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Abstract 

Unsteady interactions of strong concentrated 
vortices, distributed gusts, and sharp-edged gusts 
with stationary airfoils have been analyzed in 
two-dimensional transonic flow. A simple and 
efficient method for introducing such vortical 
disturbances has been implemented in numerical 
codes that range from inviscid transonic small
disturbance to thin-layer Navier Stokes. The 
numerical results demonstrate the large distor
tions in·the overall flow field and in the surface 
air loads that are produced by various vortical 
interactions. The results of the different codes 
are in excellent qualitative agreement, but, as 
might be expected, the transonic small-disturbance 
calculations are deficient in the important region 
near the leading edge. 

Introduction 

Vortical disturbances can have important 
effects on the airloads and the aeroacoustics of 
a variety of aerodynamic devices, such as maneu
vering aircraft and missiles, helicopter rotor 
blades, and turbomachinery. Although the numeri
cal analysis of strong vortical flows has received. 
less attention than the treatment of shock waves 
over the past decade, compressible flow fields 
with embedded regions of distributed or concen
trated vorticity appear certain to receive 
increasing attention in the future. 

Several methods have already begun to appear 
in the literature for treating concentrated vor
ticity in finite-difference computations. Direct 
approaches, such as Rizzi and Erickson,1 Fu.1ii and 
Kutler,2 Krause,3 and Srinivasan and Steger~ may 
be classified as vortex-capturing, by analogy with 
the familiar shock-capturing methods that are used 
in many computational fluid dynamics (CFD) codes. 
As in shock capturing, the details of the actual 
phenomenon are spread over several grid pOints. 
Consequently, the solutions in these high-gradient 
regions are artificially grid-dependent and are 
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susceptible to the effects of numerical dissipa
tion. In the case of concentrated-tip vortices,. 
for example,. numerical dissipation may destroy the 
simulation of the core structure faster than would 
physical dissiPation,4 unless many grid pOints are 
clustered in the vortical region. 

Two alternate methods for modeling vortex 
flows are illustrated schematically in Fig. 1. By 
analogy with shock-fitting in transonic flows, 
these methods may be thought of as vortex-fitting. 
The upper part of the figure portrays the method 
introduced by Caradonna et al.,5 and used by 
George and Chang,6 for example. This technique of 
one or more branch cuts permits concentrated vor
tices to be introduced into potential-flow 
formulations. 

The prescribed-vortex method, which is the 
subject of this paper, is shown in the lower half 
of Fig. 1. The essential ideas are due to 
Steinhoff7 and Buning and Steger,8 and the tech
nique has been used by the authors 9- 11 for poten
tial, Euler, and thin-layer Navier-Stokes analyses 
of two-dimensional, unsteady airfoil-vortex inter
actions. In these applications, the structure of 
the vortex is prescribed, but its path in space 
can be allowed to develop as part of the solution. 
The prescribed-disturbance method is also well 
suited to and has been used for more general vor
tical flows, such as gusts with distributed 
vorticity.12 

Many of the interesting practical applica
tions, such as blade-vortex interactions of heli
copter rotors (e.g., Fig. 2), and gust response of 
aircraft wings, are three-dimensional unsteady 
problems that will require enormous computational 
resources for transonic cases. Therefore, it is 
useful to study the numerical methods, as well as 
the general nature of the phenomena, in two dimen
sions, as indicated in the figure. It is also 
important to establish the minimum level of com
plexity in the governing equations that will suf
fice. In the following sections, we review our 
transonic small-disturbance, Euler, and thin-layer 
Navier-Stokes analyses, especially the two
dimenSional implementation of the prescribed
disturbance approach. Several representative 
examples are given that illustrate the advantages, 
capabilities, and li~itations of these different 
formulations, in anticipation of future extensions 
to real, three-dimensional problems. 
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Fig. 2 Two- and three-dimensional unsteady vortex interactions. 

