCI and AD where white matter damage 

begins in the core memory network of the temporal lobe and cingulum and spreads 

beyond these regions in later stages [124]. 

5.2 Drug resistant epilepsies (DREs) 

Drug resistance affects about 20 ‒ 30% of the epileptic patient population, causing 

severely impaired quality of life and a difficult to treat situation [125, 126]. Most of the 

drug resistant cases (~60%) are focal epilepsies; nevertheless, there are generalized forms. 

Malformations of cortical development (MCDs) and long‒term epilepsy‒associated 

tumors (LEATs) are among the most frequent etiological factors causing DRE [127-130]. 

Subtypes of MCDs include focal cortical dysplasia (FCD), polymicrogyria (PMG), 

heterotopia (HTP), hemimegalencephaly (HME), while subtypes of LEATs include 

gangliogliomas, and disembryoplastic neuroepithelial tumors (DNTs) [131]. Most of 

these entities may exhibit variable features on MR images collected with an epilepsy 

protocol.  

DRE patients are often candidates for surgical intervention; however, the probability 

of postoperative seizure freedom is remarkably lower in cases lacking any identifiable 

lesions on conventional MRI [132]. Therefore better visualization of MCDs and LEATs 

e.g. as shown in [87, 88, 133-137] can be crucial for improving surgical outcomes. 
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5.2.1 DTI in the diagnosis of epilepsy 

DTI has been proven sensitive to the disrupted tissue microstructure, identified in 

MCDs. Abnormalities tend to extend beyond the lesions themselves, for example [138] 

identified decreased FA and increased MD and RD in regions spanning 5 – 20 mm around 

the nodules in children with periventricular nodular heterotopia. Widespread decrease of 

FA was also demonstrated in major WM tracts in both hemispheres (e.g. in the cingulum, 

forceps minor, anterior thalamic radiation, superior longitudinal fasciculus, uncinate 

fasciculus, and the inferior fronto‒occipital fasciculus) in a group of patients with frontal 

FCDs, using TBSS [139]. 

More sophisticated models such as DKI [140] or the NODDI [52] approach may 

further improve lesion detection based on diffusion weighted MRI [141-143]. Once again, 

since DTI is still the most widely used approach, mainly because of its simplicity and 

clinically feasible acquisition and processing time, we chose to demonstrate our proposed 

statistical method using DTI data, however, the framework we introduced in the second 

study may be applied to all kinds of voxelwise variables derived from any meaningful 

model. 
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II. Aims 

1. DTI and Mild Cognitive Impairment  

The primary aim of the first study was to find the possible differences between the 

subgroups of MCI, which may increase prognostic capability at an early stage, and a 

further aim was to confirm the recent findings regarding the DTI differences observed 

between controls and MCI subjects [118, 119]. Based on previous evidence [118, 119], 

the most prominent between group differences and the strongest correlations with 

memory functions were expected in the cingulum and the fornix. The secondary aim of 

the study was to determine in which brain regions and DTI measurements can expand the 

findings of previous volumetric examinations [110], to help the differentiation between 

patients with aMCI, naMCI, and healthy subjects. 

2. Mahalanobis‒distance in MCD lesion detection 

The main aim of the second study was to evaluate the performance of a novel, 

Mahalanobis‒distance–based statistical approach using DTI data, ‒for detecting 

microstructural abnormalities; by simulations using data from standard multivariate 

normal distribution (SMVND  ̶  𝓝P(0,1)) and from healthy controls. Based on the 

simulation results we also aimed to demonstrate the utility of the approach in select cases 

of patients with MCDs. 
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III. Materials and Methods 

1. DTI and Mild Cognitive Impairment 

Briefly, in this study different statistical approaches were applied to (a) identify those 

white matter structures which are the most sensitive to early impairment in pathological 

aging, and (b) to estimate if diffusion metrics can extend the differentiation performance 

of volumetry. First, we performed voxelwise correlation analyses between 

neuropsychological tests and the above mentioned DTI parameters to assess and 

demonstrate whether these tests capture the examined aspects of cognitive performance 

and that the DTI metrics under consideration do reflect the state of tissue microstructure 

in relation to them. Next, we compared subgroups of healthy individuals, and at‒risk 

subgroups of amnestic and non‒amnestic mild cognitive impairment on the voxel‒level 

to solidify the results of the correlation analyses and to identify the regions showing 

significant between‒group differences. With voxel‒level calculations being extended to 

the whole of the brain parenchyma, the earliest signs of alterations in GM cellular 

structure may be detected. We then performed both correlation and between group 

analyses in predefined regions of interest (the 48 ROIs of the ‘JHU White‒Matter Atlas’ 

[63, 144-146]). With less independent tests to perform and thereby being able to apply 

more liberal thresholds for multiple comparisons correction, the ROI‒level approach may 

exhibit higher sensitivity. Even more so, with the method being used on WM ROIs, its 

results may prove to be more stable (as DTI is most sensitive to changes in the WM), 

rendering this approach better suited for discriminative models. 

Finally, In order to prove our hypothesis that DTI measures of these regions can 

improve the differentiation performance achievable with GM volumetry, logistic 

regression analysis was performed with a K‒fold cross‒validation approach [147], 

combining volumetric data from the same patient population [110] with the DTI 

measures. 
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1.1 Study data and Participants 

MR imaging data of 65 subjects (18 with amnestic MCI, 20 with non‒amnestic MCI, 

and 27 healthy controls) acquired at 3T (Philips Achieva scanner, Philips Medical 

Systems, Best, The Netherlands) was included in this study; the subjects were the same 

as those in [148], except for three additional healthy controls. 

Brain dMRI images were collected with a single shot SE‒EPI sequence, with 

b = 800 𝑠/𝑚𝑚2 diffusion weighting in 32 directions and one b = 0 image. In‒plane 

resolution was 1.67×1.67 mm; whole brain coverage was achieved with 70 consecutive, 

2 mm thick axial slices; repetition time TR = 9660 ms repetition time, TE = 75.6 ms echo 

time, and 90° flip angle was used; the total acquisition time was 8:32min. High resolution 

T1‒weighted images were also acquired for registration purposes with 1 mm isotropic 

voxels, using a 3D gradient‒echo sequence. 

All subjects enrolled in the study participated in a cognitive training program 

announced in a Retirement Home and among general practitioners (The study is 

registered at ClinicalTrials.gov, identifier is 'NCT02310620'). Demographics of the three 

groups of subjects are summarized in Table 1. A detailed description of the 

neuropsychological tests can be found in the Supplementary Material of [85]. 

Subjects included in the study were categorized as aMCI, naMCI, and healthy controls 

according to the Petersen criteria [107]. The Petersen criteria include subjective memory 

complaint corroborated by an informant together with preserved everyday activities, a 

memory impairment based on a standard neuropsychological test, preserved global 

cognitive functions and finally the exclusion of dementia. It does not specify a 

neuropsychological test for the assessment of memory impairments; therefore, we applied 

the Rey Auditory Verbal Learning Test (RAVLT), which is the most frequently used test 

in the literature [149]. For the differentiation between aMCI and healthy controls, we 

applied a cutoff score of one standard deviation (SD) under population mean standardized 

for age and gender. Participants, who scored under the cutoff value, either in the delayed 

recall subscore or in the total score, was assigned to the aMCI group. The applied criteria 

are based on the recommendations of the National Institute on Aging – Alzheimer’s 

Association workgroups on diagnostic guidelines for Alzheimer's disease [150]. Subjects 
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who were not in the aMCI group, but scored one SD under the population mean 

standardized for age and gender/education either in the Trail making Test B or in the 

Addenbrooke’s Cognitive Examination (ACE), were assigned to the naMCI group. An 

additional criterion for the naMCI group was a lower than 3.2 VLOM (verbal fluency + 

language score / orientation + memory score) ratio in the ACE to exclude possible aMCI 

subjects from the naMCI group (these subjects were excluded from the study). 

Subjects with dementia according to the Mini Mental State Examination (MMSE) 

scores standardized for age and education [151] were excluded from the study, similarly 

to subjects with history of head trauma, epilepsy or stroke, or with the diagnosis of acute 

psychiatric disorder, schizophrenia or mania, or alcohol dependence. One aMCI patient 

was left out of the calculations who was found to be an outlier, performing significantly 

worse on each test, thereby biasing the calculations. None of the subjects enrolled in the 

study had a history of any neurological disorder.  
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Table 1 Demographic data and result of basic neuropsychological tests. 
 

control (n=27) naMCI (n=20) aMCI (n=18) p value 

Age 65.2 ( 7.2) 71.1 ( 8.2) 69.8 (11.3) n.s.* 

Education a 7%/33%/59% 20%/30%/50% 17%/22%/61% n.s.* 

Gender (Female) 70% 65% 61% n.s.* 

Rey Auditory Verbal Learning Test 1  -5 sum b 53.4 ( 7.7) 46.6 (10.0) 29.5 ( 7.4) p<0.0001 

ACE Total Score c 94.0 ( 3.1) 89.5 ( 4.6) 82.1 ( 7.7) p<0.0001 

ACE VL/OM-ratio d 2.6 ( 0.4) 2.5 ( 0.4) 3.1 ( 0.8) p=0.002 

Mini Mental State Examination Total Score e 28.5 ( 1.3) 28.4 ( 0.9) 27.4 ( 1.8) p=0.025 

Geriatric Depression Scale Score f 3.3 ( 2.9) 4.5 ( 2.7) 4.4 ( 3.3) n.s.* 

STAI Score g 37.3 ( 9.8) 36.4 ( 9.3) 36.7 ( 8.3) n.s.* 

aMCI: Amnestic mild cognitive impairment, naMCI: non amnestic mild cognitive impairment ACE: 

Addenbrooke’s Cognitive Examination, STAI: state-trait anxiety inventory 

a: Participants were categorized into three education groups: 1=less  than 12 years; 2=high school 

graduation (12 years education); 3=more than 12 years education 

b: Sum of all words in the first five trials.  

The maximum score is 75.  

c: The maximum score is 100 

d: VL/OM: verbal fluency and language points/orientation and delayed recall ratio can be defined based 

on ACE. Result below 2.2 indicate frontotemporal dementia and result over 3,2 indicate Alzheimer’s 

disease. 

e: The maximum score is 30. 

f: The maximum score is 15. 

g: State-Trait Anxiety Inventory. The maximum score is 80. 

* n.s. (not significant) = p > 0.05 
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1.2 Preprocessing and diffusion tensor fitting 

dMRI data was preprocessed using the Matlab‒based (MATLAB 8.3, The 

MathWorks Inc., Natick, MA, 2000) ExploreDTI software package [152]. Processing 

steps included coordinate system transformation, rigid body transformations for 

correcting subject motion, non‒rigid transformations for correcting susceptibility‒related 

and EPI‒induced distortions, with the local rotation of the b‒matrix (the diffusion 

weighting directions) to avoid angular inaccuracies [56]. The high‒resolution T1‒

weighted images were used as templates for registration to correct the distortions inherent 

to the EPI‒acquisition method [153]; thereby dMRI‒images were spatially aligned to the 

T1‒weighted images. 

After tensor fitting, using the RESTORE (Robust Estimation of Tensors by Outlier 

Rejection) [17] algorithm, two voxelwise DTI‒measures FA and MD [14, 154, 155] were 

calculated from the tensor eigenvalues, following their well‒established definitions, to be 

used in voxel‒level and ROI‒based analyses. 

1.3 Voxelwise analysis 

Images containing the DTI scalar values were ‘normalized’, i.e. transformed into a 

common coordinate system using the DARTEL tools [58] of the SPM12 toolbox [69]. 

The DARTEL method is a common approach e.g. in VBM studies [156, 157] using T1‒

weighted images. This method creates a template in several iteration steps that is the 

closest to each individual subject’s anatomy. This way the common coordinate system is 

study‒specific, resulting in more efficient handling of macroscopic anatomical 

differences (such as possible GM‒atrophy), compared to other widely used approaches, 

for example those utilizing the MNI152 space [158]. 

Once the template image was calculated and the transformations (‘flow fields’) 

linking each subject’s native space to the common space were determined, we used these 

transformations on the DTI parameter images (‘warping’). 

The ‘warping’ function of DARTEL includes a ‘modulation’ step to account for 

macroscopic anatomical differences. As the method was developed to examine cortical 
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thickness and structure, when e.g. the transformation means merging three voxels in two, 

the addition of tissue probability values keeps the information of cortical thickness. 

However, when working with DTI scalar parameters, this addition (preserving the 

‘concentration’) would falsify the original diffusion traits, thereby we omitted the 

‘modulation’ option in our processing framework.  

The performance of the spatial alignment was assessed by visual inspection and the 

‘Check Data Quality’ function of the Computational Anatomy Toolbox (‘CAT12’, an 

extension to SPM12) [159]. This tool calculates a three dimensional spatial correlation 

coefficient between images; misaligned data is easily identified by the decreased level of 

correlation. Three subjects (two controls and one aMCI patient) were removed from the 

voxelwise calculations following the corresponding results of the two quality assurance 

methods. The resulting normalized data was used unsmoothed for assessing the 

correlation between neuropsychology and microstructure, while, for between group 

analyses, Gaussian smoothing (with full width at half maximum: FWHM = 8 mm, 

isometric) using SPM was applied.  

Use of the widely acknowledged TBSS [78] method was also considered for its higher 

statistical power, but because of its inherent loss of spatial information (especially from 

the cortex) due to constraining analysis to the FA skeleton (the supposed center of white 

matter tracts), and its recently discovered poor spatial alignment performance in regions 

with complex WM structures [160], this option was omitted. 

The whole brain voxelwise analysis, used in both between group and correlation 

analyses was extended to grey matter voxels, hypothesizing that small changes in GM 

microstructure which may precede macroscopic symptoms manifest in noticeable 

differences in DTI scalar values [161-163]. 

1.3.1 Voxelwise correlation analysis 

In order to accurately localize the brain regions related to cognitive dysfunction, we 

calculated partial correlation coefficients in each voxel between the (non‒smoothed) 

values of DTI parameters and the results of neuropsychological tests across all subjects 

using a high performance Matlab‒based algorithm, including subject’s age and sex as 
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covariates. Statistical significance of the correlations was assessed using Student’s T‒

distribution.  

Two types of corrections for multiple comparisons were employed: FWE control was 

achieved by the Holm‒Bonferroni method [164], while the less conservative FDR control 

was achieved by the Benjamini‒Hochberg step‒up algorithm, which is considered to have 

more statistical power at the cost of controlling only the proportion of type I. errors [165]. 

Due to the large number of voxels in the calculations (280315 grey or white matter voxels, 

defined using the DARTEL template), achieving a FWE rate or FDR of 0.05 meant 

statistical p‒values in the order of 10‒8 – 10‒6.  

In order to distinguish between true and false positive results in the cases of small 

clusters spanning the volume of only a few voxels, we also checked the underlying trends 

using an exploratory threshold of p < 0.001, uncorrected. True positive result would 

appear as the most significant voxels (the focal points) of larger regions achieving 

significance with the exploratory threshold, while false positives could show as single 

voxels spread in random fashion.  

Moreover, similar, homogeneous behavior, or emerging patterns of correlation 

coefficients in specific anatomical regions (e.g. the same sign and scale of R‒values in a 

specific gyrus) could also support the identification of true positives as the most 

significant voxels would be identified as the peaks of such regions. 

1.3.2 Voxel‒based between group statistical analysis  

A large number of studies have confirmed the connection between various types of 

dementia and the changes in diffusion tensor parameter values in several brain regions 

[123, 166-171], using voxel‒based analysis (VBA) methods typically in group‒level 

comparisons. In order to confirm that our patient groups exhibit such significant 

differences, and therefore the identified correlations are meaningful, smoothed diffusion 

parameter maps (isometric Gaussian smoothing with FWHM = 8 mm) were examined, 

using SPM’s ‘Second‒level’ general linear model (GLM) functions. 

Four calculations were performed on both diffusion parameters, using each 

individual’s age and sex as covariates: one‒way analysis of variance (ANOVA) test on 
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all three groups and two sample T‒tests between pairs of groups. Each test was performed 

with FWE correction for the conservative treatment of the problem of multiple 

comparisons. 

1.3.3 Visualization 

Resulting raw images of the VBA and the correlation analyses were in the DARTEL 

Template space; however, in order to easily compare our results to those of previous 

publications, FWE or FDR corrected T and R‒score maps were transformed to MNI152 

space [158] using SPM’s DARTEL tools. 

1.4 ROI‒based statistics 

ROI‒s were defined by transforming the 48 regions of the JHU White‒Matter Atlas 

[63, 144-146] into each patient’s own image‒space, using the ‘Get diffusion metrics from 

ROI labels’ tool of ‘ExploreDTI’. This plugin utilizes the ‘Elastix’ [172] software for 

label registration and exports the average DTI‒parameter values (MD, FA) for each 

region. Spatial alignment of the ROI labels was validated by visual inspection. In the 

further analyses, data obtained from 36 cerebral ROIs was imported into SAS (SAS 9.4 

software, SAS Institute, Cary, NC); 12 ROIs outside the cerebrum, such as cerebellar 

white matter tracts, were excluded.  

1.4.1 ROI‒based correlation analyses and between‒group comparisons 

Correlations with neuropsychological tests were analyzed by calculating Pearson’s 

correlation coefficients (proc. CORR in SAS), and also Spearman partial correlations as 

independent confirmation of the monotonous and linear nature of the relationships. 

The three study groups were also compared by Analysis of Covariance (ANCOVA) 

using FA and/or MD data from these ROIs with age and gender as covariates; followed 

by post hoc between group comparisons using general linear models (proc GLM in SAS). 

In order to control for multiple comparisons, Bonferroni correction was applied: the level 

of significance was adjusted to p = 0.05 / 36 = 0.0013. 

1.4.2 ROI‒based logistic regression analysis for a combined cortical thickness and DTI 

based differentiation between study groups 
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GM volumetric data (cortical thickness and subcortical brain structure volumes) 

obtained using the freely available Freesurfer 5.3 image analysis suite 

(http://surfer.nmr.mgh.harvard.edu/) with its default processing pipeline and parcellation 

settings were then analyzed jointly with the DTI‒derived metrics in a logistic regression 

analysis (‘proc LOGISTIC’ in SAS, stepwise variable selection) to assess if the 

combination of GM and WM DTI data leads to better differentiation between aMCI 

subjects and healthy controls than using the GM data alone. Three healthy controls and 

one subject with naMCI were excluded from the logistic regression analyses due to 

missing volumetric measurements. The Freesurfer‒based processing pipeline for the grey 

matter data were described in detail in [148]. 

