207 research outputs found

    A non-uniform predictor-observer for a networked control system

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12555-011-0621-5This paper presents a Non-Uniform Predictor-Observer (NUPO) based control approach in order to deal with two of the main problems related to Networked Control Systems (NCS) or Sensor Networks (SN): time-varying delays and packet loss. In addition, if these delays are longer than the sampling period, the packet disordering phenomenon can appear. Due to these issues, a (scarce) nonuniform, delayed measurement signal could be received by the controller. But including the NUPO proposal in the control system, the delay will be compensated by the prediction stage, and the nonavailable data will be reconstructed by the observer stage. So, a delay-free, uniformly sampled controller design can be adopted. To ensure stability, the predictor must satisfy a feasibility problem based on a time-varying delay-dependent condition expressed in terms of Linear Matrix Inequalities (LMI). Some aspects like the relation between network delay and robustness/performance trade-off are empirically studied. A simulation example shows the benefits (robustness and control performance improvement) of the NUPO approach by comparison to another similar proposal. © ICROS, KIEE and Springer 2011.This work was supported by the Spanish Ministerio de Ciencia y Tecnologia Projects DPI2008-06737-C02-01 and DPI2009-14744-C03-03, by Generalitat Valenciana Project GV/2010/018, by Universidad Politecnica de Valencia Project PAID06-08.Cuenca Lacruz, ÁM.; García Gil, PJ.; Albertos Pérez, P.; Salt Llobregat, JJ. (2011). A non-uniform predictor-observer for a networked control system. International Journal of Control, Automation and Systems. 9(6):1194-1202. doi:10.1007/s12555-011-0621-5S1194120296K. Ogata, Discrete-time Control Systems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.Y. Tipsuwan and M. Chow, “Control methodologies in networked control systems,” Control Eng. Practice, vol. 11, no. 10, pp. 1099–1111, 2003.T. Jia, Y. Niu, and X. Wang, “H ∞ control for networked systems with data packet dropout,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 198–203, 2010.Y. Wang and G. Yang, “Robust H ∞ model reference tracking control for networked control systems with communication constraints,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 992–1000, 2009.H. Gao and T. Chen, “Network-based H ∞ output tracking control,” IEEE Trans. Autom. Control, vol. 53, no. 3, pp. 655–667, 2008.H. Karimi, “Robust H ∞ filter design for uncertain linear systems over network with network-induced delays and output quantization,” Modeling, Identification and Control, vol. 30, no. 1, pp. 27–37, 2009.H. R. Karimi, “Delay-range-dependent linear matrix inequality approach to quantized H ∞ control of linear systems with network-induced delays and norm-bounded uncertainties,” Proc. of the Inst. of Mech. Eng., Part I: J. of Syst. and Control Eng., vol. 224, no. 6, pp. 689–700, 2010.K. Lee, S. Lee, and M. Lee, “Remote fuzzy logic control of networked control system via Profibus-DP,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 784–792, 2003.Y. Tipsuwan and M.