Numerical Formulations 

The essence of the prescribed-disturbance7 or 
perturbation8 method is simply that each of the 
dependent flow variables is split into a pre
scribed part, which defines (or is consistent 
with) the imposed vortical disturbance, and a 
remaining part, which is obtained from the solu-
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tion of the governing equation set. Even though 
the governing equation(s) may be nonlinear and 
independent solutions are therefore not super
posable, we may still decompose the dependent 
variables as follows: 



(1) 

where 

and qv represents the specified vortical distur
bance superimposed on a uniform free stream. 

The following subsections summarize the 
development of the governing equations for 
(q - qv)' and present the methods for solving them 
numerically. Although the overall concept is 
essentially the same for the Euler or Navier
Stokes formulations as for the transonic small
disturbance (potential) formulation, the actual 
derivations and solution techniques are rather 
different; therefore, they are treated separately. 
The complete details of each are given in Refs. 10 
and 11 for the former, and in Refs. 9 and 12 for 
the latter. 

Euler and Thin-Layer Navier-Stokes Equations 

In this part of the investigation, we use the 
unsteady, two-dimensional equations in strong 
conservation-law form,13 including the Baldwin
Lomax 14 algebraic eddy-viscosity model for thin
layer turbulent flows. In generalized coordinates 
(~,n,,) and in the perturbation form of Buning and 
Steger,8 the equations are 

d,(q - qv) + d~(E - Ev) + dn(F - Fv) a Re-1dnS 

(2) 

where the dependent flow-field vector is 

and the flux vectors E, F, and S are given by 

1 - J-t:~P:::~:J F - J-l::~p::;~:J 
(3) 

3 

0 

2 
+ n2)u + (~/3)n (n u + n v ) ~(nx y n x x n y n 

2 
+ n2)v + (~/3)n (n u + nyv n) ~( nx y n Y x n 

• -1 -1 -1 2 2 2 (4) S a J oc:Pr (y - 1) (n + n ) d a x y n 

+ ~(n2 + n2)(u2 
+ v2) /2 

x y n 
+ (~/3)(n u + n v)(n u + x y x n v ) y n 

Here U and V are the contravariant velocities 
along the ~ and n directions, i.e., 

U a ~t + ~xu + ~yV (5a) 

V a nt + nxu + nyv (5b) 

and J is the transformation Jacobian. 13 

In Eq. (2) qv represents any prescribed 
nonuniformity superimposed on an otherwise uniform 
free stream. In the present investigation, a 
conoentrated vortex is considered, either fixed in 
space or moving with the flow. The velocity field 
of the vortex is specified as 

(6) 

where r is the dimensionless vortex strength 
and ;(x;t) is the instantaneous radial distance 
from the vortex center. That is, the vortex
induced field qv is irrotational outside a vis
cous core of radius a. Thus the vector compo
nents p, (pu), (pv), and e are determined from 
the inviscid (Eu'ler) components of Eq. (2), as 
discussed in Refs. 10 and 11. 

The usual tangency and no-slip boundary con
ditions on the airfoil are applied at each instant 
to the total flow-field vector q. Surface
conforming C-type grids are used, generated by an 
algebraic method,15 with clustering near the lead
ing and trailing edges and in the vicinity of the 
upper and lower surface shock waves. Typical 
grids for viscous calculations consist of 161 to 
181 pOints in the surface, ~, direction, and 
52 points in .the normal, n, direction, extending 
6 to 10 chords in all directions. Forty-five grid 
pOints in the normal direction are generally used 
for the inviscid cases. 

An implicit, spatially factored algorithm 
with Euler-implicit time-differenCing13 is used to 
solve Eq. (2). The scheme is first-order accurate 
in time and second-order accurate in space. Sec
ond-order implicit smoothing and fourth-order 
explicit dissipation terms are added to improve 
the nonlinear stability. Even so, the nondimen
sional time steps generally have to be restricted 
to values on the order of 0.005 during that por
tion of the interaction when the vortex is close 
to the airfoil. The CPU solution time on the Ames 



Cray X-MP computer is approximately 2 sec/time 
step. The inviscid cases considered in this paper 
required approximately 10-15 min each, and the 
viscous calculations about 25-30 min CPU time, 
after the initial, steady solution was obtained 
without the vortex. 