Combined MD/GM volume and FA/GM volume models were analyzed separately; 

further details on the logistic regression analyses and how measurements were selected 

to be included in the model are described below. Discrimination between each pair of 

subject groups was tested using a ten‒fold cross‒validation approach [147] (K‒fold 

testing in SAS): 

First, an independent test‒set of four subjects (two from each group, representing 10% 

of the sample population) was assigned; the features of the logistic regression model were 

selected on the remaining 90% of the subjects. In the second step, the resulting model was 

tested on the small test subset, independent from the model creation. This method was 

repeated ten times (nine times when discriminating between aMCI and naMCI) as each 

subject was assigned once to a test‒subgroup. The resulting ten (nine) independent 

models, their selected effects and corresponding discrimination performances were then 

summarized. 
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2. Mahalanobis‒distance in MCD lesion detection 

2.1 Study data and participants 

Diffusion and T1‒weighted MR imaging data of 45 healthy control subjects (25.6 

years average age, range: 20 – 37 years, 17 males) and 13 patients (21 years average age, 

range: 7 – 46  years , with two children under 10, 7 adolescents between 14 and 18, 9 

males) with MCDs was acquired at 3T (Philips Achieva scanner, Philips Medical 

Systems, Best, The Netherlands). dMRI images were collected with a single shot SE‒EPI 

sequence, with diffusion weighting in 32 directions with b = 800 𝑠/𝑚𝑚2 and one b = 0 

image. In‒plane resolution was 2×2 mm (reconstructed to 1.67×1.67 mm with zero 

filling); whole brain coverage was achieved with 84 (adjusted when necessary), 2 mm 

thick axial slices and no gap; TR = 9660 ms repetition time, TE =  75.64 ms echo time, 

and 90° flip angle was used; the total acquisition time was 8:32 minutes. High‒resolution 

3D T1‒weighted images were also acquired for registration purposes (1 mm isotropic 

voxels), using a standard 3D gradient‒echo sequence. 2D fluid attenuated inversion 

recovery (FLAIR) sequences (0.43×0.43 mm in plane resolution, 3.3 mm thick coronal 

slices, tilted perpendicular to the axes of the hippocampi, TR = 9000 ms, TE = 125 ms, 

TI = 2800 ms, flip angle = 90°) were also acquired for aiding the visualization of the 

MCDs. 

Patients were selected retrospectively, with several different types of MCDs and other 

abnormalities: MCD subtypes included polymicrogyria (in two patients) schizencephaly 

(two patients), subependymal heterotopia (in three patients), FCD (in six patients), 

cortical dysgenesis (in three patients) and other, not clearly identifiable malformations (in 

four patients). Several other types of abnormalities were also identified in the patient 

group, such as DNT (in one patient, later confirmed by histopathology), ischemic WM 

lesions (in two patients), a gliotic cyst (in one patient), focal gliosis (in one patient, also 

confirmed by subsequent histopathology), hippocampal sclerosis (in four patients), and 

malrotation of the hippocampus (in one patient). Diagnoses of MCD subtypes were based 

on neuroradiology report; the supplementary Table S10 contains detailed information on 

each lesion and abnormality, along with the results of neuroradiology assessment and 

lesion detection calculations.  
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The study was approved by the Scientific and Research Ethics Committee of the 

Medical Research Council, Budapest, Hungary (ETT TUKEB - 20680-2/2012/EKU 

(368/PI/2012)) for patients and (ETT TUKEB 23609-1/2011-EKU, 23421-1/2015-EKU) 

for controls; all participants provided written informed consent. Following publication 

requirements, anonymized T1‒weighted images (facial structures removed using the 

‘mri_deface‘ function of Freesurfer ‒ https://surfer.nmr.mgh.harvard.edu/fswiki 

/mri_deface) and coregistered DTI‒eigenvalue maps of the patients and controls were 

made available in the ‘GIN’ public repository under the DOI 10.12751/g-node.80dd9a. 

2.2 Data processing 

dMRI data was preprocessed using the Matlab‒based ExploreDTI software package 

[152]. Processing steps included the transformation into ExploreDTI’s coordinate system, 

rigid body transformations for correcting subject motion, and non‒rigid transformations 

for susceptibility‒related and EPI‒induced distortion‒correction, while also rotating the 

b‒matrix (the directions of diffusion‒weighting) accordingly, in order to avoid angular 

inaccuracies [56]. T1‒weighted images were used as templates for registration to correct 

the distortions inherent to the EPI‒acquisition method [153]; thereby DW‒images were 

spatially aligned to these T1‒weighted images. After robust tensor fitting, using the 

RESTORE [17] algorithm, the tensor eigenvalues were calculated and exported for the 

voxel‒level analysis. 

We used the DARTEL method with default parameters for the group‒level 

coregistration of the eigenvalue images, as described in detail in 1.3, with some 

variations: 

The DARTEL template was created from the T1‒weighted images of only the control 

subjects; patient data was subsequently registered to this common space. As a byproduct 

of the registration, ‘flow‒fields’ describing the transformation between each individual’s 

native space and the template space were obtained and used to coregister the eigenvalue 

images. Finally, the DARTEL template was used to generate a brain mask and subsequent 

calculations were limited to this volume. 
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This way, the reference distribution of voxelwise DTI eigenvalues in the common 

coordinate system (control data) had low observed sample variance, unbiased by patient 

anatomy, and provided a solid basis for sensitive lesion detection. On the other hand, this 

subsequent transformation of patient data may have amplified registration artefacts, 

especially in cases when a patient was highly different from the controls (e.g. when the 

patient was significantly younger, or had large anatomical abnormalities). 

This processing pipeline contains only two interpolation steps. First, in the motion 

and distortion‒correction step, the DWI data is interpolated to the finer resolution of the 

T1‒weighted images [173], while the second is performed in the coregistration step of the 

DARTEL method, to a coarser, 1.5 mm isotropic resolution. This is the necessary minimal 

number of interpolations when each individual’s T1‒weighted images are used for DWI 

distortion correction, and statistical inference is made in a common space. 

Spatial alignment was once again assessed by visual inspection and the ‘Check Data 

Quality’ function of the Computational Anatomy Toolbox (‘CAT12’, an extension to 

SPM12) [159].  

The resulting coregistered whole brain tensor eigenvalue images of the healthy 

subjects were used for three purposes: (a) as data basis for simulations in a ‘bootstrap’ 

manner, (b) in a leave one out examination to measure the performance of coregistration 

and its effect on false positives, and (c) as controls when patient data was examined. 
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2.3 Independent automatic evaluation of MCDs  

As part of our epilepsy post‒processing protocol we also used the MAP07 toolbox 

that performs single subject vs. control group comparisons on volumetric T1 data derived 

3D feature maps regarding the GM–WM junction (junction map), cortical gyration 

(extension map), and cortical thickness (thickness map). The resulting Z‒score maps can 

be thresholded and/or combined (combined map) in order to pinpoint areas with suspected 

pathologies [135-137]. 

We analyzed all our cases using the default processing parameters of the MAP07 

toolbox, the feature map comparisons were performed against a generic normal database 

provided with the software, which consists data of 150 healthy controls scanned on five 

different MRI systems [136]. The resulting Z‒score maps were thresholded at the default 

Z > 4 value and then combined and converted to ROIs.   

The resulting ROIs were used to signify locations being suspicious of malformation 

of cortical development in the general neuroradiology workup. They have all been re‒

evaluated by the neuroradiology expert, and those without underlying pathology were 

discarded. The ROIs deemed relevant were then edited to completely cover the respective 

pathologies. Additional ROIs were created manually to cover lesions that were not 

identified by the MAP07 toolbox;  finally the ROIs served as ground truth signaling the 

lesions in further analysis. 

2.4 Mahalanobis‒distance related calculations 

We have implemented the calculation of the voxelwise Mahalanobis‒distance (D2) 

from the DTI eigenvalue maps according to (Eq. 10), the statistical inference based on 

critical values determined by (Eq. 11), and cluster size thresholding, in Matlab scripts and 

functions (MATLAB 9.2, The MathWorks Inc., Natick, MA United States). Eigenvalue 

maps are being read in nifti format, transformed to vector format for efficient parallelized 

calculations, inference is performed voxel‒by‒voxel, followed by cluster identification, 

and size thresholding (also see the bottom half of Fig 8). The same framework was used 

for subsequent calculations, including simulations, leave‒one‒out examination of 

controls and patient evaluations.  
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2.5 Simulations 

The performance of the method was evaluated using simulations with two distinct sets 

of data: (a) Gaussian random images and (b) real diffusion tensor eigenvalue maps. 

Following the fashion described in [174], alternative free‒response receiver‒operator 

characteristics (AFROC) analyses were carried out on both sets.  

As the critical values calculated by (Eq. 11) depend on sample size, and the aim of 

the simulation study was to provide grounds for later analyses; the same number of 

control observations (45 subjects) were modelled in both simulations. 

In order to evaluate the method’s performance as a lesion detection tool, simulations 

were carried out with different contrast‒to‒noise ratios (CNR ‒ i.e. effect strengths: 

difference between mean values of the ‘lesions’ and the ‘background’, measured in units 

of standard deviation with σ lesion = σ background ), and lesion sizes, with a variable cluster 

size threshold for controlling the rate of false positives. An overview ‘flow‒chart’, 

describing the steps of the simulations is shown in Fig 8. 

2.5.1 Simulations with Gaussian distributions 

A group of 45 ‘control subjects’ were generated following 3D Gaussian distribution, 

with zero mean and unit standard deviation in all three random variables (𝓝3(0,1), 

SMVND) in each voxel (upper left part of Fig 8). The spatial dimensions matched those 

of the real coregistered DTI data, described in subsection ‘Data processing’. 

True positive images were generated, starting from similar random ‘noise’ data and 

adding simulated ‘lesions’: 3D patches with predefined sizes, randomly generated shape, 

and voxel values from a distribution with the mean shifted from the background values, 

according to the predefined CNR. Each true positive image had one ‘lesion’ with a center 

randomly selected from 25 different locations; coordinates were defined on the template, 

close to the frontal, temporal, and occipital GM‒WM boundary, in view of the second set 

of simulations with real eigenvalue data. One thousand such positives and another 

thousand negatives (i.e. just SMVND ‘noise’) were generated to calculate true and false 

positive rates (upper left part of Fig 8). 
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Fig 8 Flow chart demonstrating steps of the simulations. 

Eigenvalue maps of standard multivariate normal distributions (SMVND – upper left) and random 

resampling of the real eigenvalue maps of the control subjects (upper right) were used as reference data. 

True negative and true positive ‘cases’ (with added artificial ‘lesions’, i.e. patches of voxel values of shifted 

distributions, compared to the background) were generated and the squared voxelwise Mahalanobis‒

distance (D2) was calculated in relation to 45 control cases. D2‒images were subjected to thresholding using 

FDR‒ or FWE‒corrected critical values (for multiple comparisons) and cluster size thresholding. False 

positive rates (FPR) were calculated from hits in true negative ‘cases’ (Ipositive), while true positive rates 

(TPR) and hit rates (TPR‒binary, i.e. TPRB) resulted from hits in the positive cases (Itrue positive) . 

After the calculation of voxelwise D2‒values, thresholding was performed using 

critical values calculated to control the FWE rate (i.e. Bonferroni bounds) or the FDR 

(using the Benjamini‒Hochberg step‒up algorithm on P‒values calculated by the inverse 

of (Eq. 10)). The surviving supra‒threshold voxels were subjected to cluster‒size 

thresholding following third‒neighbor (26 neighbors) cluster definition (Middle panels in 

the lower half of Fig 8). 

The resulting binary images were used to calculate the true positive rate (TPR) in 

positive, and the false positive rate (FPR) in negative cases. Two types of TPR were 

defined, the first as the ratio of identified positive voxels (i.e. the identified lesion volume 

ratio, averaged over the pool of positive cases), following the definition of alternative 
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fractional receiver operating characteristics (AFROC) TPR as used in [174] (rightmost 

panel in the lower half of Fig 8). 

As lesion detection is a binary problem (i.e. identifying only a part of the region of 

pathological tissue is also considered a positive result) any true positive voxel was 

counted as a hit (Itrue positive) in the second definition of true positives (TPR ‒ Binary ‒ 

TPRB). False positives were defined similarly, as any positive cluster in a true negative 

(only noise) image was considered a false hit (Ifalse positive). 

𝑇𝑃𝑅 = ∑
∑

#𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑜𝑥𝑒𝑙𝑠
#𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑙𝑒𝑠𝑖𝑜𝑛

1000

1000

1

 (𝐸𝑞. 12) 

𝑇𝑃𝑅𝐵 = ∑
𝐼𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1000

1000

1

 (𝐸𝑞. 13) 

𝐹𝑃𝑅 = ∑
𝐼𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

1000

1000

1

 (𝐸𝑞. 14) 

The same sets of simulations were performed for each combination of the controlled 

parameters with FDR and FWE critical values. TPR, TPRB and FPR values 

corresponding to each set of controlled parameters were used for the creation of ROC 

curves and the calculation of ‘area under the curve’ (AUC) values, using the 0 – 0.05 

FPR‒range, using trapezoids under the curve and the FPR = 0.05 point determined with 

linear interpolation. AUC values were scaled up to the [0, 1] range to compensate for the 

limited range of interpretation. This constrained FPR‒range means that in our 

simulations, the Family‒Wise Error rate was also controlled at the subject level (above 

the voxel‒level FWE or FDR), resulting in thorough correction for multiple comparisons. 

Values of the three varied parameters are summarized in Table 2. 
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Table 2: CNR lesion size and cluster size threshold values used in the simulations. 

CNR [σ] 1 2√2ln (2) a 3 4√2ln (2) - - - 

Lesion size [#voxels] 19 35 50 100 200 - - 

Cluster size threshold [#voxels] 1 2 3 4 5 6 7 

a Note that CNR = 2√2ln (2)  contrast to noise ratio equals to 1 FWHM distance between the peaks 

of the distributions. 

The desired CNR was calculated by setting the difference between means, in units of 

standard deviations. In SMVND simulations σ = 1 was used, while unique values were 

calculated in each individual ‘lesion’ volume and for each eigenvalue in the second set of 

simulations with real DTI data. 

In an exploratory analysis, additional simulations were performed with smaller effect 

sizes (down to CNR = 0.1); however, since the lesion detection performance did not 

exceed chance level, these results were omitted. Larger cluster size thresholds of 19, 27 

and 50 voxels were also used, but, as no false positives were identified above the size of 

4 voxels (7 voxels in the second set of simulations; see subsection 2.5.2) these results are 

not detailed either. 

2.5.2 Simulations with real eigenvalues 

The second sets of simulations were performed based on the diffusion tensor 

eigenvalue maps of the control group using bootstrap approach, i.e. 2000 resamples 

considered as individual ‘subjects’ were generated by random resampling of voxel values 

from the pool of 45 control subjects (upper right part of Fig 8). Similar to the first set, half 

of these resamples were designed to be ‘positive’ with added simulated ‘lesions’, while 

the other half of the resamples was ‘negative’. Finally, the same subsequent TPR, TPRB, 

and FPR calculations were performed as with the SMVND data, and corresponding AUC 

and optimal threshold vales were obtained.  

While the first set of simulations used Gaussian random values in the whole brain, the 

bootstrapping in the second set was performed on the voxel level, thereby these values 

followed the distribution of tensor eigenvalues in the particular ‘lesion’ volume. Thus the 

CNR in each artificial ‘lesion’ was determined using a volume‒specific σ (representing 
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the distribution around the GM‒WM boundary), assuming σlesion= σbackground. Although 

this may be considered a limitation, as true MCDs are likely to exhibit atypical 

distribution of tensor eigenvalues, since the statistical decision is made independently in 

each voxel with no cluster‒level inference, this assumption does not affect the detection 

performance directly. 

2.6 Leave‒one‒out examination of controls 

The simulations demonstrated that lesions with sufficiently high effect strengths 

(CNR) and volumes are detectable using the proposed Mahalanobis‒distance based 

method, with satisfying sensitivity. On the other hand, this high sensitivity makes the 

approach susceptible to registration artefacts and strong individual variability, resulting 

in false positive clusters. In order to measure the impact this effect has on patient 

evaluation, data of the control subjects was also used in a leave‒one‒out examination, 

comparing each individual to the remaining 44. Calculation of D2‒values, inference with 

critical values (with FWE or FDR correction), and cluster size thresholding (with the size 

of 7 voxels) were performed in the same manner as with the simulations. Resulting 

thresholded D2‒maps, indicating regions of significantly outlying diffusion profiles were 

transformed back to the native space of each patient’s original T1‒weighted image. 
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2.6.1 Cluster description based on tissue probability maps (TPMs) 

The results contained several clusters, in many cases obvious false positives, likely 

resulting from the aforementioned registration inaccuracies and individual variability in 

gyration patterns. In order to distinguish such false positives and increase the specificity 

of our method, clusters were subjected to additional post‒processing in the following 

manner: 

From each individual’s Tissue Probability Maps (resulting from the initial 

segmentation step of the DARTEL‒pipeline), we defined a new parameter describing 

voxel position, by subtracting the WM TPM from the CSF TPM: δ = P(CSF) – P(WM) 

(Fig 9). This way a δ‒value was assigned to each voxel from the [-1, 1] range, with 

positive values indicating voxels closer or belonging to CSF, and negative values 

indicating voxels closer or belonging to WM. 

 

Fig 9 Definition of ‘tissue probability’ used for cluster filtering. 

δ‒ values were calculated in each voxel by subtracting the probability of a voxel belonging to the white 

matter (WM) from the probability of it belonging to the cerebrospinal fluid (CSF), using the tissue 

probability maps obtained in the initial segmentation of the T1‒weighted images. The resulting δ‒value 

indicates the voxels’ position along the centrifugal WM‒GM‒CSF axis. 

Registration artefacts around the brain surface would mainly contain voxels with 

positive values (δ > 0; meaning that the majority of voxels are from the CSF). On the 

other hand, MCDs under consideration typically occur around the GM‒WM boundary, 

thereby true clusters would contain negative values close to zero (δ ≲ 0), the distribution 
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of the 𝛿‒values in any given cluster could be used as an indicator of cluster position along 

the centrifugal WM‒GM‒CSF axis. 

In the second step, clusters with more than half of the voxels with δ > 0.1 were 

eliminated from the analysis. This cutoff, signaling clusters with the majority of voxels 

from the CSF, was determined based on the results of leave‒one‒out examination of 

controls.  