-Y. Chow, “Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperationpart I: networked Control,” IEEE Trans. on Industrial Electronics, vol. 51, no. 6, pp. 1218–1227, December 2004.A. Sala, A. Cuenca, and J. Salt, “A retunable PID multi-rate controller for a networked control system,” Inform. Sci., vol. 179, no. 14, pp. 2390–2402, June 2009.A. Cuenca, J. Salt, V. Casanova, and R. Piza, “An approach based on an adaptive multi-rate Smith predictor and gain scheduling for a networked control system: implementation over Profibus-DP,” Int. J. Control, Autom., and Syst., vol. 8, no. 2, pp. 473–481, April 2010.A. Cuenca, J. Salt, A. Sala, and R. Piza, “A delay-dependent dual-rate PID controller over an Ethernet network,” IEEE Trans. Ind. Informat., vol. 7, no. 1, pp. 18–29, Feb. 2011.Y. Tian and D. Levy, “Compensation for control packet dropout in networked control systems,” Inform. Sci., vol. 178, no. 5, pp. 1263–1278, 2008.Y. Zhao, G. Liu, and D. Rees, “Modeling and stabilization of continuous-time packet-based networked control systems.” IEEE Trans. Syst., Man, Cybern. B, vol. 39, no. 6, pp. 1646–1652, Dec. 2009.X. Zhao, S. Fei, and C. Sun, “Impulsive controller design for singular networked control systems with packet dropouts,” Int. J. Control, Autom., and Syst., vol. 7, no. 6, pp. 1020–1025, 2009.H. Gao and T. Chen, “H ∞ estimation for uncertain systems with limited communication capacity,” IEEE Trans. Autom. Control, vol. 52, no. 11, pp. 2070–2084, 2007.S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments,” Proc. of the IEEE, vol. 95, no. 1, pp. 234–254, 2007.M. Moayedi, Y. Foo, and Y. Soh, “Optimal and suboptimal minimum-variance filtering in networked systems with mixed uncertainties of random sensor delays, packet dropouts and missing measurements,” Int. J. Control, Autom., and Syst., vol. 8, no. 6, pp. 1179–1188, 2010.W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, 2001.J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 138–162, 2007.J. Baillieul and P. Antsaklis, “Control and communication challenges in networked real-time systems,” Proc. of the IEEE, vol. 95, no. 1, pp. 9–28, 2007.P. Garcia, P. Castillo, R. Lozano, and P. Albertos, “Robustness with respect to delay uncertainties of a predictor-observer based discrete-time controller,” Proc. of the 45th IEEE Conf. on Decision and Control, pp. 199–204, 2006.C. Lien, “Robust observer-based control of systems with state perturbations via LMI approach,” IEEE Trans. Autom. Control, vol. 49, no. 8, pp. 1365–1370, 2004.A. Sala, “Computer control under time-varying sampling period: an LMI gridding approach,” Automatica, vol. 41, no. 12, pp. 2077–2082, Dec. 2005.J. Li, Q. Zhang, Y. Wang, and M. Cai, “H ∞ control of networked control systems with packet disordering,” IET Control Theory Appl., vol. 3, no. 11, pp. 1463–1475, March 2009.Y. Zhao, G. Liu, and D. Rees, “Improved predictive control approach to networked control systems,” IET Control Theory Appl., vol. 2, no. 8, pp. 675–681, Aug. 2008.K. Astrom, “Event based control,” Analysis and Design of Nonlinear Control Systems, pp. 127–147, 2007.A. Cuenca, P. García, K. Arzén, and P. Albertos, “A predictor-observer for a networked control system with time-varying delays and non-uniform sampling,” Proc. Eur. Control Conf., pp. 946–951, 2009.J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, 2007.H. Song, L. Yu, and A. Liu, “H ∞ filtering for network-based systems with communication constraints and packet dropouts,” Proc. of the 7th Asian Control Conf., pp. 220–225, 2009.P. Garcia, A. Gonzalez, P. Castillo, R. Lozano, and P. Albertos, “Robustness of a discrete-time predictor-based controller for time-varying measurement delay,” Proc. of the 9th IFAC Workshop on Time Delay Systems, 2010.J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization methods and software, vol. 11, no. 1, pp. 625–653, 1999.T. Henningsson and K. Astrom, “Log-concave observers,” Proc. of the 17th Int. Symp. on Mathematical Theory of Networks and Systems, pp. 2163–2170, 2006.D. Davison and E. Hwang, “Automating radiotherapy cancer treatment: use of multirate observer-based control,” Proc. of American Control Conf., vol. 2, pp. 1194–1199, 2003