The effectiveness of the present prescribed
disturbance scheme is illustrated in Fig. 3 for 
one of the examples to be discussed in more detail 
in the section on Unsteady Vortex Interactions. 
The figure shows the variation in lift on the 
airfoil as a strong, concentrated vortex passes 
beneath it, with and without the special treatment 
outlined above. The "nonperturbation" scheme 
essentially represents vortex capturing; that is, 
the vortex structure is specified only as an ini
tial condition, when the center of the vortex is 
5 chords upstream of the leading edge. Subse
quently. this initial disturbance convects through 
the computational domain, and the numerical dissi
pation associated with the finite grid spacing 
progressively weakens the gradients and reduces 
the effective vortex strength substantially. This 
numerical error is clearly grid-dependent; how
ever, it is completely absent in the prescribed
disturbance solutions, which are essentially inde
pendent of the grid. 
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Fig. 3 Effectiveness of the prescribed
disturbance method for Euler calculations. 

Transonic Small-Disturbance Potential 
Equation 

In this case, the approximations are a thin 
airfoil in an inviscid. isentropic fluid, with 
either (1) a concentrated potential (irrotational) 
vortex, or (2) small distributed vortical distur
bances, superimposed on an otherwise uniform, 
nearly sonic free stream. As in the above formu
lation, these prescribed vortical disturbances are 
assumed to not be altered by the interaction with 
the airfoil. 

The combination of unsteady flow and rota
tional disturbances in the free stream requires 
some special attention if potential-flow concepts 
are to be retained. Under the previously men
tioned isentropic, small-disturbance assumptions, 
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however, the continuity and momentum equations can 
be combined to give12 

oQ + 2 ou + (a2 _ u2 ) oU + 2 oV 0 (7 ) ot u ot oX a oy-

where 

d; Is an incremental position vector which is 
integrated over a suitable path f~om some upstream 
reference point, and the symbol q now represents 
the velocity field (u,v). 

We now go a step beyond Eq. (1) and decompose 
this total velocity field into the following com
ponents: 1) the uniform free stream, U ; 2) the .. .. 
prescribed disturbance field, qv; and 3) an irro-
tational perturbation velocity field V~ produced 
by the airfoil in the presence of the concentrated 
vortex or distributed gust. That is, 

Then, for example, for a distributed vortical 
(rotational) gust 

whereas for an irrotational moving vortex 

where ~v = 2nr tan-1[(y - Yl)/(x - Xl)]' and 
(xl'Yl) is the instantaneous position of the 
center of the concentrated vortex. 

(lOa) 

(lOb) 

It should be emphasized again that the decom
pOSition of the velocity in Eqs. (1) or (9) does 
not imply linearity. Both the boundary conditions 
and the governing equation for the airfoil distur
bance potential, V~, are altered by the introduc
tion of Q, and independent solutions are not v 
superposable for transonic flows. 

The governing equation for ~ is obtained by -+ .. .. 
substi~uting first the quantity qo = U~ + qv' and 
then q given by Eq. (9), into Eq. (7). Next, 
the former resulting equation is subtracted from 
the latter. Then the quantity 

which is common to both, drops out. Even if 
V x Q • 0, the quantity (V~ x V x Q ) . d; 

v.. v 
vanishes if dr is aligned with V~. Finally, 
the local speed of sound, a, is evaluated using 
the isentropic relations and the usual tran 
sonic small-disturbance scaling laws and 



approximations,16-17 coupled with the observation 
that the prescribed disturbances considered in 
this paper produce only second-order variations in 
density, pressure, and temperature. This gives 
the following modified form of the unsteady 
transonic small-disturbance equation (in strong 
conservation form) 

- S2u ] + '" 
V "'yy 

( 11) 

where 

C
2 

= - l (y - 1)M2 
2 .. 

Linear theory can be simulated by setting C2 - O. 