2.7 Representative cases of MCDs 

As described in subsection 2.2, DTI eigenvalue maps of patients with MCDs were 

registered to the DARTEL‒template created from control data. D2‒calculation and 

thresholding using FWE‒corrected critical values (see the corresponding subsection 2.3 

for the reasoning behind using the more conservative correction), cluster size thresholding 

(again with 7 voxels threshold size), and the δ‒value‒based post‒processing of the 

clusters were performed in the same manner as described above. 

Results were qualitatively evaluated by comparing the anatomical images and D2 

‘heatmaps’ along with the Z‒scored junction maps, resulting from independent 

calculations by the MAP07 toolbox [135], as described in 2.3. Clusters of outlying 

diffusion profile, remaining after the thresholding and artefact removal steps were 

considered true positive, when good spatial concurrence with the underlying pathology 

(as observed on anatomical scans) and the reviewed and corrected results of the MAP07 

toolbox was ascertained. 

An additional step included the calculation of the clusters’ centers of mass (using the 

D2‒values as weights), and their (physical) distance from the lesion masks; created as 

described in 2.3. 
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IV. Results 

1. DTI and Mild Cognitive Impairment 

1.1 Voxelwise analyses 

1.1.1 Voxelwise correlation analysis 

Voxelwise correlation of the FA and MD values with the results of the four 

neuropsychological tests was found to be significant (p < 8.4×10-7) in several clusters 

with FDR and FWE correction. Table 3 contains the list of these clusters, while the 

following paragraphs also highlight the peaks of the underlying test distributions (i.e. the 

locations that exhibit the strongest correlation), represented by their corresponding 

statistical values and [x, y, z] coordinates in MNI space [158]. 

The most significant correlation between FA values and the paired associates learning 

(PAL) test results was identified in the pars triangularis of the right inferior frontal gyrus 

([-38, 19, 27], R = ‒0.67, p < 1.36×10-7 ) (Fig 10/ Panel A). 

Neither the ACE‒score values nor the RAVLT or the Trail Making test showed any 

significant correlation with FA. 

Correlation of MD with three of the four tests was found to be significant in several 

clusters. The RAVLT score was found to be correlated to MD in the left parahippocampal 

gyrus ([-25, 3, -30], R = ‒0.63) (Fig 10 / Panel B).  

The ACE score correlated significantly (p < 1.53×10-7) to MD in the left 

parahippocampal gyrus ([-23, 2, -30]) and in the pole of the left middle temporal gyrus 

([-34, 5, -47], R = ‒0.62) with FWE correction (Fig 10 / Panel C), and in two additional 

clusters with FDR correction. 

Ten clusters with significant correlation between the Trail Making test and the MD 

values were identified with FDR (p < 5.4×10-6) and two with FWE (p < 2.7×10-8) 

correction: one in the angular gyrus ([48, -60, 28], R = ‒0.65) (Fig 10/ Panel D) and one 

in the right superior temporal gyrus ([61, -46, 14], R = +0.66) showed the most significant 

correlation.  
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Table 3 Results of the voxelwise correlation analyses 

FA 

 

FDR FWE 

Number of 

clusters 
Peak p 

Cluster size 

[voxels] 
R-score Region [175] Peak p 

Cluster 
size 

[voxels] 

PAL Test 1 8.40 × 10−7 3 

-0.63 
Posterior Corona 

Radiata R   

[-29,-29,26] 

- - -0.64 

-0.64 

ACE - - - - - - - 

Rey 

Auditory 
- - - - - - - 

Trail 
Making 

Test A 

- - - - - - - 

MD 

 

FDR FWE 

Number of 

clusters 
Peak p 

Cluster size 

[voxels] 
R-score Region [175] Peak p 

Cluster 

size 
[voxels] 

PAL Test - - - - - - - 

ACE 4 6.30 × 10−7 2 
-0.61 

Para 

Hippocampal L 1.53 × 10−7 1 

-0.63 [-23,2,-30] 

Rey 

Auditory 
8 5.00 × 10−6 

19 
-0.64 

Para 

Hippocampal L 

1.70 × 10−7 

4 

-0.58 [-25,3,-23] 

3 
-0.55 Hippocampus  L 

[-31,-20,-16] 
- 

-0.57 

2 
-0.55 

Fusiform L      

[-29,-11,-33] 
- 

-0.56 

Trail 

Making 
Test A 

10 5.40 × 10−6 

11 
+0.55  
+0.58 

Temporal Mid R 
 [56,-28,-9] 

2.70 × 10−8 

1 

2 
+0.56 

+0.57 

Fusiform L      

[-39,-17,-21] 
- 

7 
+0.56 

+0.59 

Thalamus L    

 [-16,-28,12] 
- 

3 
+0.65 

+0.56 

Angular R 

 [48,-60,28] 
1 

2 
+0.56 

+0.57 

Occipital Mid L 

[-31,-81,11] 
 

FA: fractional anisotropy, MD: mean diffusivity, ACE: Addenbrooke’s Cognitive Examination, FDR: false 

discovery rate control, FWE: familywise error rate control, Peak p: the highest significant p‒value in a 

cluster, R‒score: Pearson’s correlation coefficient, [175]: coordinates in Montreal Neurological Institute 

template space. 
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Fig 10 Results of the voxelwise correlation analyses between DTI scalar values and 

neuropsychological tests of healthy subjects and patients with Mild Cognitive Impairment 

Regions of significantly (FWE = 0.05 in yellow, FDR = 0.05 in red) correlated DTI‒scalar values: in the 

pars triangularis of the right inferior frontal gyrus (R = −0.67) between fractional anisotropy (FA) and the 

PAL test scores (Panel A); in the left parahippocampal gyrus (R= −0.63) between mean diffusivity (MD) 

and the RAVLT score (Panel B) and the ACE score (Panel C); and in the right angular gyrus (R = +0.65) 

between MD and the results of the Trail Making test (Panel D). Thresholded 1‒p value maps transformed 

to MNI152 space and overlaid on a single subject T1‒weighted image, shown following neurological 

convention (left side on left). Small clusters of significant correlations emerged as peaks of larger regions 

with trend‒like behavior; see Fig 11 for details. 
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Fig 11 Voxelwise partial correlation between DTI measures and neuropsychological tests 

Maps of positive (red‒yellow) and negative (blue‒green) partial correlation coefficients in the DARTEL 

Template space overlaid on a single subject T1‒weighted image (shown following neurological convention, 

i.e. left side on left) show clear spatial trends of correlation between fractional anisotropy (FA) and PAL 

Test values (Panel A), mean diffusivity (MD) and RAVLT values (Panel B), MD and ACE score values 

(Panel C) and MD and Trail Making Test scores (Panel D). Smaller clusters of few voxels with correlations 

deemed significant with FWE or FDR corrections are all located at the focal points of larger regions 

achieving significance at exploratory thresholds ((1– 𝑝) > 0.999). 
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The small clusters of significant correlations (p‒values in the order of 10-7) were 

identified as peaks of trend‒like behavior, (as presented on Fig 11), therefore we chose 

not to employ cluster size thresholding, but rather eliminate voxels that did not belong to 

significant cluster with an exploratory threshold of p < 0.001, uncorrected. For example, 

Panels B and C of Fig 11 demonstrate that the whole left parahippocampal gyrus exhibited 

negative correlation (in correspondence with the underlying anatomical structure) 

between MD and the RAVLT or ACE scores, where the peaks spanning a few voxels 

were deemed significant after the strict correction for multiple comparisons. 

1.1.2 Voxelwise ANOVA and between-group differences 

Between-group comparison of mean diffusivity values yielded several significant 

results with FWE correction, while no regions showed significantly different FA. The 

one‒way ANOVA confirmed MD differences in seven clusters of voxels, with p‒values 

below 2.3×10-6. A list of all the resulting clusters is summarized in Table 4; the largest 

and easily interpreted ones are once again presented in the following paragraphs with 

MNI‒coordinates and T‒values of their peaks. 

Seventeen regions showed increased MD in patients with aMCI compared to controls 

(p < 2.3×10-6). A left inferior temporal cluster of 206 voxels ([-47, -9, -35], T = 6.5) and 

a right middle temporal cluster of 72 voxels ([59,-33,-3], T = 5.8) were the largest and 

most significant (Fig 12/ Panel A and B), while another cluster in the left superior frontal 

gyrus had 12 voxels (Fig 12 / Panel C; [-15, 28, 50], T = 5.6).  

Higher MD in the naMCI group compared to the controls was confirmed with the 

post‒hoc T‒tests, in a precuneal ([-9, -66, 52], T = 7) and a smaller temporal ([-50, -9, -

39], T = 5.4) cluster (124 and 3 voxels, p < 8.5×10-9), (Fig 12 / Panel D), however, no 

significant difference was identified between the DTI scalar values of the two groups of 

MCI patients on the voxel level. 

As expected, all the regions deemed significant with FWE correction emerged as 

peaks of the T‒score “landscape” (Fig 13): focal points of regions with trend‒like MD 

differences. 
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Table 4 Results of the voxelwise ANOVA and between group differences 

FA-smoothed 

  

Number of 

clusters 
Peak p 

Cluster size 

[voxels] 
F/T-score Region [175] 

ANOVA - - - - - 

aMCI > Control - - - - - 

naMCI > Control - - - - - 

MD-smoothed 

  

Number of 

clusters 
Peak p 

Cluster size 

[voxels] 
F/T-score Region [175] 

ANOVA 7 2.3 × 10−6 

130 28.3 Precuneus L [-10,-68,49] 

17 18.7 Frontal Sup L [-14, 28,51] 

15 16.9 Temporal Mid R [59,-33,-3] 

67 21.6 Temporal Inf L [-48, -7, -39] 

25 21.9 Temporal Inf L [-58,-11,-32] 

13 18.6 Supra Marginal L [-56, -49, 33] 

aMCI > Control 17 2.3 × 10−6 

206 6.5 Temporal Inf L [-47,-9,-35] 

13 5.5 Fusiform L [-30,-43,-19] 

39 5.2 Fusiform L [-25,-34,-14] 

72 5.8 Temporal Mid R [59,-33,-3] 

3 5.3 Cingulum Post R [3,-48,32] 

4 5.4 Angular L [-55,-50,34] 

4 5.3 Supra Marginal R[50, -41, 40] 

4 5.4 Supra Marginal R[61, -23, 39] 

26 6.0 Frontal Mid L [-31, 23,41] 

12 5.6 Frontal Sup L [-15, 28,50] 

43 6.0 Precuneus L [-9,-68,50] 

39 5.5 Precuneus L [-14,-50,62] 

4 5.4 Parietal Inf L [-52,-49,38] 

naMCI > Control 2 8.5 × 10−9 
124 7 Precuneus L [-9,-66,52] 

3 5.4 Temporal Inf L [-50,-9,-39] 

FA: fractional anisotropy, MD: mean diffusivity, Peak p: the peak p‒value in a cluster in voxelwise 

calculations, ANOVA: analysis of variance, MCI: amnestic mild cognitive impairment, naMCI: non 

amnestic mild cognitive impairment, [175]: coordinates in Montreal Neurological Institute template space. 
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Fig 12 Significant results of the voxelwise between group analyses 

Between‒group, two sample T‒tests identified regions of higher mean diffusivity (MD) in the left inferior 

temporal gyrus (A), the right middle temporal gyrus (B), and the left superior frontal gyrus (C) in the 

amnestic MCI group, and also in the left precuneus (D) in the non‒amnestic MCI group, compared to 

healthy control subjects. Maps showing clusters with significant (FWE corrected on voxel level) differences 

transformed to MNI152 space and overlaid on a single subject T1‒weighted image, shown following 

neurological convention (left side on left). Small clusters of significant differences all emerge as peaks of 

larger regions with trend‒like behavior; see Fig 13 for details. 
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Fig 13 T‒score ‘landscape’ of the voxelwise between group comparisons 

Between‒group, two sample T‒tests identified regions of higher mean diffusivity (MD) values in the left 

inferior temporal gyrus (A), the right middle temporal gyrus (B), and the left superior frontal gyrus (C) in 

the amnestic MCI group, and also in the left precuneus (D) in the non‒amnestic MCI group, compared to 

healthy control subjects. Raw T‒score maps in the DARTEL Template space overlaid on a single subject 

T1‒weighted image (shown following neurological convention, i.e. left side on left) reveal regions of higher 

MD values with clear maxima in locations deemed significant. 
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1.2 ROI‒based analyses 

1.2.1 ROI‒based correlations with the results of the neuropsychology tests 

Both FA and MD in the left cingulum and in the left stria terminalis / left crus of the 

fornix correlated with the RAVLT total scores, with the total adjusted trials in the PAL 

test, and with the total and verbal fluency scores of the ACE. The results are summarized 

in Fig 14. After correction for age the correlation between RAVLT total score and MD in 

the left cingulum (Pearson partial R = ‒0.41 (Spearman partial R = ‒0.39), n = 65, 

p = 0.0008), and the correlation between the PAL test result and MD in the left stria 

terminalis / left crus of the fornix (Pearson partial R = 0.51 (Spearman partial R = 0.47), 

n = 54, p = 0.0001) remained significant. Furthermore, the correlations of the RAVLT 

(Pearson partial R = 0.43 (Spearman partial R = 0.43), n = 65, p = 0.0004) and the verbal 

fluency subscore of the ACE (Pearson partial R = 0.40 (Spearman partial R = 0.48), n = 

65, p = 0.001) with FA in the left cingulum were found significant, while correlation of 

the ACE total score with FA in the left cingulum did not reach the level of significance 

(Pearson partial R = 0.39 (Spearman partial R = 0.44), n = 65, p = 0.0015). 
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Fig 14 Results of the correlation analyses between DTI measures and neuropsychological tests 

Results of the correlation analyses between the average values of mean diffusivity (MD) and fractional 

anisotropy (FA) in the ROIs covering the left cingulum and the left crus of the fornix, and the results of the 

four neuropsychological tests. (The Rey Verbal test, which measures verbal memory, the PAL – Paired 

Associates Learning – test, that measures visual memory, the ACE – Addenbrooke’s Cognitive 

Examination –, a comprehensive measure of cognitive functions, and a relevant subscore of the ACE test, 

measuring verbal fluency). Different colors represent the three study groups. All correlations are corrected 

for multiple comparisons. Correlations remained significant after correction for age are marked with 

asterisk. Trend lines in black are fitted for the whole sample. 
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1.2.2 ROI‒based between group differences 

Fractional anisotropy of the left cingulum (hippocampal subdivision) was 

significantly decreased in the aMCI group relative to the control group (F(1, 44) = 20.4, 

p < 0.0001) and to the naMCI group (F(1, 37) = 15.7, p < 0.0004), while FA did not 

differ between controls and naMCI subjects (p > 0.05); (lower left panel of Fig 15). Mean 

diffusivity of the left cingulum was significantly increased in the aMCI group relative to 

controls (F(1, 44) = 19.8, p < 0.0001) and subjects with naMCI (F(1, 37) = 12.5, 

p < 0.0012). Again, controls and naMCI subjects did not differ from each other (upper 

left panel of Fig 15). Furthermore a tendency level difference in MD was detected 

between controls and aMCI patients in the left stria terminalis and the left crus of the 

fornix (p = 0.0041; upper right panel of Fig 15), with a similar but non‒significant pattern 

of differences regarding FA (lower right panel of Fig 15). 
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Fig 15 Between‒group differences in fractional anisotropy (FA) and mean diffusivity (MD) 

Mean values of fractional anisotropy (FA) and mean diffusivity (MD) in the three subject groups in two 

regions of interest (ROIs) show between‒group differences from the post‒hoc tests following the Analysis 

of Covariance (ANCOVA) calculations, with age and gender as covariates. The ‘Left Cingulum‒

Hippocampus’ ROI showed significant differences after Bonferroni’s correction for multiple comparisons 

(marked with asterisks) between the amnestic mild cognitive impairment (aMCI) and control groups; while 

the ‘Stria Terminalis/Left Crus of the Fornix’ only contained nominal differences in MD and FA, not 

significant after Bonferroni’s correction. 

1.3 ROI‒based logistic regression analysis: combined cortical thickness and DTI‒based 

differentiation between study groups 

In the first set of stepwise logistic regression models, only cortical thickness 

measurements and subcortical brain structure volumes were entered as variables. 

Structures with the largest discriminatory power (a Cohen’s d of at least one, i.e. more 

than one SD difference between study groups) were used as input [110], namely the 

volume of the hippocampus, the cortical thickness of the entorhinal cortex, the fusiform 

gyrus, the precuneus, and the isthmus of the cingulate gyrus.  

These volumetric and thickness measurements of grey matter structures were 

amended with the FA and MD measurements of the 36 WM ROIs (i.e. tracts) in the 

second and third sets of models, separately. Categorization results of each model, when 
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tested on the independent, albeit small test subsets are summarized in Table 5‒Table 13 

and detailed on the subject level in the supplementary Tables S1-S9; the following 

subsections contains a brief overview. 

1.3.1 Differentiation between aMCI subjects and healthy controls 

The volume of the left (in 8 out of the 10 training subsets) or the right (in the remaining 

2 subsets) hippocampus stayed in the models after the stepwise logistic regression, based 

solely on volumetric measures; the former extended by the cortical thickness of the 

precuneus in three subsets. Overall, 78.95% of the subjects was categorized correctly 

across the subsets. (Table 5) 

The average FA of the aforementioned WM structures did not stay in the models after 

stepwise logistic regression, in any but the last subset, where the average FA of the ‘stria 

terminalis / left crus of the fornix’ was selected as a potential measure with substantial 

difference , however, the overall categorization performance did not change. With the 

second test‒subgroup, the volume of the right hippocampus was replaced by the volume 

of the left hippocampus, once again, with no resulting effect on categorization. (Table 6)  

None of the MD measurements remained in the third set of models, thus the original 

GM‒volumetric models were not improved by including DTI this way, however, 

categorization of the second test‒subgroup was slightly improved (one more correct 

decision) with the average cortical thickness of the precuneus, raising overall correct 

categorization to 81.58% across subsets. (Table 7). 
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Table 5 Logistic regression: amnestic MCI vs. Control – only volumetry 

Test set no. Effect1 Effect2 Ratio 

1 
Left 

HippocampusV 

Meanthickavg 

 precuneusT 
0.75 

2 
Right 

HippocampusV 
 0.25 

3 
Left 

HippocampusV 
 1 

4 
Left  

HippocampusV 
 0.5 

5 
Left  

HippocampusV 
Meanthickavg 

precuneusT 
0.75 

6 
Left  

HippocampusV 
 1 

7 
Left  

HippocampusV 
 1 

8 
Right 

 HippocampusV 
 1 

9 
Left  

HippocampusV 
 1 

10 
Left  

HippocampusV 

Meanthickavg 

precuneusT 
0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Effect1 

& 2: volumetric, or cortical thickness measurements deemed meaningful in the stepwise logistic regression; 

Meanthickavg: average cortical thickness; Ratio: decision performance in each subgroup.  

