1,282 research outputs found

    Terminology Services: Standard Terminologies to Control Medical Vocabulary. “Words are Not What they Say but What they Mean”

    Get PDF
    Data entry is an obstacle for the usability of electronic health records (EHR) applications and the acceptance of physicians, who prefer to document using “free text”. Natural language is huge and very rich in details but at the same time is ambiguous; it has great dependence on context and uses jargon and acronyms. Healthcare Information Systems should capture clinical data in a structured and preferably coded format. This is crucial for data exchange between health information systems, epidemiological analysis, quality and research, clinical decision support systems, administrative functions, etc. In order to address this point, numerous terminological systems for the systematic recording of clinical data have been developed. These systems interrelate concepts of a particular domain and provide reference to related terms and possible definitions and codes. The purpose of terminology services consists of representing facts that happen in the real world through database management. This process is named Semantic Interoperability. It implies that different systems understand the information they are processing through the use of codes of clinical terminologies. Standard terminologies allow controlling medical vocabulary. But how do we do this? What do we need? Terminology services are a fundamental piece for health data management in health environment

    2017 Conference Reports

    Get PDF

    The Development of Medical Record Items: a User-centered, Bottom-up Approach

    Get PDF
    Objectives: Clinical documents (CDs) have evolved from traditional paper documents containing narrative text information into the electronic record sheets composed of itemized records, where each record is expressed as an item with a specific value. We defined medical record (MR) items to be information entities with a specific value. These entities were then used to compile form-based clinical documents as part of an electronic health record system (EHR-s). Methods: We took a reusable bottom-up developmental approach for the MR items, which provided three things: efficient incorporation of the local needs and requirements of the medical professionals from various departments in the hospital, comprehensive inclusion of the essential concepts of the basic elements required in clinical documents, and the provision of a structured means for meaningful data entry and retrieval. This paper delineates our experiences in developing and managing medical records at a large tertiary university hospital in Korea. Results: We collected 63,232 MR items from paper records scanned into 962 CDs. The MR item database was constructed using 13,287 MR items after removing redundant items. During the first year of service users requested changes to be made to 235 (1.8%) attributes of the MR items and also requested the additional 9,572 new MR items. In the second year, the attributes of 70 (0.5%) of the existing MR items were changed and 3,704 new items were added. The number of registered MR items increased by 72.0 % in the first year and 27.9 % in the second year. Conclusions: The MR item concept provides an easier and more structured means of data entry within an EHR-s. By using these MR items, various kinds of clinical documents can be easily constructed and allows for medical information to be reused and retrieved as data

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    IT adoption of clinical information systems in Austrian and German hospitals: results of a comparative survey with a focus on nursing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IT adoption is a process that is influenced by different external and internal factors. This study aimed</p> <p indent="1">1. to identify similarities and differences in the prevalence of medical and nursing IT systems in Austrian and German hospitals, and</p> <p indent="1">2. to match these findings with characteristics of the two countries, in particular their healthcare system, and with features of the hospitals.</p> <p>Methods</p> <p>In 2007, all acute care hospitals in both countries received questionnaires with identical questions. 12.4% in Germany and 34.6% in Austria responded.</p> <p>Results</p> <p>The surveys revealed a consistent higher usage of nearly all clinical IT systems, especially nursing systems, but also PACS and electronic archiving systems, in Austrian than in German hospitals. These findings correspond with a significantly wider use of standardised nursing terminologies and a higher number of PC workstations on the wards (average 2.1 PCs in Germany, 3.2 PCs in Austria). Despite these differences, Austrian and German hospitals both reported a similar IT budget of 2.6% in Austria and 2.0% in Germany (median).</p> <p>Conclusions</p> <p>Despite the many similarities of the Austrian and German healthcare system there are distinct differences which may have led to a wider use of IT systems in Austrian hospitals. In nursing, the specific legal requirement to document nursing diagnoses in Austria may have stimulated the use of standardised terminologies for nursing diagnoses and the implementation of electronic nursing documentation systems. Other factors which correspond with the wider use of clinical IT systems in Austria are: good infrastructure of medical-technical devices, rigorous organisational changes which had led to leaner processes and to a lower length of stay, and finally a more IT friendly climate. As country size is the most pronounced difference between Germany and Austria it could be that smaller countries, such as Austria, are more ready to translate innovation into practice.</p

    Relevant Attributes Influencing Consumers’ Tomato Acceptance: A Systematic Review and Research Agenda

    Get PDF
    During the last two decades several studies were developed to understand the attributes able to affect consumer vegetable choice over the world. Focusing on fresh and processed tomato product, this study proposes a systematic literature review to systematize and critically apprise the current body of knowledge in this research field. In order to discover suggestions useful to enhance market strategies and policies about vegetable intake, the discovered tomato attributes were categorized, according the Search Experience and Credence logic, into: price, product features, packaging, convenience, brand, sensory properties, sustainability, origin, safety and health, production processes. By synthesizing the review findings, a multi-dimensional integrative content framework was conceived with the aim to maps the extant literature with multiple levels of analysis: antecedent, phenomenon and consequences. As part of the review, a future research agenda, theoretical and practical implications were discussed

    The Development of Medical Record Items: a User-centered, Bottom-up Approach

    Get PDF
    OBJECTIVES: Clinical documents (CDs) have evolved from traditional paper documents containing narrative text information into the electronic record sheets composed of itemized records, where each record is expressed as an item with a specific value. We defined medical record (MR) items to be information entities with a specific value. These entities were then used to compile form-based clinical documents as part of an electronic health record system (EHR-s). METHODS: We took a reusable bottom-up developmental approach for the MR items, which provided three things: efficient incorporation of the local needs and requirements of the medical professionals from various departments in the hospital, comprehensive inclusion of the essential concepts of the basic elements required in clinical documents, and the provision of a structured means for meaningful data entry and retrieval. This paper delineates our experiences in developing and managing medical records at a large tertiary university hospital in Korea. RESULTS: We collected 63,232 MR items from paper records scanned into 962 CDs. The MR item database was constructed using 13,287 MR items after removing redundant items. During the first year of service users requested changes to be made to 235 (1.8%) attributes of the MR items and also requested the additional 9,572 new MR items. In the second year, the attributes of 70 (0.5%) of the existing MR items were changed and 3,704 new items were added. The number of registered MR items increased by 72.0% in the first year and 27.9% in the second year. CONCLUSIONS: The MR item concept provides an easier and more structured means of data entry within an EHR-s. By using these MR items, various kinds of clinical documents can be easily constructed and allows for medical information to be reused and retrieved as data. The success of the use of MR items in a large tertiary university hospital system provides evidence that verifies our approach as being an efficient means of user-oriented and structured data entry, enabling the easy reuse of medical records.ope
    corecore