The boundary condition on the airfoil is 
obtained by simply substituting Eq. (9) into the 
small-disturbance approximation to flow tangency, 
giving 

(11) _(.L+u .L)y-V 
ay b at .. ax b v 

( 12) 

As noted above, neither small-amplitude gusts 
nor moving concentrated potential vortices produce 
first-order pressure fluctuations in the free 
stream. Therefore, consistent with our basic 
assumption that the prescribed vortical distur
bance remains undistorted as it passes by the 
airfoil, we retain the usual form for the small
disturbance pressure coefficient, 

C = -2( cp + cp ) 
P x t 

Numerical experimentation revealed that the 
most serious deficiencies of the small-disturbance 
formulation are 1) a limitation on the strength of 
the vortex and/or its closest proximity to the 
airfoil, and 2) the leading-edge behavior for 
strong interactions with very thin airfoils. The 
latter can be partially overcome with an ad hoc 
leading-edge correction to Eq. (12); viz. 

( 12b) 

as discussed in Ref. 10. This treatment has been 
found to be very satisfactory for thin airfoils, 
such as the NACA 64A006 considered in the section 
on Unsteady Vortex Interactions. However, compar
isons with Euler and full-potential solutions show 
that it over-corrects for moderately thick air
foils, such as the NACA 0012, and that it is com
pletely unsatisfactory for airfoils with blunter 
leading edges. 

Equation (11) is solved using the alternat
ing-direction-implicit numerical algorithm of the 
well-exercised transonic code LTRAN2~17 with all 
of the high-frequency terms included and provi
sions added for variable time steps. A rectangu-
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lar cartesian grid (113 or 186 x 97) is used, with 
clustering near the leading and trailing edges. 
The CPU solution times on the Ames Cray X-MP com
puter range from approximately 1 to 4 min. 

Comparison of Initial Solutions 

A preview of the similarities and differences 
in representative initial solutions, representing 
the steady-state solutions of airfoils in uniform 
free streams, Fig. 4, is helpful before consider
ing the vortical interactions in the section on 
Unsteady Vortex Interactions. In this and subse
quent figures, the Reynolds number is 6 x 106 for 
the thin-layer Navier-Stokes solution, with a 
turbulent boundary layer assumed for the entire 
airfoil. The leading-edge correction in Eq. (12b) 
was used for the small-disturbance calculations on 
the NACA 64A006 airfOil, but not for the 
NACA 0012. The small-disturbance deficiency in 
the leading-edge region is more evident in the 
results at M .. - 0.3 than at higher Mach number. 

For the NACA 0012 airfoil at M .. - 0.8, the 
shock wave is fairly strong, but viscous effects 
are relatively weak. Therefore, the Navier-Stokes 
and Euler solutions are approximately the same, 
but the details near the shock wave are slightly 
different in the small-disturbance solution. On 
the other hand, the viscous effects are stronger 
on the 64A006 airfoil, but the Euler and small
disturbance are almost identical. The experimen
tal results are from Zwaan. 18 

Example Results--Unsteady Vortex Interactions 

For the sake of brevity, we consider only 
concentrated vortices convecting with the flow 
past symmetrical airfoils at zero angle of attack. 
Therefore, all the differences between the flow 
fields above and below the airfoils are due solely 
to the vortex interaction. Examples of vortices 
fixed in space and of airfoils at incidence are 
given in Refs. 9-11. 

The small-disturbance results in Fig. 5 illu
strate many of the essential features of. transonic 
airfoil-vortex interactions. For this case of a 
vortex with clockwise circulation passing beneath 
the airfoil, the vortex-induced "downwash" effect 
first appears as an effective negative angle of 
attack, Figs. 5a and 5d. Unlike the linear 
results, however, the transonic effects are much 
larger on the lower surface than they are on the 
upper surface. Also, the actual shape of the 
pressure distributions, the shock-wave strengths 
and pOSitions, and the time-history of the airfoil 
pressures are quite different, even qualitatively, 
from the results for airfoil oscillations, or from 
the results for the sinusoidal gusts considered in 
the section on Airfoil-Gust Interactions. 