V: volumetry‒based measure T: thickness‒based measure 
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Table 6 Logistic regression: amnestic MCI vs. Control – volumetry with FA 

Test set no. Effect1 Effect2 Effect3 Ratio 

1 
Left  

HippocampusV 

Meanthickavg 

 precuneusT 
  

0.75 

2 
Left  

HippocampusV 
  

  

0.25 

3 
Left  

HippocampusV 

  

  

1 

4 
Left  

HippocampusV 

  

  

0.5 

5 
Left  

HippocampusV 

Meanthickavg 

 precuneusT 
  

0.75 

6 
Left  

HippocampusV 

  

  

1 

7 
Left  

HippocampusV 

  

  

1 

8 Right HippocampusV 

  

  

1 

9 
Left  

HippocampusV 

  

  

1 

10 
Left  

HippocampusV 

Meanthickavg 

 precuneusT 

Fornix crus 

 Stria terminalis LDTI 
0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data; Effect1, 

2 & 3: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic 

regression; Meanthickavg: average cortical thickness; Ratio: decision performance in each subgroup;  

V: volumetry‒based measure; T: thickness‒based measure; DTI: DTI‒based measures 

  

DOI:10.14753/SE.2021.2464



71 
 

Table 7 Logistic regression: amnestic MCI vs. Control – volumetry with MD 

Test set no. Effect1 Effect2 Ratio 

1 
Left  

HippocampusV 

Meanthickavg  

precuneusT 
0.75 

2 
Left  

HippocampusV 

Meanthickavg  

precuneusT 
0.5 

3 
Left  

HippocampusV 

  

1 

4 
Left  

HippocampusV 

  

0.5 

5 
Left  

HippocampusV 

Meanthickavg 

 precuneusT 
0.75 

6 
Left  

HippocampusV 

  

1 

7 
Left  

HippocampusV 

  

1 

8 
Right 

 HippocampusV 

  

1 

9 
Left  

HippocampusV 

  

1 

10 
Left  

HippocampusV 
  0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data.; Effect1 

& 2: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic 

regression; Meanthickavg: average cortical thickness; Ratio: decision performance in each subgroup;  

V: volumetry based measure; T: thickness based measure 
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1.3.2 Differentiation between naMCI subjects and healthy controls 

Volumetry‒ and thickness‒based models with each but one test‒subset included the 

average cortical thickness of the precuneus, with the only other meaningful measure being 

the volume of the right hippocampus. (Table 8) 

Adding the FA measures to the models resulted in having the average values measured 

in the fornix (body and column), the posterior thalamic radiation, the right or left external 

capsule, or the right superior fronto‒occipital fasciculus staying in the model, separately, 

each of them in some of the test subsets, however, the original overall 52.63% 

categorization performance was once again only slightly improved (to 55.26%, meaning 

only two more correct decisions). (Table 9) 

Average MD of the left cingulum (hippocampus), the left external capsule, or the 

fornix (body and column) was also found meaningful for few of the models, yet the 

overall categorization performance was only slightly improved, with 3 more correct 

decisions in total (57.89% of all subjects). (Table 10) 
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Table 8 Logistic regression: non‒amnestic MCI vs. Control – only volumetry 

Test set no. Effect1 Effect2 Ratio 

1 
Meanthickavg 

 precuneusT 
  0.5 

2 
Right 

 HippocampusV 
Meanthickavg 

 precuneusT 
0.5 

3 
Meanthickavg  

precuneusT 
  0.5 

4 
Meanthickavg  

precuneusT 
  0.5 

5 
Meanthickavg  

precuneusT 
  0.75 

6 
Right  

HippocampusV 

Meanthickavg 

 precuneusT 
0.5 

7 
Right  

HippocampusV 
  0.5 

8 
Meanthickavg  

precuneusT 
  0.5 

9 
Meanthickavg  

precuneusT 
  0.5 

10 
Meanthickavg  

precuneusT 
  

0.5 

  

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data; Effect1 

& 2: volumetric or cortical thickness measurements deemed meaningful in the stepwise logistic regression; 

Meanthickavg: average cortical thickness; Ratio: decision performance in each subgroup;  

V: volumetry based measure; T: thickness based measure 
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Table 9 Logistic regression: non‒amnestic MCI vs. Control – volumetry with FA 

Test sett no. Effect1 Effect2 Effect3 Ratio 

1 
Meanthickavg 

 precuneusT 

Fornix column  

& body of fornixDTI 
  0.75 

2 
Right 

 HippocampusV 
Meanthickavg  

precuneusT 
  0.5 

3 
Meanthickavg 

 precuneusT 

Posterior thalamic  

radiation RDTI 

External   

capsule RDTI 
0.25 

4 
Meanthickavg  

precuneusT 

External 

capsule_RDTI 
  0.5 

5 
Meanthickavg  

precuneusT 
Fornix column  

& body of fornixDTI 
Superior  fronto  occipital 

 fasciculus RDTI 
1 

6 
Cingulum  

 hippocampus LDTI 
    0.25 

7 
Right  

HippocampusV 
    0.5 

8 
Meanthickavg  

precuneusT 

External  

capsule LDTI 
Tapetum LDTI 0.5 

9 
Meanthickavg  

precuneusT 

Fornix column  

& body of fornixDTI 
  0.75 

10 
Meanthickavg  

precuneusT 

External  

capsule LDTI 
  0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data.; 

Effect1, 2 & 3: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise 

logistic regression; Meanthickavg: average cortical thickness; Ratio: decision performance in each 

subgroup; V: volumetry based measure; T: thickness based measure; DTI: DTI‒based measure 
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Table 10 Logistic regression: non‒amnestic MCI vs. Control – volumetry with MD 

Test set no. Effect1 Effect2 Ratio 

1 
Meanthickavg 

 precuneusT 

Cingulum  

hippocampus LDTI 
0.5 

2 
Right 

 HippocampusV 

Cingulum  

hippocampus LDTI 
0.25 

3 
Meanthickavg  

precuneusT 
  0.5 

4 
Meanthickavg  

precuneusT 

Cingulum  

hippocampus LDTI 
0.75 

5 
Meanthickavg  

precuneusT 

Cingulum  

hippocampus LDTI 
0.75 

6 
Right 

 HippocampusV 

Meanthickavg 

 precuneusT 
0.5 

7 
Right  

HippocampusV 
  0.5 

8 
Meanthickavg  

precuneusT 

External  

capsule LDTI 
0.75 

9 
Meanthickavg  

precuneusT 

Fornix column  

& body of fornixDTI 
0.75 

10 
Meanthickavg  

precuneusT 

External  

capsule LDTI 
0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data; Effect1, 

2 & 3: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic 

regression; Meanthickavg: average cortical thickness; Ratio: decision performance in each subgroup;  

V: volumetry based measure; T: thickness based measure; DTI: DTI‒based measure 
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1.3.3 Differentiation between aMCI and naMCI subjects 

The same volume and cortical thickness measures were entered into the first set of 

models as in the former comparisons, once again followed by adding the average DTI 

scalar values of the same ROIs as before. (Table 11) 

The first set of stepwise logistic regression calculations (only volumetric and 

thickness measurements) all identified the volume of the left hippocampus as the only 

meaningful effect, and achieved an overall 63.89% correct categorization performance 

(23 subjects out of the 36) in the nine separate models.   

After adding FA measurements of WM ROIs, the average value in the ‘stria terminalis 

/ left crus of the fornix’ stayed as a relevant effect in all nine models; interestingly the 

volume of the left hippocampus was replaced by the volume of the right hippocampus in 

two of the models.  

This addition of the average FA of this specific WM region improved correct 

categorization with all but one test subsets, resulting in an overall 86.11% (31 correct 

decisions out of 36) categorization performance, a solid 22.22% (8 subjects) increase 

compared to the solely volumetry‒based models. (Table 12) 

Average MD values of the body of the corpus callosum (8 models) or the column and 

body of the fornix (one model) also improved the categorization performance in the final 

sets of models: together with the volume of the left hippocampus, 75% (27 out of 36) of 

subjects were categorized correctly.(Table 13) 
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Table 11 Logistic regression: amnestic vs non‒amnestic MCI – only volumetry 

Test set no. Effect1 Ratio 

1 
Left  

HippocampusV 
0.5 

2 
Left  

HippocampusV 
0.5 

3 
Left  

HippocampusV 
1 

4 
Left  

HippocampusV 
0.5 

5 
Left  

HippocampusV 
0.25 

6 
Left  

HippocampusV 
1 

7 
Left  

HippocampusV 
0.75 

8 
Left  

HippocampusV 
0.75 

9 
Left  

HippocampusV 
0.5 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Effect1: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

Ratio: decision performance in each subgroup; V: volumetry based measure 
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Table 12 Logistic regression: amnestic vs non‒amnestic MCI – volumetry with FA 

Test set no. Effect1 Effect2 Ratio 

1 
Left  

Hippocampus V 

Fornix crus 

 Stria terminalis L DTI 
0.75 

2 
Right  

Hippocampus V 

Fornix crus 

 Stria terminalis L DTI 
1 

3 
Left  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
1 

4 
Left  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
0.25 

5 
Left  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
1 

6 
Left  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
1 

7 
Left  

Hippocampus V 

Fornix crus 

 Stria terminalis L DTI 
1 

8 
Right  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
1 

9 
Left  

Hippocampus V 

Fornix crus  

Stria terminalis L DTI 
0.75 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. 

Effect1&2: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise 

logistic regression; Ratio: decision performance in each subgroup; V: volumetry based measure; DTI: DTI‒

based measure 
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Table 13 Logistic regression: amnestic vs non‒amnestic MCI – volumetry with MD 

Test set no. Effect1 Effect2 Mean 

1 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
0.5 

2 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
1 

3 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
1 

4 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
0.25 

5 
Left  

Hippocampus V 

Fornix column  

& body of fornix DTI 
0.5 

6 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
0.75 

7 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
1 

8 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
1 

9 
Left  

Hippocampus V 

Body of corpus  

callosum DTI 
0.75 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. 

Effect1&2: volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise 

logistic regression; Ratio: decision performance in each subgroup; V: volumetry based measure; DTI: DTI‒

based measure 

  

DOI:10.14753/SE.2021.2464



80 
 

2. Mahalanobis‒distance in MCD lesion detection 

The squared Mahalanobis-distance (D2) and the critical values used for inference were 

calculated using in-house algorithms following (Eq. 10) and (Eq. 11). The analytical 

derivation uses the number of observations, dimensions, and desired level of significance; 

the appropriate critical values were determined for each application. 

The FWE‒corrected, D2 critical value, calculated from n = 46, p = 3, and 𝛼𝐹𝑊𝐸 =

0.05

#𝑣𝑜𝑥𝑒𝑙𝑠
=

0.05

3.4054×105 = 1.4683 × 10−7 was 27.8324. This value was used in simulations 

and subject evaluations. 

As FDR correction uses the p‒values of each statistical test and determines the critical 

p for a given set (the tests in each voxel, in our case), the FDR corrected D2 critical values 

were unique for each patient image, typically in the range between 19 and 21. 

Groupwise average values and standard deviation for the whole grey and white matter 

of the coregistered eigenvalue maps from the controls are included in Table 14, while 

their spatial distributions are presented in Fig 16. 

Table 14 Mean values and standard deviations of the tensor eigenvalues 

 
 Grey Matter White Matter 

 Mean SD Mean SD 

λ1   1.1295 × 10−3 2.3623 × 10−4 1.2117 × 10−3 2.5012 × 10−4 

λ2  9. 3691 × 10−4 2.1694 × 10−4 8.0431 × 10−4 1.6876 × 10−4 

λ3  8.1112 × 10−4 2.1290 × 10−4 6.0377 × 10−4 1.7571 × 10−4 

Means and standard deviations (SD) of the DTI eigenvalues, averaged over the control sample, in the whole 

grey and white matter, presented in units of mm2/s. 

During manual revision of the results of independent lesion detection with the MAP07 

toolbox, only 11 abnormalities were identified in the example cases, thereby the 

remaining lesion masks were entirely hand drawn. 
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Fig 16 Spatial distribution of the sample‒wise mean and standard deviation of the coregistered 

eigenvalue maps from the controls. 

Mean values (left column) and standard deviations (right column) are presented on the same respective 

scales for the three diffusion tensor eigenvalues in units of mm2/s. 
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2.1 SMVND simulations 

2.1.1 False Positives 

In the simulations with SMVND data, false positives were identified in all cases when 

no cluster size thresholding was employed, with both FWE and FDR corrected critical 

values. On the contrary, no false positives were identified with thresholds larger than 4 

voxels, meaning that for simulated lesions with voxel values from standard Gaussian 

distribution, and sizes that are reasonable to assume any true malformation would have, 

the method had 100% specificity. 

2.1.2 True positive rates and hit rates 

AUC values, calculated for each lesion size‒CNR parameter pair, with both FWE and 

FDR corrected critical values are summarized in Table 15 for both definitions of true 

positives (AFROC curves can be seen in Fig 17). As expected, with increasing CNR and 

lesion sizes, both the TPR and the TPRB (hit rate) increased. 

Table 15 AUC value results of the simulations with SMVND data 

SMVND  

FDR 

Lesion size [vox] → 19 35 50 100 200 

CNR  ↓ AUC 
AUC 

Binary 
AUC 

AUC 
Binary 

AUC 
AUC 

Binary 
AUC 

AUC 
Binary 

AUC 
AUC 

Binary 

2σ 0.000 0.000 0.000 0.004 0.000 0.003 0.000 0.005 0.001 0.011 

1 FWHM 0.296 0.593 0.339 0.840 0.349 0.941 0.368 0.998 0.382 1.000 

3σ 0.660 0.953 0.702 0.998 0.713 0.999 0.736 1.000 0.752 1.000 

2 FWHM 0.996 1.000 0.998 1.000 0.999 1.000 0.999 1.000 0.999 1.000 

FWE 

Lesion size [vox] → 19 35 50 100 200 

CNR  ↓ AUC 
AUC 

Binary 
AUC 

AUC 
Binary 

AUC 
AUC 

Binary 
AUC 

AUC 
Binary 

AUC 
AUC 

Binary 

2σ 0.000 0.000 0.000 0.004 0.000 0.003 0.000 0.005 0.000 0.011 

1 FWHM 0.158 0.593 0.185 0.840 0.201 0.941 0.216 0.998 0.222 1.000 

3σ 0.493 0.953 0.536 0.998 0.555 0.999 0.576 1.000 0.580 1.000 

2 FWHM 0.984 1.000 0.991 1.000 0.994 1.000 0.995 1.000 0.996 1.000 

Area under the curve (AUC) values resulting from the alternative free‒response receiver‒operator 

characteristics curves (AFROC) of simulations with standard multivariate normal distribution (SMVND) 

data, FDR and FWE corrected critical values, and following both the fractional and binary definition of true 

positive rate (TPR); calculated from the [0; 0.05] false positive rate (FPR) range. 
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Fig 17 Alternative free‒response receiver‒operator characteristic (AFROC) curves of the simulations 

with standard multivariate normally distributed (SMVND) data. 

Results with both FWE‒ and FDR‒corrected critical values, following both definitions of true positives 

(fraction of positive voxels – TPR – and hit rates – TPRB), with all different values for simulated lesion 

size and effect strength (contrast to noise ratio) are presented. 
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In the [0; 0.05] FPR interval, all AUC values exceeded 84% in lesion detection, with 

lesion sizes above 19 voxels and CNR above 1 FWHM, using either FDR or FWE‒

corrected critical values. More than half of the lesion voxels were identified with CNR > 

3σ, with all lesion sizes and critical values (except for the smallest lesions and FWE 

correction, were the AUC was 0.493). 

2.2 Real Eigenvalue simulations 

2.2.1 False Positives 

Simulations based on real DTI eigenvalue data resulted in similar behavior of false 

positives: every case showed false positive clusters with a minimum size of one or two 

voxels, but with cluster size thresholds of 6 (with FWE‒correction) or 7 (with FDR‒

correction) voxels, FPR decreased to 0.1 ‒ 0.3% (i.e. 1 ‒ 3 false positives per sets of 1000 

simulations). 

2.2.2 True positive rates and hit rates 

The resulting AUC values are summarized in Table 16; AFROC curves are presented 

in Fig 18. 

Lesion identification performance (Binary AUC) was above 70% with CNR = 

1FWHM in cases of lesions larger than 50 voxels, or with CNR = 3σ and at least 35 voxels, 

using either FDR, or FWE‒corrected critical values. More than half of the lesion voxels 

were identified at CNR = 2FWHM, achieving 77.3 ‒ 85.9% AUC with FDR‒corrected, 

and 75.1 ‒ 77.8% AUC with FWE corrected critical values. 

Based on these simulation results, we expected the proposed method to identify the 

abnormal diffusion profile of MCDs in patients. A seven-voxel large cluster size threshold 

was used in subsequent analyses, first with FDR‒corrected critical values, but the latter 

were replaced by the FWE-corrected ones, as described in 2.3.1.  
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Table 16 AUC value results of the simulations with Real Eigenvalue data 

Real Eigenvalues  

FDR 

Lesion size [vox] → 19 35 50 100 200 

CNR  ↓ AUC 
AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 

2σ 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.001 0.018 

1 FWHM 0.161 0.299 0.228 0.533 0.229 0.596 0.248 0.702 0.272 0.863 

3 σ 0.430 0.637 0.450 0.756 0.414 0.740 0.456 0.884 0.463 0.939 

2 FWHM 0.773 0.858 0.843 0.940 0.859 0.960 0.822 0.920 0.818 0.920 

FWE 

Lesion size [vox] → 19 35 50 100 200 

CNR  ↓ AUC 
AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 
AUC 

AUC 

Binary 

2σ 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 

1 FWHM 0.108 0.221 0.141 0.403 0.160 0.544 0.168 0.696 0.166 0.752 

3σ 0.337 0.598 0.353 0.712 0.352 0.745 0.356 0.835 0.353 0.946 

2 FWHM 0.751 0.947 0.776 0.998 0.778 0.999 0.777 1.000 0.760 0.980 

Area under the curve (AUC) values resulting from the alternative fractional receiver operating 

characteristics curves (AFROC) of real eigenvalue simulations with FDR and FWE corrected critical values 

and following both the fractional and binary definition of true positive rate (TPR); calculated from the [0; 

0.05] false positive rate (FPR) range. 
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Fig 18. Alternative fractional receiver operating characteristics (AFROC) curves corresponding to 

the simulations based on real diffusion tensor eigenvalue data. 

