7 research outputs found

    Interactive visual data exploration with subjective feedback : an information-theoretic approach

    Get PDF
    Visual exploration of high-dimensional real-valued datasets is a fundamental task in exploratory data analysis (EDA). Existing projection methods for data visualization use predefined criteria to choose the representation of data. There is a lack of methods that (i) use information on what the user has learned from the data and (ii) show patterns that she does not know yet. We construct a theoretical model where identified patterns can be input as knowledge to the system. The knowledge syntax here is intuitive, such as "this set of points forms a cluster", and requires no knowledge of maths. This background knowledge is used to find a maximum entropy distribution of the data, after which the user is provided with data projections for which the data and the maximum entropy distribution differ the most, hence showing the user aspects of data that are maximally informative given the background knowledge. We study the computational performance of our model and present use cases on synthetic and real data. We find that the model allows the user to learn information efficiently from various data sources and works sufficiently fast in practice. In addition, we provide an open source EDA demonstrator system implementing our model with tailored interactive visualizations. We conclude that the information theoretic approach to EDA where patterns observed by a user are formalized as constraints provides a principled, intuitive, and efficient basis for constructing an EDA system.Peer reviewe

    Conditional t-SNE: Complementary t-SNE embeddings through factoring out prior information

    Get PDF
    Dimensionality reduction and manifold learning methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-dimensional data into a 2-dimensional space to visualize and explore the data. However, two dimensions are typically insufficient to capture all structure in the data, the salient structure is often already known, and it is not obvious how to extract the remaining information in a similarly effective manner. To fill this gap, we introduce \emph{conditional t-SNE} (ct-SNE), a generalization of t-SNE that discounts prior information from the embedding in the form of labels. To achieve this, we propose a conditioned version of the t-SNE objective, obtaining a single, integrated, and elegant method. ct-SNE has one extra parameter over t-SNE; we investigate its effects and show how to efficiently optimize the objective. Factoring out prior knowledge allows complementary structure to be captured in the embedding, providing new insights. Qualitative and quantitative empirical results on synthetic and (large) real data show ct-SNE is effective and achieves its goal

    Conditional t-SNE : complementary t-SNE embeddings through factoring out prior information

    Get PDF
    Dimensionality reduction and manifold learning methods such as t-Distributed Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-dimensional data into a 2-dimensional space to visualize and explore the data. However, two dimensions are typically insufficient to capture all structure in the data, the salient structure is often already known, and it is not obvious how to extract the remaining information in a similarly effective manner. To fill this gap, we introduce \emph{conditional t-SNE} (ct-SNE), a generalization of t-SNE that discounts prior information from the embedding in the form of labels. To achieve this, we propose a conditioned version of the t-SNE objective, obtaining a single, integrated, and elegant method. ct-SNE has one extra parameter over t-SNE; we investigate its effects and show how to efficiently optimize the objective. Factoring out prior knowledge allows complementary structure to be captured in the embedding, providing new insights. Qualitative and quantitative empirical results on synthetic and (large) real data show ct-SNE is effective and achieves its goal

    Factoring Out Prior Knowledge from Low-dimensional Embeddings

    Get PDF
    Low-dimensional embedding techniques such as tSNE and UMAP allow visualizing high-dimensional data and therewith facilitate the discovery of interesting structure. Although they are widely used, they visualize data as is, rather than in light of the background knowledge we have about the data. What we already know, however, strongly determines what is novel and hence interesting. In this paper we propose two methods for factoring out prior knowledge in the form of distance matrices from low-dimensional embeddings. To factor out prior knowledge from tSNE embeddings, we propose JEDI that adapts the tSNE objective in a principled way using Jensen-Shannon divergence. To factor out prior knowledge from any downstream embedding approach, we propose CONFETTI, in which we directly operate on the input distance matrices. Extensive experiments on both synthetic and real world data show that both methods work well, providing embeddings that exhibit meaningful structure that would otherwise remain hidden

    Conditional t-SNE : more informative t-SNE embeddings

    Get PDF
    Dimensionality reduction and manifold learning methods such as t-distributed stochastic neighbor embedding (t-SNE) are frequently used to map high-dimensional data into a two-dimensional space to visualize and explore that data. Going beyond the specifics of t-SNE, there are two substantial limitations of any such approach: (1) not all information can be captured in a single two-dimensional embedding, and (2) to well-informed users, the salient structure of such an embedding is often already known, preventing that any real new insights can be obtained. Currently, it is not known how to extract the remaining information in a similarly effective manner. We introduce conditional t-SNE (ct-SNE), a generalization of t-SNE that discounts prior information in the form of labels. This enables obtaining more informative and more relevant embeddings. To achieve this, we propose a conditioned version of the t-SNE objective, obtaining an elegant method with a single integrated objective. We show how to efficiently optimize the objective and study the effects of the extra parameter that ct-SNE has over t-SNE. Qualitative and quantitative empirical results on synthetic and real data show ct-SNE is scalable, effective, and achieves its goal: it allows complementary structure to be captured in the embedding and provided new insights into real data

    Learning subjectively interesting data representations

    Get PDF
    corecore