1,740 research outputs found

    Robust stabilization of the Space Station

    Get PDF
    A robust H-infinity control design methodology and its application to a Space Station Freedom (SSF) attitude and momentum control problem are presented. This approach incorporates nonlinear multi-parameter variations in the state-space formulation of H-infinity control theory. An application of this robust H-infinity control synthesis technique to the SSF control problem yields remarkable results in stability robustness with respect to moments of inertia variation of about 73 percent in one of the structured uncertainty directions. The performance and stability of this robust H-infinity controller for the SSF are compared to those of other controllers designed using a standard linear-quadratic-regulator synthesis technique

    Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    Get PDF
    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented

    Multi-Objective Robust H-infinity Control of Spacecraft Rendezvous

    Get PDF
    Based on the relative motion dynamic model illustrated by C-W equations, the problem of robust Hinfin control for a class of spacecraft rendezvous systems is investigated, which contains parametric uncertainties, external disturbances and input constraints. An Hinfin state-feedback controller is designed via a Lyapunov approach, which guarantees the closed-loop system to meet the multi-objective design requirements. The existence conditions for admissible controllers are formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex optimization problem subject to LMI constraints. An illustrative example is provided to show the effectiveness of the proposed control design method

    H-Infinity Control for Pitch-Roll AR.Drone

    Get PDF
    This paper describes the design and implementation of H-infinity controller applied to the AR.Drone to follow a given trajectory. The trajectory will be achieved by using two control signals, pitch and roll. Pitch and roll of the AR.Drone models are obtained by assuming that the transfer function of internal control for pitch and roll is the second order system. Two schemes of H-infinity controller designed for pitch and roll. H-infinity control for x-position has exogenous input of the x-reference, xref, control input of pitch value, exogenous output in the form of x-position and process output as error x. While H-infinity control for y-position has exogenous input of y-reference, yref, control input in the form of roll value, exogenous output of y-position and process output as error y. The results of simulation and implementation show that drone can follow multiple references of trajectories given
    corecore