Results with both FWE‒ and FDR‒corrected critical values, following both definitions of true positives 

(fraction of positive voxels –TPR– and hit rates –TPRB), with all different values for simulated lesion size 

and effect strength (contrast to noise ratio) are presented. 
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2.3 Real data examinations 

2.3.1 Leave‒one‒out analysis of controls 

The FDR‒corrected critical values resulted in an average of 21.11 (5 ‒ 55) 

clusters/subject, while the more conservative FWE‒correction yielded 4.93 (0 ‒ 13) 

clusters in average, 1.79 (0 ‒ 5) of those being in the WM. Based on this result, combined 

with the observation that the true positive clusters in subsequent patient examinations 

were also present with the more conservative approach (Fig 19), we decided to only use 

critical values aimed to control the FWE for patient examinations, decreasing the 

influence of inherent variability and/or coregistration inaccuracy. 

 

Fig 19 Comparison of the results with FDR and FWE corrected critical values. 

Thresholded and clustered D2‒results overlaid on the T1‒weighted image of a 27 y.o. male patient with 

polymicrogyria in the basal region of the left inferior frontal gyrus (see panel D of Fig 21, as well.) Coronal 

slices presented in neurological orientation, i.e. left side is on the left, slices of the 2D FLAIR image were 

angulated perpendicular to the axes of the hippocampi. 

After removing clusters based on the δ‒values (those with more than half of the voxels 

with δ > 0.1), the number of remaining clusters decreased to an average of 2.79 (0‒7) 

with an average size of 16.21 voxels (7‒167), meaning, that most of those resulting from 

insufficient coregistration or normal differences in gyrification patterns (mainly located 

in the CSF) were filtered out. Examples of the resulting few minimal cluster‒masks 

overlaid on each control subject’s T1‒weighted images are shown on Fig 20. 
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Fig 20 Examples of the observed clusters in the leave‒one‒out examinations of healthy control 

subjects, using critical values corrected for controlling the FWE rate. 

Cluster masks (green with arrows) overlaid on each individual’s T1‒weighted image. Typical clusters that 

remained after the filtering steps, emerged deep in the sulci or close to the GM‒CSF boundary (A, B, C, 

and D) with small sizes (16.21 voxels in average), and also in the WM in some cases (E, F). Axial and 

coronal slices are presented in neurological orientation, i.e. left side is on the left. 
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2.3.2 Patient Examination 

After applying the previously detailed processing steps to the 16 D2‒images of the 13 

patients, on average 59.4 (35 ‒ 90) clusters per subject were identified with an average 

size of 31.4 (7 ‒ 680) voxels (after removing 6 larger clusters emanating from missing 

cerebellar slices). The majority of these clusters were obvious artefacts, identifiable by 

their shape and location (e.g. in the occipital lobes, close to and following the GM‒CSF 

boundary, independent of the underlying gyral and sulcal pattern), see Discussion. 

Examples of resulting clustered D2‒images are shown on the rightmost panels of Fig 21, 

along with coronal FLAIR images, MAP07 junction maps and the raw D2‒images 

overlaid on each subject’s T1‒weighted image. Regions with outlying diffusion 

properties, corresponding to 22 (out of the 23) MCDs and other abnormalities were 

identified in the patient group, in good spatial concurrence with the neuroradiological 

evaluation and the lesion masks. The remaining, 23rd, an FCD‒type malformation only 

resulted in two supra‒threshold voxels, subceeding cluster size threshold; it was only 

identified when using the less conservative, FDR‒corrected critical values. The (physical) 

distances between centers of masses of the resulting D2‒clusters and the lesion masks are 

summarized in Table 17. 

Table 17 Positive clusters in select cases of MCDs 

Code P01 P02 P03 P04 
P05 P05 P05 

P06 
S1 S2 S3 

Number of 

positive 

clusters 

1 3 1 1 3 3 7 2 

Average 

distance (min-
max) [mm] 

12.2 
18.8 

6.5 13.6 
13.6 10.4 19.0 19.6 

(12.9-25.7) (9.44-17.2) (5.1-17.1) (9.5-29.2) (3.7-35.4) 

Code P07 P08 P09 P10 
P11 P11 

P12 P13 
S1 S2 

Number of 
positive 

clusters 

1 1 2 3 1 1 2 4 

Average 

distance (min-
max) [mm] 

13.5 11.9 
12.1 12.1 

7.7 7.7 
4.3 17.6 

(6.7-17.6) (3.5-9.9) (2.3-6.3) (10.2-24.1) 

Number of positive D2‒clusters, presented with the average, minimum, and maximum center-of-mass 

distances between the clusters and the lesion masks [mm] 
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Fig 21 Example results in select cases of abnormalities 

Coronal 2D FLAIR images, and MAP07 junction maps, raw, and final, clustered D2‒images (red) and lesion 

masks (green) overlaid on T1‒weighted images in select cases: presumed right superior temporal FCD or 

PMG and hippocampal sclerosis (panel A); cortical dysplasia and presumed PMG in the right medio‒frontal 

part of the cingular gyrus (panel B); dysgenesis and partial sclerosis of the left hippocampus (panel C); 

presumed PMG or FCD in the basal region of the left inferior frontal gyrus and the posterior pat of the 

insula (panel D); and left hippocampal sclerosis (panel E). Coronal slices presented in neurological 

orientation, i.e. left side is on the left, coronal slices of the 2D FLAIR images were angulated perpendicular 

to the hippocampi. 
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V. Discussion 

1. DTI and Mild Cognitive Impairment 

In the first study, two independent statistical approaches were applied consecutively, 

in order to establish the findings, starting from the exploratory whole brain analysis on 

voxel‒level and then identifying the strongest white matter differences on the more robust 

ROI‒level, to be used later in differentiation between study groups by means of logistic 

regression. Voxelwise analysis confirmed decreased grey and white matter integrity in 

aMCI subjects compared to healthy controls and naMCI subjects; moreover, increased 

MD was found in naMCI subjects relative to controls. Decreased WM integrity (as 

indexed by MD and FA) was correlated with short‒term memory performance and verbal 

fluency in the whole sample, further confirming the sufficiency of the study material in 

making inferences about MCI. 

Based on previous evidence [118, 119], the most prominent between group 

differences and the strongest correlations with memory functions were expected in the 

cingulum and the fornix; this hypotheses was also confirmed in our ROI‒based 

calculations, and utilized in improving differentiation between study groups in logistic 

regression analysis. 

Use of the widely acknowledged tract based spatial statistics (TBSS) [78] method was 

considered for its higher statistical power, but due to its limited volume of inference and 

poor spatial registration performance in complex WM structures — also see section 1.3 

— this option was omitted. 

1.1 Functional‒structural correlations 

Correlations between DTI measures and memory performance in subjects with MCI 

and the elderly has been confirmed in previous studies. For example, in [176], a link 

between the ADC in the medial temporal lobe and verbal recall was identified, using 

rectangular, hand drawn ROIs, and a correlation between ‘composite memory’ and the 

FA of large parts of the frontal and occipital WM in a TBSS analysis was found in [177]. 

Similarly, our calculations confirmed that more severe cognitive impairment (indexed by 
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decreased performance in the neuropsychological tests) is linked to altered diffusion 

profile in several GM and WM regions. 

Voxelwise analysis revealed negative correlation between the ACE total score (a 

comprehensive index of cognitive performance), and increased MD in the left 

parahippocampal region and in the pole of the left middle temporal gyrus, regions 

demonstrated to show early neuropathological changes in AD, as demonstrated by 

histological [178] and volumetry [179] studies. Verbal memory (indexed by the Rey test) 

also showed significant correlation with MD in the left parahippocampal region, while 

the PAL test, reflecting visual and working memory performance correlated with FA in 

the pars triangularis of the left inferior frontal gyrus (Brodmann area 45, a part of the 

ventrolateral prefrontal cortex —VLPFC, which has a role in semantic tasks and the 

cognitive control of working memory [180]).  

Visuospatial attention as indexed by the Trail Making test (part A) correlated with 

MD in the angular gyrus, which is associated with orienting attention to salient features 

in space [181, 182]. Each of the small clusters with significant differences or correlations 

were identified as focal points of larger volumes with relatively high R‒scores, achieving 

significance at exploratory thresholds (e.g. T > 3, or |R| > 0.4, p < 0.001) (Fig 10 and Fig 

11), supporting the statement that our voxelwise results are pinpointing the key 

anatomical structures associated with cognitive impairment. 

The voxelwise calculations identified the strongest correlation in voxels around the 

GM‒WM boundary, mainly belonging to subcortical WM (in agreement with the 

aforementioned histological findings [178]), pointing towards the hypothesis that 

pathological changes in the fiber pathways of the temporal WM, assumed to precede the 

atrophy of the hippocampus or the entorhinal cortex [179, 183, 184] might be the reason 

behind the early evincible cognitive impairment.  

The more robust ROI‒level approach strengthened these findings, by identifying 

similar correlation between decreased average FA values (decreased WM integrity) in the 

left cingulum and decreased verbal memory performance (as indexed by the Rey test), 

and decreased verbal fluency (as indexed by the ACE subscore). The left crus of the fornix 

/ stria terminalis also showed decreased FA, correlated to visual memory performance as 
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indexed by the PAL test. These results confirmed that the expected microstructural 

differences are present and significant in these ROIs therefore they might aid the 

automated differentiation between subject groups.  

1.2 Impairments in aMCI patients compared to naMCI patients and healthy controls 

As described e.g. in [145], the cingulum, the fornix and the stria terminalis are C‒

shaped WM bundles, connecting the hippocampus to other parts of the limbic system, 

such as the amygdala, mammillary bodies, septal area, and hypothalamus. The cingulum 

also connects the hippocampus to the occipital, parietal, and frontal cortex, while the 

fornix and the stria terminalis connects the amygdala to the cortex, and the former also 

projects to the medial prefrontal cortex [185]. 

Similarly to how the structure of the fornix is affected in MCI [186], a  disruption in 

these WM tracts (increased MD and decreased FA) was detected in our study in patients 

with aMCI, compared to healthy controls or patients with naMCI, in the ROI based 

analysis. Meanwhile, voxelwise analysis confirmed these findings by showing increased 

MD in the left and right temporal regions in aMCI patients relative to controls. 

These results are also in line with previous investigations showing that “early 

Alzheimer disease is underpinned by the damage of inter‒connected network, which 

predominantly involves degeneration of the tracts connecting the circuit of Papez (limbic 

system)” as stated in [166]. However, it is yet unclear if these disruptions in WM 

connectivity are consequences or causes of disease progression. Changes in metabolism 

and atrophy of the precuneus are also shown to be associated in Alzheimer’s disease and 

MCI [187]. Similarly, our voxelwise analysis also confirmed its involvement, as 

increased MD in left precuneal regions in aMCI patients. Additionally, MD was also 

increased in the left frontal cortex of aMCI patients, where axon density was shown to 

decrease in AD [188], but no significant differences were identified between the two MCI 

groups.  

In summary, both methods showed impairments in the temporal regions of patients of 

the aMCI group, which is in line with results of numerous previous studies [118, 119, 

DOI:10.14753/SE.2021.2464



94 
 

189-191], while the voxelwise approach also found differences in the left frontal and 

precuneal regions: differences also revealed by previous investigations [187, 188, 192]. 

1.3 Impairments in naMCI patients compared to control subjects 

Voxelwise analysis showed increased MD in the left precuneus and in the left 

temporal region in naMCI subjects, relative to controls. The precuneus is an important 

hub of the default mode network, which is linked to several executive functions declined 

in dementia [193]. These results are supported by previous DTI, brain metabolism (FDG‒

PET) and fMRI studies [124, 194, 195], however our ROI based analysis did not confirm 

this difference, possibly because the ROI‒based analysis was limited to WM tracts (based 

on an atlas [63, 145]), while the voxelwise analysis covered the GM as well. 

1.4 Differentiation between study groups by logistic regression 

Average FA and MD values, measured in the ‘cingulum (hippocampus)’ and the ‘stria 

terminalis / left crus of the fornix’ ROIs, were identified to be correlated with cognitive 

performance and to differ significantly between the study groups, thereby they were 

hypothesized to be potential candidates to improve the volumetry‒based models’ 

differentiation performance when comparing study groups. A K‒fold cross‒validation 

approach was used to test the discriminative models on small test samples, independent 

from the data they were constructed on. The features selected by the logistic regression 

in the separate models were mostly consistent; chance level discriminative performance 

was exceeded in all cases.  

Like previous investigations (e.g. in [196]) claiming that combined DTI and 

volumetric/cortical thickness measurements can improve categorizations between 

subjects with aMCI and controls, three sets of logistic regression models were compared 

in our work. Without including DTI scalars, one or two volumetry- or thickness‒based 

measures (the volume of the left hippocampus and the cortical thickness of the precuneus) 

stayed as relevant effects in the final models. Incorporating ROI‒wise, average MD did 

not change the overall outcome; indeed, all MD measures were excluded in the stepwise 

regression. On the same token, FA measures were also excluded from all but one final 

models. Thereby the introduction of DTI measures in the discriminative models did not 
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improve the approximately 80% categorization performance of volumetry and thickness 

based models for discrimination between aMCI patients and healthy controls. 

Similarly, three sets of logistic regression models were compared to test 

discrimination performance between naMCI and controls. Only the cortical thickness of 

the precuneus stayed in all of the models without DTI measures, yielding a low 

discriminatory power. No further volumetric or DTI‒based measures could significantly 

improve categorization, possibly because of the heterogeneous nature of the non‒

amnestic MCI subtype. A larger sample and the separation of the wide range of 

underlying pathologies to meaningful subgroups seem to be necessary for stronger 

inference. 

Despite the lack of improvement of categorization performance in patient versus 

control comparisons, introducing DTI measures had substantial benefit when 

discriminating between the two MCI subtypes. Especially the FA of the left crus of the 

fornix improved the models, raising correct categorization performance by 22.22%; in the 

same token, the MD of the body of the corpus callosum resulted in 11.11% improvement 

compared to volumetry‒derived models discriminating based on the volume of the left 

hippocampus. Moreover, these two white matter regions were stable in the K‒fold cross 

validation, further supporting their importance for future discriminative models, as well. 

Note, that our strategy of transforming the predefined ROIs to each subject’s 

anatomical space, is less susceptible to registration artefacts compared to similar studies 

using coregistration to a common template space (e.g. MNI), therefore it can be 

considered more precise, and if implemented properly, the improved categorization 

performance may even be achievable for general clinical applications.  

1.5 On the value of DTI measurements in MCI and AD 

Here, we presented a series of results that represent different levels of description 

from the voxel‒level, through ROI‒level to model‒level. Even though the results may 

seem fragmented by the analysis methods there is a consistent pattern of WM involvement 

that is present through all levels of description. Voxel‒level calculations demonstrated 

both strong correlations between the performance in neuropsychology tests and MD 
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values and significant between‒group differences in MD values in GM areas that are 

usually affected in Alzheimer’s disease in general, signaled by atrophy [115, 179, 184, 

187]. These findings proved that the early involvement of these structures (most 

prominently the hippocampus) was present in our sample and was readily detectable 

through the altered diffusion profile. 

Abnormal tissue microstructure in the hippocampal areas is likely to be accompanied 

by measurable changes in the corresponding WM fiber pathways, as well [119, 170]. 

Although no meaningful clusters were identified in the white matter on the voxel level, 

presumably due to the weaker sensitivity resulting from the highly conservative 

thresholding (for proper voxel‒level correction for multiple comparisons), the expected 

significant correlation with cognitive performance and between‒group differences were 

demonstrated on the ROI‒wise average values in the cingulum (hippocampal subdivision) 

and the stria terminalis / crus of the fornix ROIs in the left hemisphere.  

ROI‒wise average FA and MD values of these two well‒defined, atlas‒based WM 

regions were relatively simple to calculate in a straightforward manner. Moreover, as DTI 

is most sensitive in the WM, these ROIs also exhibited stable and substantial differences 

in between‒group comparisons. Furthermore, the average FA of the stria terminalis / crus 

of the fornix also proved to be a relevant effect in the logistic regression analysis when 

creating models for discrimination between aMCI and naMCI study groups, with the MD 

of the body of the corpus callosum having similar relevance in improving discrimination 

performance. Although the FA of the left cingulum was also found significantly decreased 

in aMCI patients compared to controls, it was deemed to be irrelevant by logistic 

regression, as left hippocampal volumetry proved to contain sufficient information for 

correct categorization in itself. 

1.6 Limitations of the study 

While our results demonstrate the usefulness of DTI measures in improving 

categorization between study groups, especially between aMCI and naMCI, the relatively 

low sample sizes of the study may limit the generalizability of the findings. Nevertheless, 

even the limited size of the study groups allowed the logistic regression analysis to be 

performed on separate training and testing datasets using a K‒fold approach that clearly 
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showed stably increased categorization performance with the inclusion of DTI‒metrics, 

despite the expected high variability with such low sample sizes. Further studies with 

larger sample sizes would be beneficial to corroborate our results. 

The cross‒sectional nature of the study can also be considered a major limitation, but 

that can also be overcome with further (especially follow‒up) examinations that would 

also allow for investigating the negative predictive value of including the DTI measures 

in the discriminative models, providing additional means for confirming the presented 

results. 

2. Mahalanobis‒distance in MCD lesion detection 

2.1 Multidimensional approaches  

When selecting a multidimensional approach to combine different modalities, the 

research question determines the level at which information is pooled, from group‒level, 

through individuals, down to voxel‒based methods. Examining more general processes, 

like response to stimulation in fMRI calls for ‘cohort level’ statistical methods, like 

combining p‒value maps with pooling approaches in [81], or using the conjunction 

method, testing a simultaneous null hypothesis [80]. 

Higher level information pooling has also been proven efficient in examining 

systemic disorders of the CNS, e.g. for Alzheimer’s disease in [82], combining T‒score 

maps from univariate parametric tests on GM density and perfusion data; or in 

amyotrophic lateral sclerosis, with multivariate linear regression on spectroscopy findings 

of different metabolites [84]. The superiority of multivariate models compared to 

combined univariate models was demonstrated in [83], examining simultaneous changes 

in FA, cortical thickness, and perfusion also in AD, and logistic regression was shown to 

improve categorization of patients with different subtypes of mild cognitive impairment 

in the first study of the present thesis [85] by combining ROI‒level DTI, volumetry, and 

cortical thickness data at the subject level.  