As the vortex passes beneath the airfoil, 
Figs. 5b and 5e, the u-component of the vortex
induced velocity field also becomes important in 
the nonlinear case. After the vortex passes 
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behind the trailing edge, Figs. 5c and 5f, its 
induced field becomes and effective "upwash" 
distribution of vertical velocity, and its 
horizontal component becomes relatively unim
portant again. Throughout the interaction, non
linear unsteady lag effects are very important, 
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and the return of the flow around the airfoil to 
its orginal state is extremely slow. The moving
vortex interaction is substantially different from 
the quasi-steady response that would be obtained 
by freezing the vortex at different x-positions. 
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Figures 6 and 7 compare the transonic small
disturbance, Euler, and thin-layer Navier-Stokes 
results for the NACA 64A006 airfoil at M~ s 0.85, 
with the same vortex strength and initial position 
as before. This airfoil, which has been used in 
numerous numerical and experimental studies, is 
not only thinner than the NACA 0012 section, but 
has a significantly smaller leading-edge radius as 
well. Therefore, it might be expected to be more 
sensitive to the vortex-induced downwash than the 
NACA 0012 profile. 

As in the steady results shown in Fig. 4, the 
shock wave in this case is smeared by the pre
dicted viscous-inviscid interaction, according to 
the Navier-Stokes calculations. However, no 
boundary-layer separation is induced. Otherwise, 
the predictions of all three methods are similar, 
and the sequence of events is essentially the same 
as those discussed in connection with Fig. 5. 
However, larger fluctuations appear in the pres
sure distributions near the leading edge. Without 
the leading-edge correction of Eq. (12b) this 
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effect was over-predicted by the small-disturbance 
calculations. 

For the results shown in Figs. 6 and 7, the 
vortex is constrained to convect at U along a 
straight line, Yv • -0.26. Figure 8 shows the 
effect of allowing the vortex to move along a 
force-free path; that is, along a streamline. -The 
Euler calculations show some differences caused by 
this effect as the vortex passes near and beyond 
the trailing edge, but this behavior is not 
evident in the small-disturbance results. 

Instabilities usually develop in the small
disturbance calculations when cases with sig
nificantly stronger vortex interaction are 
attempted. The Euler and Navier-Stokes calcu
lations require a reduction in the nondimensional 
time-step and require special attention to the 
dissipation and smoothing of sarameters. However, 
solutions have been obtained1 ,11 for values of 
rv up to twice the values given in Figs. 5-8. 
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Examples of Airfoil-Gust Interactions 

A number of calculations have been performed 
with the small-disturbance code for transonic 
flows with sinusoidal and sharp-edged gusts, whose 
distributions of vorticity are small in amplitude, 
but which are not necessarily irrotational. 12 

These correspond to examples that have previously 
appeared in the literature for incompressible or 
subsoni c flows. 

Sinusoidal Transverse Gusts 

The first case to be considered is the tran
sonic counterpart of the well-known sinusoidal 
traveling-wave gust with a transverse velocity 

vG - Al sin(wt - wi) (14 ) 

where x/c - 2x/c - is measured from the mid-
chord of the airfoil, and where c is the chord. 
This case is particularly straightforward within 

the framework of the transonic small-disturbance 
approximation, since the gust velocity does not 
appear explicitly 1n the governing equation. The 
effect of the gust is felt through the boundary 
condition on the airfoil as an effective time- and 
space-dependent angle of attack, Eq. (12). 

A sketch of this problem and typical results 
for this type of gust are shown in Fig. 9; the 
figure shows computations for both the nonlinear 
and linear mode of Eq. (11) at various "phases" 
during the passage of the gust. This figure may 
be compared with Fig. 5, for which the airfoil, 
Mach number, and mean angle of attack are the 
same. Here the nondimensional frequency param
eter, K - we/U , is inversely proportional to the 
wave length ~~ of the gust; ~ - 2nU~/w - 4nc in 
this particular case. The amplitude of the gust 
corresponds to an effective fluctuating angle of 
attack of ±1·. 
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Fig. 9 Transonic airfoil-gust interaction on the NACA 0012 airfoil at M - 0.8, a - 0; sinusoidal gust 
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The main distinction of the linear and non
linear solutions in Fig. 9 is the presence of a 
shock wave and its unsteady motion as the gust 
passes by the airfoil. The role of moving shock 
waves is even more dramatic in the following exam
ple, which is a comparison of the conventional 
NACA 0012 airfoil and a modern supercritical 
profile. 

