32,308 research outputs found

    New generation aircraft design problems relative to turbulence stability, aeroelastic loads and gust alleviation

    Get PDF
    Past history, present status, and future of discrete gusts are schematically presented. It is shown that there are two approaches to the gust analysis: discrete and spectral density. The role of these two approaches to gust analysis are discussed. The idea of using power spectral density (PSD) in the analysis of gusts is especially detailed

    Sinusoidal-gust generation with a pitching and plunging airfoil

    Full text link
    The generation of uniform, periodic gust disturbances in an experimental context is demonstrated using a single oscillating airfoil. A pitching and heaving symmetric airfoil is suggested as a simpler alternative to existing gust-generation methods. The Theodorsen theory of unsteady aerodynamics is used as an analytical tool to dictate the kinematics necessary to produce well-defined sinusoidal gusts downstream of the airfoil. These analytic predictions improve the symmetry of fluctuations in the vertical velocity induced by the airfoil, as well as minimize the influence of vorticity shed by the oscillating airfoil. The apparatus is shown to produce smooth, repeatable gusts with high amplitudes and reduced frequencies compared to other gust-generation mechanisms in the literature. Furthermore, the control of downstream flow properties by airfoil motion kinematics has applications in experimental aerodynamics, the design of rotorcraft and light aerial vehicles, and biological propulsion.Comment: Under revie

    Analysis of low altitude atmospheric turbulence data measured in flight

    Get PDF
    All three components of turbulence were measured simultaneously in flight at each wing tip of a Beech D-18 aircraft. The flights were conducted at low altitude, 30.5 - 61.0 meters (100-200 ft.), over water in the presence of wind driven turbulence. Statistical properties of flight measured turbulence were compared with Gaussian and non-Gaussian turbulence models. Spatial characteristics of the turbulence were analyzed using the data from flight perpendicular and parallel to the wind. The probability density distributions of the vertical gusts show distinctly non-Gaussian characteristics. The distributions of the longitudinal and lateral gusts are generally Gaussian. The power spectra compare in the inertial subrange at some points better with the Dryden spectrum, while at other points the von Karman spectrum is a better approximation. In the low frequency range the data show peaks or dips in the power spectral density. The cross between vertical gusts in the direction of the mean wind were compared with a matched non-Gaussian model. The real component of the cross spectrum is in general close to the non-Gaussian model. The imaginary component, however, indicated a larger phase shift between these two gust components than was found in previous research

    Transonic interactions of unsteady vortical flows

    Get PDF
    Unsteady interactions of strong concentrated vortices, distributed gusts, and sharp-edged gusts with stationary airfoils were analyzed in two-dimensional transonic flow. A simple and efficient method for introducing such vortical disturbances was implemented in numerical codes that range from inviscid transonic small disturbance to thin-layer Navier Stokes. The numerical results demonstrate the large distortions in the overall flow field and in the surface air loads that are produced by various vortical interactions. The results of the different codes are in excellent qualitative agreement, but, as might expected, the transonic small-disturbance calculations are deficient in the important region near the leading edge

    A passive gust alleviation system for a light aircraft

    Get PDF
    A passive aeromechanical gust alleviation system was examined for application to a Cessna 172. The system employs small auxiliary wings to sense changes in angle of attack and to drive the wing flaps to compensate the resulting incremental lift. The flaps also can be spring loaded to neutralize the effects of variations in dynamic pressure. Conditions for gust alleviation are developed and shown to introduce marginal stability if both vertical and horizontal gusts are compensated. Satisfactory behavior is realized if only vertical gusts are absorbed; however, elevator control is effectively negated by the system. Techniques to couple the elevator and flaps are demonstrated to restore full controllability without sacrifice of gust alleviation

    The role of wind gusts in upper ocean diurnal variability

    Get PDF
    Upper ocean processes play a key role in air-sea coupling, with variability on both short and long time scales. The diurnal cycle associated with diurnal solar insolation and nighttime cooling, may act, along with stochastic wind variability, on upper ocean temperatures and stratification resulting in a diurnal warm layer and a nonlinear rectified effect on longer time scales. This study describes diurnal changes in upper ocean temperature for a location in the equatorial Indian Ocean, using observations from the Dynamics of the Madden-Julian Oscillation field campaign, a high vertical resolution 1-D process model, and a diurnal cycling scheme. Solar forcing is the main driver of diurnal variability in upper ocean temperature and stratification. Yet except during nighttime convection, winds with variability on the order of hours (here referred to as “wind gusts”) regulate how fast surface water is mixed to greater depths when daily mean winds are weak. Wind gusts are much stronger than diurnal winds. Even using stochastic wind gusts but no diurnal winds as input in a 1-D process model yields an estimate of diurnal temperature that compares well with observations. A new version of the Large and Caron (2015) scheme (LC2015) provides an estimate of upper ocean diurnal temperature that is consistent with observations. LC2015 has the advantage of being suitable for implementation in a climate model, with the goal to improve SST estimates, hence the simulated heat flux at the air-sea interface. Yet LC2015 is not very sensitive to the inclusion or omission of the high-frequency component of the wind

    Calibration and Lag of a Friez Type Cup Anemometer

    Get PDF
    Tests on a Friez type cup anemometer have been made in the variable density wind tunnel of the Langley Memorial Aeronautical Laboratory to calibrate the instrument and to determine its suitability for velocity measurements of wind gusts. The instrument was calibrated against a Pitot-static tube placed directly above the anemometer at air densities corresponding to sea level, and to an altitude of approximately 6000 feet. Air-speed acceleration tests were made to determine the lag in the instrument reading. The calibration results indicate that there should be an altitude correction. It is concluded that the cup anemometer is too sluggish for velocity measurements of wind gusts

    Pneumonia and hypercapnic respiratory failure

    Get PDF
    publishersversio

    A Method for the Calculation of the Lateral Response of Airplanes to Random Turbulence

    Get PDF
    In this method, the gust velocities are represented as rolling gusts, yawing gusts, and side gusts. Random distributions of gust velocities across the span are taken into account in defining the rolling and yawing gusts. Complex stability derivatives are used to account for the random distribution of side gusts along the fuselage and vertical tail and the lag effects in gust penetration. A sample calculation procedure is presented for obtaining the response of the airplane in each degree of freedom
    corecore