On the other hand, when searching for unique abnormalities (like injuries or MCDs) 

in individuals, inference is made below the subject level: combining data from 

independent modalities into multivariate distributions and performing statistical 
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evaluation in this high dimensional space enables the pooling of information on the lowest 

level, only preceded by necessary spatial coregistration. An example for the resulting 

increased sensitivity was in [86], where the combination of voxelwise MD and volumetry 

data (using Hotelling’s T2‒test, a two‒sample equivalent of the Mahalanobis‒distance) 

outlined the effects of traumatic brain injury (TBI), even in cases where none of the 

individual modalities alone yielded significant results. 

Recent studies also demonstrated the utility of machine‒learning based approaches 

for epileptic lesion detection. Surface‒based methodology formed the basis of the work 

in [88] and [89] using morphologic and intensity‒based features (such as cortical 

thickness, sulcal depth, curvature of the surface, and gradient of intensity; all  calculated 

from T1 or T2‒weighted images on the vertex‒level), with similar performance as our 

approach. In [88], higher specificity was achieved in detecting FCD type lesions.  

Similarly to the present study, outlier‒detection approach was used in [87], 

identifying epilepsy‒related malformations, using a voxel‒based, one‒class support 

vector machine classifier. By working on feature maps computed from T1‒weighted data, 

comparable sensitivity and less false positives were achieved than with our approach, 

partially due to a far more conservative cluster size threshold (82 voxels, compared to 7 

in our work). 

Such machine‒learning based methods are expected to lead the analysis of 

multidimensional neuroimaging data; however, our study drew merit from several 

advantages. The straightforward and easy‒to‒use application of the multidimensional 

statistics with moderate computation times (only a few seconds per subject on a 

commercial PC, after preprocessing and registration) aided the accessibility of the 

method, while the use of DTI data opened the scope of research to disruptions in tissue 

microstructure. 

2.2 On information sources and dimensionality considerations 

Theoretically, there is no limitation to the number of examined dimensions in the 

multivariate distribution examined with the Mahalanobis‒distance (as long as the number 

of subjects exceeds the number of dimensions). Therefore, in order to circumvent the 
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limitations of the diffusion tensor representation, any diffusion processing model (e.g. 

diffusion kurtosis imaging [140, 141], spherical deconvolution [197, 198], etc.), or even 

raw diffusion weighted data could be evaluated in the same straightforward manner. 

On the other hand, since L2‒type distance metrics tend to show decreasing 

performance with higher number of dimensions [199], known as the effect of distance 

concentration, and, as was demonstrated in [104], the calculation of the Mahalanobis‒

distance may induce a bias, dependent on sample size, that becomes substantial with 

higher (P > 10) number of dimensions, simply pooling together every available source of 

information would not necessarily increase statistical power. Other types of distance 

metrics, particularly an LP‒norm should be a viable choice in such higher dimensional 

examinations [200], however, such avenues of research were out of the scope of the 

current study. 

Another intriguing possibility for MRI‒based lesion detection using the 

Mahalanobis‒distance is including voxel‒level data from other modalities, such as T1 or 

T2‒weighted images, tissue probability maps, MRI or Positron Emission Tomography 

(PET) based perfusion measurements, etc., as long as proper spatial coregistration is 

achievable [86]. Since data in any given dimension is rescaled and cleared of correlations, 

any meaningful modality could be incorporated to the analysis framework, also including 

more complex measures from related processing pipelines, such as cortical parcellation, 

volumetry or morphometry results [85, 88, 89], once again, with distance concentration 

kept in mind.  

Feature selection based on the analysis of meaningful components in such an extended 

parameter space may be the aim of future investigations. Quantitative imaging, a feat 

currently under intensive research [201], may also benefit from the use of 

multidimensional distance‒metrics in statistical evaluation. 

2.3 Simulation results 

Simulations with standard multivariate Gaussian data were used to demonstrate the 

numerical stability and lesion detection performance of the calculations based on the 

Mahalanobis‒distance. AUC values calculated from the [0; 0.05] FPR range indicated 
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that above 1 FWHM mean difference, the method is sufficiently sensitive to even the 

smallest artificial lesions, using critical values aimed to control either the family‒wise 

error rate or the rate of false discoveries. This is the level of sensitivity typically aimed 

for in image processing or spectroscopy as the resolution (i.e. the minimal distance 

between two peaks required to separate them) is generally defined as 1 FWHM. 

The use of eigenvalue maps of the control population yielded similar performance: 

for effect strengths and lesion sizes expected in MCDs (i.e. 50 voxels, corresponding to 

168.75 mm3 volume, around 5 ‒ 7 mm in diameter, [87]) the proposed method effectively 

identifies regions of abnormal diffusion profile. This performance is on pair with that e.g. 

[174] achieved in simulations introducing the threshold‒free cluster enhancement 

(TFCE) method. Although the distribution of the tensor eigenvalues was not exactly 

Gaussian, this only resulted in a small reduction of observed sensitivity, which did not 

cause any substantial reduction in lesion detection performance. 

False positives were completely eliminated in simulations on Gaussian random data, 

with cluster size thresholds of 4 voxels, but a 7 voxel threshold was needed to reduce the 

FPR to 0.1 ‒ 0.3% in simulations based on the resampling of real eigenvalue maps, with 

both FWE and FDR corrected critical values. Additional exploratory analysis (not 

included in the thesis) using larger thresholds ‒ 19, 27, and 50 voxels ‒ confirmed the 

complete elimination of false positives, at the cost of reduced sensitivity (reduced true 

positive rates) to smaller lesions. 

Based on these findings we concluded that a cluster size threshold of 7 voxels (i.e. 

one voxel and its nearest neighbors) should be an optimal choice for lesion detection, 

when no spatial smoothing is performed on the diffusion tensor eigenvalue images. Only 

this value was used in the subsequent examinations of healthy controls and patients with 

MCDs.  

Outlier values emanating from measurement errors or numerical instability usually 

affect single voxels, thereby false positives of such origin could effectively be eliminated 

with the cluster size threshold of seven voxels. For applications with statistical inference 

performed on images with substantially different resolution from that of the acquisition 

(e.g. if the eigenvalue images are resampled to a much smaller voxel size during the 
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processing), an adjusted cluster size threshold (covering roughly the same volume as 7 

voxels of the acquisition voxel size) should achieve similar robustness to such effects. 

Similar consideration should go for applications where spatial smoothing is performed at 

some point during data processing. 

2.4 Leave‒one‒out examination of controls 

Use of the more conservative FWE‒corrected critical D2‒values and the TPM‒based 

cluster‒evaluation method (δ‒values) limited the number of false positives to an 

acceptable level. Examination of the control subjects demonstrated that even with the 

high performance DARTEL‒coregistration, clusters of voxels with outlying diffusion 

profile tend to emerge in (supposedly true negative) control subjects. Most of these 

clusters proved to be indeed artefactual, being outside the brain parenchyma, however, in 

average 1.79 clusters per subject were identified in the WM as well. At this level there is 

no discrimination between clusters emanating from individual anatomical variability and 

insufficient registration or noise; this problem is usually addressed (reduced) by spatial 

smoothing in most voxel‒level studies [202], which we omitted to retain sensitivity for 

smaller lesions. 

2.5 Patient examinations 

Apart from one case, all of the MCDs and other abnormalities in all patients were 

identified on the processed D2‒images, demonstrating the sensitivity of our diffusion‒

tensor based approach for detecting minute structural abnormalities. The remaining one 

FCD‒type malformation was identifiable only in results obtained with the more liberal, 

FDR‒corrected critical values. This observation demonstrates that the conservative 

approach with strict critical values can result in false negatives, thereby decreased 

sensitivity, in brain regions where the DTI eigenvalues in the control group showed higher 

sample variance. 

Raw D2‒‘heat maps’, MAP07 ‘junction maps’, and the final D2‒clusters were 

reviewed with an expert neuroradiologist and compared to the ground truth lesion masks. 

As the MCDs under consideration are mainly localized around the WM‒GM boundary 

(MAP07 also compares voxels from T1 images focused on this compartment) and DTI is 
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expected to be more sensitive in the WM, in most cases, D2‒clusters did only partially 

overlap with the lesion masks; hence concurrence was ascertained by spatial adjacency. 

The physical distance between the lesion masks and the D2‒clusters’ centers of masses 

was also recorded; in clusters deemed positive, the average distance was 12.07 mm, in 

agreement with results from literature [138]. 

Patient data was registered to the study specific DARTEL‒template, created from 

only the controls. With this approach, the template was well defined with relatively low 

sample variance in diffusion tensor eigenvalue distributions, nevertheless artefactual 

clusters were commonly observed, but they were present mainly in the CSF or around the 

GM‒CSF boundary. The δ‒value‒based method, evaluating clusters based on tissue 

probability maps was efficient in filtering out the more evident ones, however, several 

cases showed obvious artefacts identifiable by their shape and location (e.g. in the 

occipital lobes, close to and following the GM‒CSF boundary, independent of the 

underlying gyral and sulcal pattern) escaping elimination. Additional automatic 

classification of artefactual clusters based on spatial distribution properties similar to 

those implemented in SOCK [203] and FIX [204] would further aid the evaluation of 

results. Since the focus of the present study was on the statistical approach for examining 

tissue microstructure and the surviving artefactual clusters were easily discernable among 

the results, thus did not severely obstruct patient evaluation, we chose to favor generality 

and did not penalize the examined volume any further. Although utilizing any or a 

combination of the above mentioned filtering or labeling approaches would possibly have 

increase lesion detection specificity, the detailed evaluation of cluster features was 

outside the scope the study, but may be investigated in the future. 

In most patients, smaller clusters (typically under 50 voxels) further away from the 

actual lesions were also identified in the WM. Apart from the ones in the terminal WM, 

found in several of the adolescent patients, likely reflecting age‒related differences in 

myelination; based on previous studies [138, 139], such extended WM‒abnormalities are 

to be expected in epileptic patients [127]: they most likely reflect either the underlying 

pathological networks or compensatory effects or elicited by them [205]. Exploratory 

analysis of DTI tractography data in select cases demonstrated that most of these 
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additional WM clusters are indeed located in or close to the fiber pathways passing 

through the primary lesion volumes (Fig 22). 

 

Fig 22 Comparing the location of distant WM clusters to tractography 

Deterministic DTI tractography (performed in ExploreDTI) revealed, that several of the distant WM 

clusters are connected to the primary lesions, for example in a 33 y.o. female patient with multiplex right 

temporal closed‒loop schizencephaly and subependymal heterotopia (left), and in a 27 y.o. male patient 

with presumed polymicrogyria or FCD in the left inferior frontal gyrus and the posterior third of the left 

insula (right). Axial and coronal slices presented in neurological orientation, i.e. left side is on the left. 

Such clusters suggest that microstructural changes reflected in the DTI data is not 

specific to the malformations themselves, but also to the disruptions that the actual MCDs 

inflict on the corresponding WM pathways. In qualitative evaluation, they may be of 

clinical importance shedding light on the extent and/or organization of the epileptic 

networks themselves. Nevertheless, including other sources of information (e.g. 

relaxometry, susceptibility, perfusion, or morphometry measurements) in the proposed 

multidimensional statistical framework is likely to improve lesion detection specificity. 

Following this avenue of research was, once again, outside the scope of the study, but is 

the evident direction to go for the future. 

As the mean age of our control group was 25.2, the method performed better with 

adults. In two younger patients (age < 10) more additional clusters were identified, most 
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likely resulting from differences in myelination and erroneous registration due to more 

pronounced anatomical (i.e. head and brain size) differences. 

As the method proved to be sensitive to a wide range of malformations and even to 

more pronounced physiological variations, more carefully selected control group(s) of 

matching age would increase specificity (Fig 21) and thus would yield better 

characterization of abnormal tissue microstructure. Nevertheless, since MCDs associated 

with the epileptic seizures were identified in all but one cases, even with approximately 

17 years of age difference, it was established that detecting disrupted tissue microstructure 

using tensor eigenvalues based on the Mahalanobis‒distance is indeed feasible and may 

aid in single subject evaluations. Additional case studies, not included in the thesis, 

demonstrated that the effects of large anatomical abnormalities, higher level of subject 

motion, or differences in scan parameters (even with a robust dMRI processing pipeline 

with thorough motion correction and high performance spatial registration) lead to more 

severe artefact contamination of the results, therefore  age difference, seems to be a less 

pronounced limiting factor.  

With clusters observed partially outside the brain parenchyma (typically in the sulci) 

or evidently following the GM‒CSF boundary, regardless of the underlying tissue 

macrostructure, registration performance may also be a major effect; potentially causing 

a high number of artefactual clusters, not all of which could be filtered out with the TPM‒

based cluster‒evaluation method. Fortunately, such clusters are easily identifiable as 

obvious artefacts, and so are the results of possible missing slices, postoperative resection 

sites, large anatomical variations (e.g. agenesis of the corpus callosum), or large‒scale 

shifts, rotations, or shears. 

Papers in the field of automated lesion detection usually examine single types of 

pathologies, for example patients with FCDs [88, 89, 133, 206], benefiting from the more 

specific research question. On the other hand, as clinical practice suggests that different 

types of MCDs tend to develop together, our patient group of individuals with mixed 

pathologies more faithfully represents typical cases of drug resistant epilepsies [127]. The 

multidimensional approach proved to be sensitive to the different types of malformations, 

which is a satisfying result for a potential lesion detection method, however, if the 
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framework is to be extended with data from other modalities in future studies, feature 

selection analysis would benefit from selecting cases with single types of MCDs.  

The altered diffusion profile (potentially resulting from several aforementioned 

normal, pathological, or compensational processes – that could also be varying across 

individuals), can only be detected, not characterized by the distance metric. Therefore, 

the generalization of findings would benefit from group‒based measures of the 

pathology‒related alterations. For such an endeavor the identified regions of disrupted 

microstructure could be subjected to subsequent conventional testing, for example, 

exploring whether FA is increased or decreased  in the region, or assessing abnormal 

connectivity through tractography by using the clusters as seed regions [207]. In future 

studies, such subsequent examinations, potentially including group‒based measures 

derived from patients with similar pathologies, could help discerning between direct and 

compensatory effects, explaining some of the observed distant WM clusters. 

The proposed method proved successful in combining separate eigenvalue maps, 

benefiting from the advantages of the multidimensional approach, and achieved sufficient 

sensitivity in detecting abnormal diffusion profile. The straightforward application of 

analytically‒derived critical values [102] allowed making strong inferences, although 

specificity was limited due to registration artefacts and normal or pathological variations: 

effects inherent to all single subject examinations [208]. 

2.6 Limitations 

The wide range of pathologies and the technical impediments may constrain the 

generalization of findings, nevertheless, as the major goal of the present study was to 

introduce a new method of statistical evaluation, these predicaments may prove useful in 

assessing the flexibility of the method. 

Using study specific templates, e.g. the DARTEL approach in the present study may 

be considered a limitation, especially when evaluating possible diagnostic tools, 

nevertheless, the aim of the current paper was to demonstrate the value of the 

Mahalanobis‒distance based approach in single patient vs control group comparisons. 

Further analyses using multi‒center multi‒scanner data may further warrant the 
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evaluation of the diagnostic potential of a Mahalanobis‒distance based lesion detection 

tool. 

During additional patient examinations, not presented in the thesis, we found that a 

system upgrade also affected the outcome of the statistical analyses, leading to apparent 

alterations in almost the entire WM, this effect may also most probably stem from the 

rather homogeneously collected control data. A multi‒center, multi‒scanner 

investigation, like mentioned above, may prove to be useful in overcoming such 

limitations. 
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VI. Conclusions 

1. DTI and Mild Cognitive Impairment 

The findings of the first study supported the hypothesis, that impairments of white 

matter integrity appear as early signs of pathological cognitive decline in both amnestic 

and non‒amnestic clinical manifestations of MCI. DTI measurements in the fornix, the 

stria terminalis and the cingulum can add valuable information to analyses based on grey 

matter volumetry and thus can help detect Alzheimer Disease in an early, preclinical 

stage.  

Future medications in AD are expected to be effective in such early stages, therefore 

extending volumetric analyses with DTI‒derived metrics may help the early identification 

of the disease well within the possible therapeutic window of these proposed medications 

to help preventing further decline.  

Aside from the prospective advantages of the proposed methods, differentiation 

between MCI patient groups was also demonstrated to be improved after extending GM 

volumetry‒based models with DTI measurements, yielding an immediate utility of the 

addition of DTI‒based metrics in the evaluation of MCI.  

Furthermore, the utility of the approach may not be limited to MCI and AD, as based 

on our results, it seems that DTI measurements can also help detecting non‒Alzheimer 

type dementias in early stage, however, these findings must be confirmed by further 

studies with larger sample sizes. 

2. Mahalanobis‒distance in MCD lesion detection 

Investigating other aspects of the utility of DTI‒based microstructural evaluations, 

the Mahalanobis‒distance based method, proposed in the second study, efficiently 

combined information from maps of the three diffusion tensor eigenvalues on the voxel‒

level. Altered diffusion profiles corresponding to malformations of cortical development 

in single subject vs. control group examinations were detected as outlier values in the 

voxelwise multidimensional distributions, based on but not necessarily limited to DTI 

data.  
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Searching for pathological brain regions of individuals as outliers, using the 

Mahalanobis‒distance in evaluation of diffusion weighted imaging data (even with more 

sophisticated models for processing, if necessary) seems to be a viable approach, and as 

the calculations could easily cover data from other modalities, this evaluation method 

may substantially advance the field of quantitative MRI in general. 

3. General conclusions 

Multidimensional and multi‒modal approaches in the processing and evaluation of 

brain MR images proved to be efficient in detecting the disease‒related alterations of 

tissue microstructure based on DTI data, both when characterizing impairments 

associated with cognitive decline and when searching for malformations related to drug 

resistant epilepsies.  

The application of state‒of‒the‒art data processing methods, thorough image 

correction and using anatomical scans as targets for registration and “up‒sampling”, 

combined with the volume‒based creation of study‒specific templates using the 

DARTEL method (originally developed for volumetry) was efficient in treating voxel‒

level dMRI data.  

Resulting sample distributions had low observed variance and good spatial 

congruency between control subjects, which facilitated strong inferences, even when 

considering the high number of simultaneously performed statistical tests. Voxel‒level 

correlation analyses and between‒group comparisons pinpointed the key structures 

affected through cognitive impairment; these findings subserved the application of multi‒

modal logistic regression on the region‒level and the multidimensional statistics in single 

subject evaluation.  