Computed results for the Dornier CAST-7 and 
NACA 0012 airfoils with significant amounts of 
lift are compared in Figs. 10 and 11. Figure 11 
shows the harmonic components of the surface pres
sure distributions, referenced to the phase and 
amplitude of the prescribed gust. The nonlinear 
effects are much stronger on the upper surface 
than in the previous example. It is interesting 
to note that upper-surface shock wave is much 
stronger on the NACA 0012 than on the CAST-7 air
foil, with correspondingly larger magnitudes of 
pressure fluctuations in the neighborhood of a 
shock wave. However, the shock-wave motion is 
much greater on the CAST-7 airfoil, to the extent 
that the mean Cp distribution in Fig. 11 is 
significantly different from the Cp distribution 
without the gust, Fig. 10. 

1.5 

1.0 

SUPERCRITICAL 
CAST-7 AIRFOIL 
Ci = 00 

CL ~ 0_70 
o 

/"' __ U 

CONVENTIONAL 
NACA 0012 
Ci = 2.50 

CLo ~ 0.70 

U 

.5 ---- C~ ---------------- --------- C· 
L P 

-C /--" 
P / " 0; "L 

" -.5 ........ / 

-1.0 L---L._-'-_-'-_-'----' 

o 1.0 

/ 
i 

o 

""-'-'-. 

x X 
Fig. 10 Steady Transonic flow on supercritical 
and conventional airfoils at M~ = 0.76. 

1.0 

The lower surfaces of both airfoils remain 
subcritical throughout most of the cycle of the 
gust interaction. Consequently, both curves of 
mean Cp in Fig. 11 are approximately equivalent 
to the respective lower-surface steady values in 
Fig. 10 and there is no higher-harmonic content. 
There are only mild distortions of the first
harmonic fluctuating pressures in the vicinity of 
the shock wave, and the overall features approxi
mately resemble the linear solutions (not shown). 

Sharp-Edged Gusts--Indicial Response 

Indicial responses to impulsive plunging 
motion, step changes in angle of attack, and 
sharp-edged gusts are often used in linear analy
ses to determine the aerodynamic loads for arbi
trary bOd~ motions or gust fields. Ballhaus and 
Goorjian1 have discussed how this approach can 
be extended to a limited class of transonic 
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Fig. 11 Harmonic components of the pressure dis
tributions on supercritical and conventional air
foils at M - 0.76; sinusoidal gust with 
A1 - 0.017, wc/U~ ~ 0.5. 

1.0 

oscillating airfoil problems, if the shock-wave 
motion is negligible and the unsteady fluctuations 
are essentially linear perturbations about a non
linear steady or mean flow. In this section we 



discuss the indicial response to a sharp-edged 
gust, Fig. 12, in subsonic and transonic flow. 

IMPULSIVE 
PLUNGE 7 
I. 
I 

TIME 

SHARP·EDGED 
GUST 

x 

I 
I 

TIME 

Fig. 12 Schematic of indicial response for 
plunging motion (above) and for a sharp-edged gust 
(below) • 

Figure 12 illustrates the similarities and 
differences in the response of a thin airfoil to 
two types of indicial inputs; namely, 

{:1 

for t < 0 
plunge: a 

for t > 0 
(15) 

• {:1 

for U t < X .. 
gust: vG 

for U .. t > X 
(16) 

According to linear theory,20 the sharp-edged gust 
response rises monotonically f~o~/~ero at t· 0 
to the value C

L 
= 2~Al/(1 - M .. ) as t + .. , 

whereas the plunge response starts at CL • ~Al 

for M .. = 0 and at 4A1/M .. for M .. > O. In 
either case, the approach to the steady-state 
value is progressively slower as M.. increases. 