    New results on stabilization of networked control systems with packet disordering

    Get PDF
    postprin

    Control techniques for power system stabilisation

    Get PDF
    The conventional PSS was first proposed earlier based on a linear model of the power system to damp the low frequency oscillations in the system. But they are designed to be operated under fixed parameters derived from the system linearized model. Due to large interconnection of power system to meet the load demand brings in deviations of steady-state and non-linearity to power system. The main problem is that PSS includes the locally measured quantities only neglecting the effect of nearby generators. This is the reason for the advent of Wide area monitoring for strong coupling between the local modes and the inter-area modes which would make the tuning of local PSSs for damping all modes nearly impossible when there is no supervisory level controller. Wide area control addresses these problems by proposing smart topology changes and control actions. Dynamic islanding and fast load shedding are schemes available to maintain as much as possible healthy transmission system. It is found that if remote signals from one or more distant locations of the power system can be applied to local controller design, system dynamic performance can be enhanced. In order to attain these goals, it is desirable to systematically build a robust wide area controller model within an autonomous system framework

    Event-triggered predictor-based control with gain-Scheduling and extended state observer for networked control systems

    Get PDF
    This paper investigates the stabilization of Networked Control Systems (NCS) with mismatched disturbances through a novel Event-Triggered Control (ETC), composed of a predictor-feedback scheme and a gain-scheduled Extended State Observer (ESO). The key idea of the proposed control strategy is threefold: (i) to reduce resource usage in the NCS (bandwidth, energy) while maintaining a satisfactory control performance; (ii) to counteract the main negative effects of NCS: time-varying delays, packet dropouts, packet disorder, and (iii) to reject the steady-state error in the controlled output due to mismatched disturbances. Moreover, we address the co-design of the controller/observer gains, together with the event-triggered parameters, by means of Linear Matrix Inequalities (LMI) and Cone Complementarity Linearization (CCL) approaches. Finally, we illustrate the effectiveness of the proposed control synthesis by simulation and experimental results in a Unmanned Aerial Vehicle (UAV) based test-bed platform

    Delay-independent dual-rate PID controller for a packet-based networked control system

    Full text link
    [EN] In this paper, a novel delay-independent control structure for a networked control system (NCS) is proposed, where packet-based control strategies with predictor-based and dual-rate control techniques are integrated. The control solution is able to cope with some networked communication problems such as time-varying delays, packet dropouts and packet disorder. In addition, the proposed approach enables to reduce network load, and usage of connected devices, while maintaining a satisfactory control performance. As a delay-independent control solution, no network-induced delay measurement is needed for controller implementation. In addition, the control scheme is applicable to open-loop unstable plants. Control system stability is ensured in terms of linear matrix inequalities (LMIs). Simulation results show the main benefits of the control approach, which are experimentally validated by means of a Cartesian-robot-based test-bed platform. (C) 2019 Elsevier Inc. All rights reserved.This work is funded by European Commission as part of Project H2020-SEC-2016-2017, Topic: SEC-20-BES-2016 Id: 740736 C2 Advanced Multi-domain Environment and Live Observation Technologies (CAMELOT). Part WP5 supported by Tekever ASDS, Thales Research & Technology, Viasat Antenna Systems, Universitat Politècnica de València, Fundação da Faculdade de Ciências da Universidade de Lisboa, Ministério da Defesa Nacional Marinha Portuguesa, Ministério da Administração Interna Guarda Nacional Republicana.Alcaina-Acosta, JJ.; Cuenca, Á.; Salt Llobregat, JJ.; Casanova Calvo, V.; Pizá, R. (2019). Delay-independent dual-rate PID controller for a packet-based networked control system. Information Sciences. 484:27-43. https://doi.org/10.1016/j.ins.2019.01.059S274348

    Dependable Control for Wireless Distributed Control Systems

    Get PDF
    The use of wireless communications for real-time control applications poses several problems related to the comparatively low reliability of the communication channels. This paper is concerned with adaptive and predictive application-level strategies for ameliorating the effects of packet losses and burst errors in industrial sampled-data Distributed Control Systems (DCSs), which are implemented via one or more wireless and/or wired links, possibly spanning multiple hops. The paper describes an adaptive compensator that reconstructs the best estimates (in a least squares sense) of a sequence of one or more missing sensor node data packets in the controller node. At each sample time, the controller node calculates the current control, and a prediction of future controls to apply over a short time horizon; these controls are forwarded to the actuator node every sample time step. A simple design method for a digital Proportional Integral Derivative (PID)-like adaptive controller is also described for use in the controller node. Together these mechanisms give robustness to packet losses around the control loop; in addition, the majority of the computational overhead resides in the controller node. An implementation of the proposed techniques is applied to a case study using a Hardware in the Loop (HIL) test facility, and favorable results (in terms of both performance and computational overheads) are found when compared to an existing robust control method for a DCS experiencing artificially induced burst errors

    H

    Get PDF
    Compensation scheme-based H∞ control is investigated for networked control systems with packet disordering and packet loss. Since the existence of packet disordering and packet loss inevitably degrades the control performance of networked control systems, it is worth studying a control scheme to compensate for them, such that the control performance can be improved. Thus, a compensation control strategy is first proposed following this direction. Next, a mathematical model of networked control systems with Markovian property is constructed due to the signals executed by the plant subject to Markovian chain. Based on it, a sufficient condition for stochastic stability of networked control systems with uncertain parameters as well as compensation strategy is presented, and an adaptive controller is designed based on linear matrix inequality (LMI) technique. Finally, a numerical example and simulations are given to illustrate the effectiveness of the proposed method
    corecore