The combined information resulted in high sensitivity, yielding improved accuracy in 

the detection of abnormal tissue microstructure, originating from MCI‒related changes 

or epilepsy‒related malformations, suggesting the clinical utility of such evaluation 

methods. 
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VII. Summary 

Diffusion magnetic resonance imaging (dMRI) refers to a rapidly developing group 

of methods capable of probing tissue microstructure non–invasively, with proven unique 

sensitivity to various diseases, thus making them essential in research protocols and 

everyday clinical practice. With the increasing amount and complexity of MRI data, 

efficient processing methods and the combination of information from different sources 

are necessary when searching for biomarkers to detect and characterize abnormalities. 

The present thesis describes two separate research projects with state‒of‒the‒art dMRI 

processing methods and the use of multidimensional–multimodal statistics to search for 

disease–specific alterations of tissue microstructure using diffusion tensor imaging (DTI) 

data in the brain. 

In the first project, the potential role of DTI in the differential diagnosis of mild 

cognitive impairment (MCI) was investigated. A study–specific template using 

anatomical information proved to be efficient for registering whole brain voxel–level 

data, facilitating strong inference, both when comparing groups of healthy subjects and 

patients with amnestic and non-amnestic subtypes of MCI, or when examining correlation 

between neuropsychology and tissue microstructure. Robust effects were confirmed with 

region–level logistic regression analyses in the white matter, showing substantially 

improved discrimination between MCI subtypes, by using a combination of DTI and 

volumetry data. 

The second part of the thesis describes a novel approach for single subject lesion 

localization, employing outlier detection at the voxel level using the multidimensional 

squared Mahalanobis-distance on DTI–eigenvalue data. Potential sensitivity and 

specificity were evaluated through simulations and clinical utility was demonstrated on 

data of epilepsy patients with malformations of cortical development and other 

abnormalities. Altogether 15 of the 16 example lesions were detected, whilst false 

positives resulting from registration inaccuracies were also marked alongside distant 

regions suggesting potential network–level abnormalities. 

Advanced dMRI processing combined with multimodal strategies aids the detection 

of altered tissue microstructure, yielding potential diagnostic biomarkers in the brain. 
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VIII. Összefoglalás 

A diffúziós mágneses rezonancia képalkotás (dMRI) olyan eljárásokat jelöl, 

melyekkel a szöveti mikrostruktúra egyedülálló érzékenységgel vizsgálható, nem invazív 

módon; így kutatási projektek és a mindennapi klinikai gyakorlat alapvető részét képezik. 

A nagy mennyiségű, komplex MR képanyag értékelését, új biomarkerek azonosítását, és 

összetett eltérések jellemzését segítheti hatékony adatfeldolgozó eljárások, illetve a több 

forrásból származó információt egységesen kezelni képes megközelítések alkalmazása. 

Jelen disszertáció két tudományos munkát mutat be, melyekben betegségspecifikus 

eltérések azonosításához a legmodernebb dMRI feldolgozást többdimenziós és 

multimodális statisztikai eljárásokkal kombináltuk, agyi diffúziós tenzor (DTI) adatok 

értékelésére. 

Az első projektben a DTI adatok lehetséges differenciáldiagnosztikai jelentőségét 

vizsgáltuk enyhe kognitív zavarban (mild cognitive impairment–MCI). Az egyéni 

anatómiai felvételekből vizsgálatspecifikus közös koordinátarendszert képezve javítottuk 

a voxel-szintű adatok illesztését. Ennek köszönhetően javult a statisztikai tesztek ereje, 

mind az amnesztikus és nem-amnesztikus betegcsoportok illetve egészséges kontroll 

alanyok összehasonlításakor, mind a szöveti mikrostruktúra kognitív teljesítménnyel 

mutatott korrelációjának vizsgálatában. Fehérállományi területek régió szintű 

vizsgálatával erős hatásokat igazoltunk, majd logisztikus regressziós eljárás segítségével 

a DTI adatokat volumetriai számítások eredményével kombináltuk, szignifikánsan 

javítva az MCI alcsoportok elkülönítését. 

A dolgozat második része egyedi páciensek lézióinak voxelszintű detekciójára 

alkalmazható új eljárást mutat be, az eltéréseket Mahalanobis-távolság segítségével 

kiszóró pontokként azonosítva a DTI-sajátértékek terében. Az elérhető szenzitivitást és 

specificitást szimulációkkal vizsgáltuk, majd, kérgi fejlődési rendellenességek példáján, 

klinikai adaton is demonstráltuk. Összesen 15 léziót sikerült azonosítani a 16-ból, bár az 

értékelést illesztési pontatlanságok nehezítették A primer lézióktól távolabb lézióként 

jelölt területek hálózati szintű eltérésekre utalhatnak. 

A fejlett dMRI adatfeldolgozás és a multimodális stratégiák kombinációja elősegíti a 

mikrostrukturális elváltozások azonosítását és új diagnosztikus biomarkerek fejlesztését. 
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Table S1 Logistic regression: amnestic MCI vs. Control – only volumetry 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

15 Control Control 

Left  
HippocampusV 

meanthickavg 
precuneusT 

1 

0.75 
16 Control Control 1 

49 a-MCI Control 0 

56 a-MCI a-MCI 1 

2 

24 Control a-MCI 

Right 

HippocampusV 
  

0 

0.25 
31 Control a-MCI 0 

60 a-MCI Control 0 

67 a-MCI a-MCI 1 

3 

33 Control Control 

Left 

HippocampusV 

  1 

1 
34 Control Control 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

37 Control Control 

Left  
HippocampusV 

  1 

0.5 
39 Control Control 1 

89 a-MCI Control 0 

301 a-MCI Control 0 

5 

40 Control Control 

Left  
HippocampusV 

meanthickavg 
precuneusT 

1 

0.75 
42 Control Control 1 

364 a-MCI a-MCI 1 

879 a-MCI Control 0 

6 

48 Control Control 

Left  

HippocampusV 

  1 

1 
75 Control Control 1 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

76 Control Control 

Left  

HippocampusV 

  1 

1 
193 Control Control 1 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

198 Control Control 

Right 
HippocampusV 

  1 

1 
200 Control Control 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

332 Control Control 

Left  

HippocampusV 

  1 

1 
631 Control Control 1 

69371 a-MCI a-MCI 1 

69376 a-MCI a-MCI 1 

10 
23074 Control Control Left  

HippocampusV 

meanthickavg 

precuneusT 

1 
0.5 

60293 Control a-MCI 0 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1 & 2: 

volumetric, or cortical thickness measurements deemed meaningful in the stepwise logistic regression; a‒

MCI: amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: indicator 

signaling correct test decision; Mean: decision performance in each subgroup. V: volumetry‒based measure 

T: thickness‒based measure 
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Table S2 Logistic regression: amnestic MCI vs. Control – volumetry with FA 

Test set 

no. 

Subject 

ID 
From: group Into: group Effect1 Effect2 Effect3 Correct Mean 

1 

15 Control Control 

Left  

HippocampusV 

meanthickavg 

precuneusT 

  

1 

0.75 
16 Control Control 1 

49 a-MCI Control 0 

56 a-MCI a-MCI 1 

2 

24 Control a-MCI 

Left  

HippocampusV 
  

  

0 

0.25 
31 Control a-MCI 0 

60 a-MCI Control 0 

67 a-MCI a-MCI 1 

3 

33 Control Control 

Left  

HippocampusV 

  

  

1 

1 
34 Control Control 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

37 Control Control 

Left  

HippocampusV 

  

  

1 

0.5 
39 Control Control 1 

89 a-MCI Control 0 

301 a-MCI Control 0 

5 

40 Control Control 

Left  

HippocampusV 

meanthickavg 

precuneusT 

  

1 

0.75 
42 Control Control 1 

364 a-MCI a-MCI 1 

879 a-MCI Control 0 

6 

48 Control Control 

Left  

HippocampusV 

  

  

1 

1 
75 Control Control 1 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

76 Control Control 

Left  

HippocampusV 

  

  

1 

1 
193 Control Control 1 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

198 Control Control 

Right 

HippocampusV 

  

  

1 

1 
200 Control Control 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

332 Control Control 

Left  

HippocampusV 

  

  

1 

1 
631 Control Control 1 

69371 a-MCI a-MCI 1 

69376 a-MCI a-MCI 1 

10 
23074 Control Control Left  

HippocampusV 

meanthickavg 

precuneusT 

Fornix crus Stria 

terminalis LDTI 

1 
0.5 

60293 Control a-MCI 0 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1, 2 & 3: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

a‒MCI: amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: indicator 

signaling correct test decision; Mean: decision performance in each subgroup; V: volumetry‒based measure; 

T: thickness‒based measure; DTI: DTI‒based measure 
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Table S3 Logistic regression: amnestic MCI vs. Control – volumetry with MD 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

15 Control Control 

Left  

HippocampusV 

meanthickavg 

precuneusT 

1 

0.75 
16 Control Control 1 

49 a-MCI Control 0 

56 a-MCI a-MCI 1 

2 

24 Control a-MCI 

Left  

HippocampusV 

meanthickavg 

precuneusT 

0 

0.5 
31 Control Control 1 

60 a-MCI Control 0 

67 a-MCI a-MCI 1 

3 

33 Control Control 

Left  

HippocampusV 

  1 

1 
34 Control Control 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

37 Control Control 

Left  

HippocampusV 

  1 

0.5 
39 Control Control 1 

89 a-MCI Control 0 

301 a-MCI Control 0 

5 

40 Control Control 

Left  

HippocampusV 

meanthickavg 

precuneusT 

1 

0.75 
42 Control Control 1 

364 a-MCI a-MCI 1 

879 a-MCI Control 0 

6 

48 Control Control 

Left  

HippocampusV 

  1 

1 
75 Control Control 1 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

76 Control Control 

Left  

HippocampusV 

  1 

1 
193 Control Control 1 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

198 Control Control 

Right 

HippocampusV 

  1 

1 
200 Control Control 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

332 Control Control 

Left  

HippocampusV 

  1 

1 
631 Control Control 1 

69371 a-MCI a-MCI 1 

69376 a-MCI a-MCI 1 

10 
23074 Control Control Left  

HippocampusV 
  

1 
0.5 

60293 Control a-MCI 0 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1 & 2: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

a‒MCI: amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: indicator 

signaling correct test decision; Mean: decision performance in each subgroup; V: volumetry based measure; 

T: thickness based measure 
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Table S4 Logistic regression: non‒amnestic MCI vs. Control – only volumetry 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

15 Control Control 

meanthickavg 

precuneusT 
  

1 

0.5 
16 Control na-MCI 0 

25 na-MCI na-MCI 1 

26 na-MCI Control 0 

2 

24 Control na-MCI 

Right 

HippocampusV 

meanthickavg 

precuneusT 

0 

0.5 
31 Control Control 1 

36 na-MCI Control 0 

38 na-MCI na-MCI 1 

3 

33 Control na-MCI 

meanthickavg 

precuneusT 
  

0 

0.5 
34 Control Control 1 

44 na-MCI Control 0 

58 na-MCI na-MCI 1 

4 

37 Control na-MCI 

meanthickavg 

precuneusT 
  

0 

0.5 
39 Control Control 1 

59 na-MCI na-MCI 1 

63 na-MCI Control 0 

5 

40 Control Control 

meanthickavg 

precuneusT 
  

1 

0.75 
42 Control Control 1 

74 na-MCI Control 0 

216 na-MCI na-MCI 1 

6 

48 Control Control 

Right 

HippocampusV 

meanthickavg 

precuneusT 

1 

0.5 
75 Control Control 1 

69357 na-MCI Control 0 

69360 na-MCI Control 0 

7 

76 Control Control 

Right 

HippocampusV 
  

1 

0.5 
193 Control Control 1 

69361 na-MCI Control 0 

69364 na-MCI Control 0 

8 

198 Control Control 

meanthickavg 

precuneusT 
  

1 

0.5 
200 Control na-MCI 0 

69372 na-MCI na-MCI 1 

69403 na-MCI Control 0 

9 

332 Control na-MCI 

meanthickavg 

precuneusT 
  

0 

0.5 
631 Control Control 1 

69404 na-MCI Control 0 

69412 na-MCI na-MCI 1 

10 
23074 Control Control meanthickavg 

precuneusT 

  1 
0.5 

60293 Control na-MCI   0 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: identifiers used in the study, Form: group: category, as determined by the Petersen criteria (‘truth’); 

Into: group: category determined by the models (‘test decision’); Effect1 & 2: volumetric, cortical 

thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; na‒MCI: non‒

amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: indicator signaling 

correct test decision; Mean: decision performance in each subgroup; V: volumetry based measure; T: 

thickness based measure 
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Table S5 Logistic regression: non‒amnestic MCI vs. Control – volumetry with FA 

Test sett 

no. 
Subject ID From: group Into: group Effect1 Effect2 Effect3 Correct Mean 

1 

15 Control Control 

meanthickavg 

precuneusT 

Fornix column & 

body of fornixDTI 
  

1 

0.75 
16 Control na-MCI 0 

25 na-MCI na-MCI 1 

26 na-MCI na-MCI 1 

2 

24 Control na-MCI 

Right 

HippocampusV 

meanthickavg 

precuneusT 
  

0 

0.5 
31 Control Control 1 

36 na-MCI Control 0 

38 na-MCI na-MCI 1 

3 

33 Control na-MCI 

meanthickavg 

precuneusT 

Posterior thalamic 

radiation RDTI 

External  

capsule RDTI 

0 

0.25 
34 Control Control 1 

44 na-MCI Control 0 

58 na-MCI Control 0 

4 

37 Control na-MCI 

meanthickavg 

precuneusT 

External_ 

capsule_RDTI 
  

0 

0.5 
39 Control Control 1 

59 na-MCI na-MCI 1 

63 na-MCI Control 0 

5 

40 Control Control 

meanthickavg 

precuneusT 

Fornix column & 

body of fornixDTI 

Superior  

fronto  
occipital  

fasciculus 

RDTI 

1 

1 
42 Control Control 1 

74 na-MCI na-MCI 1 

216 na-MCI na-MCI 1 

6 

48 Control Control 
Cingulum  

hippocampus 

LDTI 

    

1 

0.25 
75 Control na-MCI 0 

69357 na-MCI Control 0 

69360 na-MCI Control 0 

7 

76 Control Control 

Right 

HippocampusV 
    

1 

0.5 
193 Control Control 1 

69361 na-MCI Control 0 

69364 na-MCI Control 0 

8 

198 Control Control 

meanthickavg 

precuneusT 

External  

capsule LDTI 
Tapetum LDTI 

1 

0.5 
200 Control na-MCI 0 

69372 na-MCI na-MCI 1 

69403 na-MCI Control 0 

9 

332 Control Control 

meanthickavg 

precuneusT 

Fornix column & 

body of fornixDTI 
  

1 

0.75 
631 Control Control 1 

69404 na-MCI Control 0 

69412 na-MCI na-MCI 1 

10 
23074 Control na-MCI meanthickavg 

precuneusT 

External  

capsule LDTI 
  

0 
0.5 

60293 Control Control 1 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: identifiers used in the study, Form: group: category, as determined by the Petersen criteria (‘truth’); 

Into: group: category determined by the models (‘test decision’); Effect1, 2 & 3: volumetric, cortical 

thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; na‒MCI: non‒

amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: indicator signaling 

correct test decision; Mean: decision performance in each subgroup; V: volumetry based measure; T: 

thickness based measure; DTI: DTI‒based measure 
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Table S6 Logistic regression: non‒amnestic MCI vs. Control – volumetry with MD 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

15 Control Control 

meanthickavg 

precuneusT 

Cingulum 

hippocampus LDTI 

1 

0.5 
16 Control na-MCI 0 

25 na-MCI Control 0 

26 na-MCI na-MCI 1 

2 

24 Control na-MCI 

Right 

HippocampusV 

Cingulum 

hippocampus LDTI 

0 

0.25 
31 Control na-MCI 0 

36 na-MCI Control 0 

38 na-MCI na-MCI 1 

3 

33 Control na-MCI 

meanthickavg 

precuneusT 
  

0 

0.5 
34 Control Control 1 

44 na-MCI Control 0 

58 na-MCI na-MCI 1 

4 

37 Control Control 

meanthickavg 

precuneusT 

Cingulum 

hippocampus LDTI 

1 

0.75 
39 Control Control 1 

59 na-MCI na-MCI 1 

63 na-MCI Control 0 

5 

40 Control Control 

meanthickavg 

precuneusT 

Cingulum 

hippocampus LDTI 

1 

0.75 
42 Control Control 1 

74 na-MCI Control 0 

216 na-MCI na-MCI 1 

6 

48 Control Control 

Right 

HippocampusV 

meanthickavg 

 precuneusT 

1 

0.5 
75 Control Control 1 

69357 na-MCI Control 0 

69360 na-MCI Control 0 

7 

76 Control Control 

Right 

HippocampusV 
  

1 

0.5 
193 Control Control 1 

69361 na-MCI Control 0 

69364 na-MCI Control 0 

8 

198 Control Control 

meanthickavg 

precuneusT 

External capsule 

LDTI 

1 

0.75 
200 Control Control 1 

69372 na-MCI na-MCI 1 

69403 na-MCI Control 0 

9 

332 Control Control 

meanthickavg 

precuneusT 

Fornix column &  

body of fornixDTI 

1 

0.75 
631 Control Control 1 

69404 na-MCI Control 0 

69412 na-MCI na-MCI 1 

10 
23074 Control na-MCI meanthickavg 

precuneusT 

External capsule 

LDTI 

0 
0.5 

60293 Control Control 1 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1, 2 & 3: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

na‒MCI: non‒amnestic mild cognitive impairment; meanthickavg: average cortical thickness; Correct: 

indicator signaling correct test decision; Mean: decision performance in each subgroup; V: volumetry based 

measure; T: thickness based measure; DTI: DTI‒based measure 
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Table S7 Logistic regression: amnestic vs non‒amnestic MCI – only volumetry 