Figure 13 shows the nonlinear gust response 
of the NACA 64A006 airfoil as a function of Mach 
number, with a logarithmiC abscissa. The critical 
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Mach number for this airfoil is approximately 0.83 
for a - 0, and the flow is only weakly transonic 
at MOl - 0.80 and a-1°. Therefore, the lift 
response shown in Fig. 13 is essentially linear 
for M < 0.80. .. -

However, the behavior becomes distinctly 
nonlinear at higher Mach numbers. The overshoot 
in lift at MOl - 0.9 is due to a complex, non
linear motion of the shock wave on the lower sur
face, as shown in Fig. 14. The upper-surface 
shock wave moves monotonically rearward from its 
initial position of x - 0.85 and stabilizes at 
the trailing edge at U .. t/c. 25. However, the 
shock wave on the lower surface moves forward 
initially, reaches a minimum value of Xs at 
U .. t/c • 30, and then undergoes a small oscillation 
in position between U .. t/c. 40 and 60, before 
reaching its final rearward location. This 
nonlinear behavior indicates that it would be a 
mistake to use the indicial gust response at 
MOl - 0.9 in a superposition integral for 
arbitrary wave forms. 
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Fig. 13 Indicial gust response on the 
NACA 64A0012 airfoil. 
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NACA 64A006, Moo = 0.9, Al = 1° 
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Fig. 14 Nonlinear indicial gust response and instantaneous pressure distributions on the NACA 64A0012 
airfoil at M~ D 0.9 and A1 = 0.017. 

Summary and Conclusions 

The prescribed-disturbance method has proven 
to be a simple and efficient method for introduc
ing vortical disturbances into numerical codes for 
transonic flow analyses, including inviscid tran
sonic small-disturbance, Euler, and thin-layer 
Navier-Stokes formulations. The technique has 
permitted the interaction of strong concentrated 
vortices, small-amplitude distributed gusts, and 
sharp-edged gusts with stationary lifting surfaces 
to be simulated in two-dimensional transonic flow. 
The results of the different codes are in excel
lent qualitative agreement. However, as might be 
expected, the transonic small-disturbance calcula
tions can be deficient and misleading in the 
important region near the leading edge, unless 
special precautions are taken. Also, the small
disturbance code is less robust in coping with 
very strong vortices and with vortex paths that 
pass extremely close to the airfoil. 

Several important features of the interaction 
of a concentrated vortex with an airfoil have been 
established. Detailed examinations of results 
show that the effect of the vortex is felt pri
marily through the vertical velocity that it 
induces, which to first order appears as a time
dependent perturbation in the effective angle of 
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attack, and to a lesser extent through its hori
zontal induced velocity. Also, unsteady lag 
effects appear to be very important, especially in 
the transonic case. Calculations show great dif
ferences between quasi-steady and unsteady solu
tions and between the results for the vortex loca
tions upstream and downstream of the airfoil. 
Finally, other strong nonlinear effects have been 
noted at transonic speeds. Even the qualitative 
pressure variations with respect to time and space 
differ markedly from the predictions of linear 
theory, and the vortex distorts the flow on the 
nearest surface of the body much more than the 
flow on the opposite surface. 

A vortex with an assumed, invariant structure 
has been considered thus far. In reality, close 
encounters with a body will probably alter the 
vortex core significantly and may lead to vortex 
bursting; this aspect of the problem needs to be 
examined. For most practical applications, 
including helicopter rotors, future studies need 
to be extended to include three dimensions, where 
it will be even more essential to minimize the 
level of complexity in the governing equations 
without sacrificing accuracy. 

The transonic small-disturbance formulation 
has been extended to include distributed vortical 
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disturbances superimposed on a uniform free 
stream, under the assumption that the prescribed 
disturbance remains undistorted as it convects 
past a thin airfoil. A number of unsteady air
foil-gust interactions have been calculated within 
this framework, and sample results illustrate the 
essential effects of periodic gusts on the tran
sonic flow around conventional and supercritical 
airfoils. Also, several examples of sharp-edged 
gusts have been studied. As in the concentrated
vortex interactions, the strength and unsteady 
motion of the shock wave were found to play major 
roles in the flow-field development and, conse
quently, in the airloads on the airfoil. 
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