Test set 

no. 
Subject ID From: group Into: group Effect1 Correct Mean 

1 

25 na-MCI na-MCI 

Left  

HippocampusV 

1 

0.5 
26 na-MCI a-MCI 0 

49 a-MCI na-MCI 0 

56 a-MCI a-MCI 1 

2 

36 na-MCI na-MCI 

Left  

HippocampusV 

1 

0.5 
38 na-MCI a-MCI 0 

60 a-MCI na-MCI 0 

67 a-MCI a-MCI 1 

3 

44 na-MCI na-MCI 

Left  

HippocampusV 

1 

1 
58 na-MCI na-MCI 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

59 na-MCI na-MCI 

Left  

HippocampusV 

1 

0.5 
63 na-MCI na-MCI 1 

89 a-MCI na-MCI 0 

301 a-MCI na-MCI 0 

5 

74 na-MCI a-MCI 

Left  

HippocampusV 

0 

0.25 
216 na-MCI a-MCI 0 

364 a-MCI a-MCI 1 

879 a-MCI na-MCI 0 

6 

69357 na-MCI na-MCI 

Left  

HippocampusV 

1 

1 
69360 na-MCI na-MCI 1 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

69361 na-MCI na-MCI 

Left  

HippocampusV 

1 

0.75 
69364 na-MCI a-MCI 0 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

69372 na-MCI a-MCI 

Left  

HippocampusV 

0 

0.75 
69403 na-MCI na-MCI 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

69404 na-MCI na-MCI 

Left  

HippocampusV 

1 

0.5 
69412 na-MCI a-MCI 0 

69371 a-MCI a-MCI 1 

69376 a-MCI na-MCI 0 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

a‒MCI: amnestic mild cognitive impairment; na‒MCI: non‒amnestic mild cognitive impairment; 

meanthickavg: average cortical thickness; Correct: indicator signaling correct test decision; Mean: decision 

performance in each subgroup; V: volumetry based measure 

 

DOI:10.14753/SE.2021.2464



143 
 

Table S8 Logistic regression: amnestic vs non‒amnestic MCI – volumetry with FA 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

25 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

0.75 
26 na-MCI na-MCI 1 

49 a-MCI a-MCI 1 

56 a-MCI na-MCI 0 

2 

36 na-MCI na-MCI 

Right  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

1 
38 na-MCI na-MCI 1 

60 a-MCI a-MCI 1 

67 a-MCI a-MCI 1 

3 

44 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

1 
58 na-MCI na-MCI 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

59 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

0.25 
63 na-MCI a-MCI 0 

89 a-MCI na-MCI 0 

301 a-MCI na-MCI 0 

5 

74 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

1 
216 na-MCI na-MCI 1 

364 a-MCI a-MCI 1 

879 a-MCI a-MCI 1 

6 

69357 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

1 
69360 na-MCI na-MCI 1 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

69361 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix cru Stria 

terminalis L DTI 

1 

1 
69364 na-MCI na-MCI 1 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

69372 na-MCI na-MCI 

Right  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

1 
69403 na-MCI na-MCI 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

69404 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix crus Stria 

terminalis L DTI 

1 

0.75 
69412 na-MCI a-MCI 0 

69371 a-MCI a-MCI 1 

69376 a-MCI a-MCI 1 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

a‒MCI: amnestic mild cognitive impairment; na‒MCI: non‒amnestic mild cognitive impairment; 

meanthickavg: average cortical thickness; Correct: indicator signaling correct test decision; Mean: decision 

performance in each subgroup; V: volumetry based measure; DTI: DTI‒based measure 
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Table S9 Logistic regression: amnestic vs non‒amnestic MCI – volumetry with MD 

Test set 

no. 
Subject ID From: group Into: group Effect1 Effect2 Correct Mean 

1 

25 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

0.5 
26 na-MCI na-MCI 1 

49 a-MCI na-MCI 0 

56 a-MCI na-MCI 0 

2 

36 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

1 
38 na-MCI na-MCI 1 

60 a-MCI a-MCI 1 

67 a-MCI a-MCI 1 

3 

44 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

1 
58 na-MCI na-MCI 1 

77 a-MCI a-MCI 1 

81 a-MCI a-MCI 1 

4 

59 na-MCI a-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

0 

0.25 
63 na-MCI na-MCI 1 

89 a-MCI na-MCI 0 

301 a-MCI na-MCI 0 

5 

74 na-MCI na-MCI 

Left  

Hippocampus V 

Fornix column & 

body of fornix DTI 

1 

0.5 
216 na-MCI a-MCI 0 

364 a-MCI a-MCI 1 

879 a-MCI na-MCI 0 

6 

69357 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

0.75 
69360 na-MCI a-MCI 0 

30971 a-MCI a-MCI 1 

34845 a-MCI a-MCI 1 

7 

69361 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

1 
69364 na-MCI na-MCI 1 

60294 a-MCI a-MCI 1 

69355 a-MCI a-MCI 1 

8 

69372 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

1 
69403 na-MCI na-MCI 1 

69359 a-MCI a-MCI 1 

69367 a-MCI a-MCI 1 

9 

69404 na-MCI na-MCI 

Left  

Hippocampus V 

Body of corpus 

callosum DTI 

1 

0.75 
69412 na-MCI a-MCI 0 

69371 a-MCI a-MCI 1 

69376 a-MCI a-MCI 1 

Test set no.: number of the test subset. Each test subset consisted of 4 subjects (2 from each group, apart 

from the 10th, which contained the last 2 controls), the remaining 35 (37) were used as training data. Subject 

ID: subject identifiers used in the study, Form: group: subject category, as determined by the Petersen 

criteria (‘truth’); Into: group: subject category determined by the models (‘test decision’); Effect1: 

volumetric, cortical thickness, or DTI measurements deemed meaningful in the stepwise logistic regression; 

a‒MCI: amnestic mild cognitive impairment; na‒MCI: non‒amnestic mild cognitive impairment; 

meanthickavg: average cortical thickness; Correct: indicator signaling correct test decision; Mean: decision 

performance in each subgroup; V: volumetry based measure; DTI: DTI‒based measure 
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Table S10: Patient details, description of the separate malformations, and comparative evaluation of the results  

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P01 m 14 

Right superior temporal 

gyrus  

Presumed FCD or PMG; subsequent 

histology ruled out tumor or 
dysgenesis 

Positive in a small cluster 
Clear positivity with high distance 

values 
Positive 

Right amygdala, uncus, and 
hippocampus 

More voluminous on T1w, with 

higher intensity on FLAIR images; 

presumable hippocampal sclerosis 

The surrounding WM is 
marked positive 

High D2 values in the hippocampus, 

reaching significance in the medial 

aspect 

Positive on the medial aspect 

Right insula 

Thicker, but iso-intense GM on T1w 

and FLAIR images, MCD can not 

be ruled out 

Small positive cluster in the 

vicinity of signal 

disturbances 

Large area of positivity with several 

medium-sized clusters of significant 

distance values 

Positive 

Fronto-basal regions, 

occipital and left temporal 

lobes, and the cerebellum 

No sign of  abnormalities 

Several, pronounced 

positivities distant to the 

above-listed lesions  

Clusters of probable artefacts; 
neuroradiologically confirmed MCDs 

are distinguishable by a halo of voxels 

with higher yet non-significant D2 that 
surrounds the significant regions 

Large fronto-basal, cerebellar, and 
occipital artefacts,  with smaller clusters 

in the left temporal lobe contralateral to 

the neuroradiologically confirmed 
pathologies on the right side 

P02 f 14 

Left and right cella media of 

the lateral ventricle and the 

border of the right occipital 
WM 

Small lesions on the ventricular wall 

consistent with subependymal 

heterotopia 

Negative 

High, albeit not significant D2 values in 

the WM surrounding the MCDs in the 

ventricular walls 

The paraventricular MCDs are positive 

with clusters smaller than the lesions 

Bilateral frontal WM  

Bilateral frontal WM signal 

alterations with presumably 
ischemic origin 

Positive  
Large positivities in the frontal WM and 

in the corpus callosum  

Large positive clusters consistent with 
the bilateral frontal ischemic WM-

lesions and a cluster in the corpus 

callosum 

Terminal WM 
Possibly due to incomplete 

myelination (age difference between 

patient and controls) 

Positive 
High  D2 values in the terminal WM, 
significant regions surrounded by non 

significant voxels 

Several medium-sized positive clusters 

in the terminal WM 
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Table S10 (Continued) 

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P03 m 16 

Right parieto-occipital 
sulcus  

Stable FLAIR signal intensity 

alterations on multiple follow-ups 
in the right parieto-occipital sulcus 

consistent with cortical dysgenesis 

Negative 

Positive voxels clustered around the 

neuroradiologically confirmed MCD, a halo of voxels 
with higher yet non-significant D2 surrounds the 

significant regions 

The location of the MCD is pointed out by 

small clusters of significant  D2 in the 

adjacent WM 

Right occipital and 
bilateral frontal regions, 

right superior temporal 

WM 

No sign of abnormalities Several positive clusters 

Clusters with high D2 values in the right occipital, and 
bilateral frontal regions representing obvious 

registration artefacts; a positive region in the right 

superior temporal WM contralateral to the 
neuroradiologically confirmed lesion; clusters with 

higher D2 values in the genu and splenium of the 

corpus callosum 

There are significant voxels in the regions 

observed on the raw D2 map in a distribution 
consistent with registration artifacts 

P04 f 17 
Right temporo-occipital 

region 

Clearly visualized FCD, 

(presumably type IIB) on T1w and 
FLAIR images 

Positive 

Region of voxels with high, but non-significant D2 
values around the MCD, with several voxels above the 

FDR-corrected threshold of significance, but only two 

voxels surviving FWE  correction 

Negative with FWE, but positive with FDR-

correction 

P05_S1 

m 

16 

Left amygdala, uncus, 
and hippocampus 

Histology confirmed focal gliosis. 
The increasing involvement of the 

contralateral structures in the 
subsequent examinations (2, and 6 

years later) may be resulting from 

damaged WM caused by the 
seizures originating from the left 

hemisphere, propagating through 

the interconnecting fibers.  

Positive 

Raw D2 values increased with time demonstrating 

expanding involvement of the left and right amygdala, 

uncus and hippocampus. 

Clear positive results, subsequent 
examinations showed contralateral regions 

of abnormal diffusion; results of the last 

examination seemed to be more localized, 
with smaller clusters than previously 

P05_S2 18 

Positive, right side 

shows higher D2 values 

than on previous 
examinations 

P05_S3 22 

Positive in the left focal 

gliosis, but there are 

positive clusters in the 

contralateral side 
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Table S10 (Continued) 

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P06 f 8 
Right medio-frontal part 

of the cingulate gyrus 

Apparent Cortical dysplasia and 

mild WM glial surplus; bilateral 
frontal-medial cortical disgenesis 

with right hemisphere 

predominance, presumably 
polymicrogyria 

The neuroradiologically 
confirmed lesion is 

clearly positive 

alongside several other 
clusters including fronto-

basal areas and the genu 

of corpus callosum 

Most of the neuroradiologically confirmed lesion site 

clearly shows high D2 values just below the threshold 

of significance (D2≈20), there are several clusters with 
high D2 including fronto-basal areas and the genu of 

corpus callosum 

Only the posterior right frontal-cingular part 

of the neuroradiologically confirmed  lesion 

is significant; there are several small clusters 
in the bilateral frontal WM and the genu of 

the corpus callosum 

P07 f 15 

Left temporo-basal 

Confirmed DNT in the left 

temporo-basal region. A subsequent 
lesionectomy was incomplete and 

did not affect the hippocampus, 

seizure-freedom was not achieved Widespread positive 

clusters throughout the 

brain, with the left 

hippocampus and left 
Heschl's gyrus also 

marked positive 

Large clusters of high D2-values in the left temporo-
basal region and the left temporal pole, most 

pronounced around the neuroradiologically confirmed 

lesions 

Clear positive result in the left temporo-
basal areas, with several positive clusters in 

the left temporal lobe 

 Left hippocampus 
 Apparent hippocampal sclerosis, 

dysgenesis cannot be ruled out 
The left hippocampus is evidently marked 

Heschl's gyrus 
Questionable signal alteration that 

proved to be negative on 

subsequent examinations 

Left superior temporal gyrus and the Heschl's gyrus are 

marked by high D^2 values 

One significant cluster is observed in the left 

Heschl's gyrus 

P08 m 46 

Left amygdala and 
hippocampus 

Dysgenesis, and partial 
hippocampal sclerosis 

Surrounding tissue 
around the left 

hippocampus is marked 
positive, along with most 

of the temporal and 

occipital WM-GM 
boundary, the right 

cingulum, the right 

occipital WM, and the 

left occipital pole  

Both hippocampi (with evident left predominance) are 
positive 

The head of the left hippocampus and a 
smaller part of the right is positive  

Posterior-superior part of 

the Sylvian fissure 

Most likely pulsation artefact 

resulting from anatomical variation 
of arteries in the vicinity 

Small cluster is observed with high D2 values 
One small cluster of high D2 values above 

the threshold of significance 

Occipital WM No clear sign of  abnormalities Several regions of high D2-values 
Several small-medium sized clusters in the 

occipital WM 
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Table S10 (Continued) 

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P09 f 33 Right temporal lobe 

Multiplex right temporal closed-

loop schizencephaly and 
subependymal heterotopia, the 

latter also present in the 

peritrigonal region, connected to 
the cortex of the Sylvian fissure. 

Postictal, or dysgenetic changes in 

the right amygdala and 
hippocampus 

Most of the right 

temporal lobe is positive, 

along with parts of the 
occipital and frontal 

areas 

Large areas of the right temporal and occipital lobes 

and clusters in both frontal lobes are positive with high 
D2 values 

Large positive clusters in and around the 

neuradiologically confirmed lesions in the 
right temporal lobe. The connection between 

the frontal and occipital clusters and the 

primary lesions are verified by DTI-
tractography 

P10 m 7 

 Left middle frontal gyrus 
 Presumed focal cortical dysplasia 

in the left middle frontal gyrus 

The left medial frontal 

gyrus is clearly positive 

A larger cluster of high D2 values around the 

neuroradiologically confirmed lesion and contralateral 
to it (the latter below the level of significance). 

The neuroradiologically confirmed lesion in 

the left medial frontal gyrus is clearly 
positive 

Left hippocampus 
 Malrotation of the left 

hippocampus 

Large areas positive in 

the temporal lobes 
bilaterally 

High D2 values in the temporal lobes bilaterally, with 

some significant voxels in the left hippocampus 
The left hippocampus is positive 

Cingulum, terminal and 
occipital WM 

Possibly due to incomplete 

myelination (age difference 

between patient and controls) 

Large areas positive in 

the cingulum, and the 

terminal WM with 
smaller clusters at the 

occipital GM-WM 

boundary 

Small clusters with few voxels above the level of 
significance and several with medium-high D2 values 

Two significant clusters in the left cingulum, 

and few smaller clusters in the terminal and 

occipital WM 
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Table S10 (Continued) 

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P11_S1 m 27 

Basal region of the left 

inferior frontal gyrus and 

the posterior third of the 
left insula 

Malformation of cortical 
development, presumably 

polymicrogyria or FCD 

Positive 
Medium-sized area with high D2 values in and around 

the neuroradiologically confirmed lesion 
Positive 

Left frontal, bilateral 

occipital and temporal 
WM 

No clear sign of  abnormalities 

Positivities in parts of 

the left frontal, and 
bilateral temporal and 

occipital lobes and in 

most of the corona 

radiata bilaterally  

Several high D2 clusters, with some voxels above the 

significance threshold  

Clusters in the left frontal, the bilateral 

occipital, and the left terminal WM, the 
latter is evidently connected to the primary 

lesion, verified by DTI tractography. 

Occipital registration artefacts are easy to 

identify by their configuration 

P11_S2 m 27 

Basal region of the left 

inferior frontal gyrus and 

the posterior third of the 

left insula 

Malformation of cortical 
development, presumably 

polymicrogyria or FCD 

Positive 
Medium-sized area with high D2 values in and around 

the neuroradiologically confirmed lesion  
Positive 

Left frontal, bilateral 

occipital and temporal 

WM 

No clear sign of  abnormalities 

Positivities in parts of 

the left frontal, and 

bilateral temporal and 
occipital lobes and in 

most of the corona 

radiata bilaterally  

Several high D2 clusters, with some voxels above the 

significance threshold. The right insula, contralateral to 
the neuroradiologically confirmed lesion contains 

higher D2 values in a larger volume than previously 

Most WM clusters further apart from the 

neuroradiologically confirmed lesion are 

still present. Fewer artefacts than previously 
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Table S10 (Continued) 

Code Sex Age Location Neuroradiology assessment  MAP07 Raw D2 images Thresholded and clustered D2 

P12 m 14 

  Left hippocampus  Left hippocampal sclerosis Negative 
Significantly high D2 values in the left hippocampus, 

with high values in the surrounding WM 
Positive 

Left temporal pole 

Malformation of cortical 

development (FCD-IIIa)  in the left 

temporal pole 

Most of the left temporal 
lobe is marked positive 

High D2 values in the WM of the left temporal pole, 
most voxels below the threshold of significance 

One small positive cluster in the WM close 
to the left temporal pole 

Right temporal pole 
Gliotic cyst with approx. 2mm size 

in the right temporal pole 

Most of the right 

temporal lobe is marked 

positive 

Significantly high D2 values in the volume of the cyst, 
high D2 values in the surrounding tissue 

Positive 

WM in the posterior part 

of the left and right 
superior frontal gyri 

WM FLAIR signal alterations in 

the right superior frontal gyrus 

Clusters in the superior 
corona radiata are 

marked positive 

bilaterally 

High D2 values in the superior frontal WM of both 

hemispheres with right  predominance 

One cluster in either hemispheres in the 

posterior parts of the superior frontal gyri 

P13 m 35 

Right temporal lobe 

 Right temporal closed-loop 

schizencephaly and subependymal 

heterotopia 

Most of the temporal 
lobes and the superior 

corona radiata are 

marked positive 
bilaterally 

The right temporal lobe contains the most voxels with 

high D2-values clearly centered around the 

neuroradiologically confirmed lesion 

Large significant clusters in the right 

temporal lobe and the hippocampus clearly 

mark  the pathology 

Right occipital pole 

Several WM signal alterations in 

the occipital poles bilaterally with 

right predominance. May be due to 

circulatory disturbance(s) during 

the 2nd trimester (the same cause 
may be behind the schizencephaly, 

as well). 

Positive, but with 

smaller clusters and 

weaker effect size 

Frontal and occipital lobes contain regions of high D2 
values bilaterally with right predominance 

Several small clusters in the occipital lobes 
bilaterally with right predominance 

Frontal lobes bilaterally 

and the anterior part of 

the right internal capsule 

No clear sign of  abnormalities 

The frontal WM is 

marked positive 

bilaterally 

Small clusters of higher D2-values with a few voxels 
above the level of significance 

Few clusters in the frontal lobes and one in 
the anterior part of the right internal capsule 

Results of independent lesion detection (MAP07) and the proposed Mahalanobis-distance based method were evaluated with the expert neuroradiologist (PB); apart from three cases, the 

diagnoses of MCD subtypes were based on imaging.  
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