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Abstract

Dimensionality reduction and manifold learning methods such as t-Distributed
Stochastic Neighbor Embedding (t-SNE) are routinely used to map high-
dimensional data into a 2-dimensional space to visualize and explore the data.
However, two dimensions are typically insufficient to capture all structure in the
data, the salient structure is often already known, and it is not obvious how to
extract the remaining information in a similarly effective manner. To fill this gap,
we introduce conditional t-SNE (ct-SNE), a generalization of t-SNE that discounts
prior information from the embedding in the form of labels. To achieve this, we
propose a conditioned version of the t-SNE objective, obtaining a single, integrated,
and elegant method. ct-SNE has one extra parameter over t-SNE; we investigate
its effects and show how to efficiently optimize the objective. Factoring out prior
knowledge allows complementary structure to be captured in the embedding, pro-
viding new insights. Qualitative and quantitative empirical results on synthetic and
(large) real data show ct-SNE is effective and achieves its goal.

1 Introduction

Dimensionality reduction (DR) methods can be used to create low-dimensional (typically 2-
dimensional; 2-d) representations that are straightforward to visualize and subsequently explore the
dominant structure of high-dimensional datasets. Non-linear DR methods are particularly powerful
because they can capture complex structure even when it is spread over many dimensions. This
explains the huge popularity of methods such as t-SNE (van der Maaten & Hinton, 2008), LargeVis
(Tang et al., 2016), and UMAP (McInnes & Healy, 2018).

However, DR methods yield a single static embedding and the most prominent structure present
in the data may already be known to the analyst. One may indeed construct higher-dimensional
embeddings, hoping to uncover more structure, but there is no guarantee that any of the constructed
dimensions is fully complementary to the prior knowledge of an analyst. Besides, the salient structure
that is already known may be spread across all attributes, hence we cannot just remove the associated
attributes and generally speaking it is not obvious how to visualize the remaining structure. The
question arises: can we actively filter or discount prior knowledge from the embedding?

To this end, we introduce conditional t-SNE (ct-SNE), a generalization of t-SNE that accounts for
prior information about the data. By discounting the prior information, the embedding may focus on
capturing complementary information. More concretely, it does not aim to construct an embedding
that reflects all the proximities in the original data (the objective of t-SNE), but it should reflect all
pairwise proximities conditioned on whether we expect that pair to be close or not.

ct-SNE enables at least three new ways to obtain insight into data:
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Figure 1: Visualization of 2-d embeddings of synthetic data (see ‘example’ below).

• The prior knowledge may indeed be available beforehand, in which case we can straight away
focus the analysis on an embedding that is more useful.

• Such prior knowledge may be gained during analysis, leading to an iterative data analysis process.
• If we observe some specific structure X in an embedding and then factor out specific information

Y, then if X remains present in the embedding, we learn that X is Y complementary to Y.

Note we use the term prior knowledge, even when this knowledge is not available a priori, but gained
during the analysis. This reflects the knowledge is available prior to the embedding step.

Example. To demonstrate the idea behind ct-SNE more concretely, consider a ten-dimensional
dataset with 1,000 data points. In dimension 1–4 the data points fall into five clusters (following a
multi-variate Gaussian with small variance), similarly for dimensions 5–6 the points fall randomly
into four clusters. Dimensions 7–10 contain Gaussian noise with larger variance. Figure 1a gives the
t-SNE embedding. It shows five large clusters, where some can be somewhat clearly split further
into smaller clusters. The large clusters correspond to those defined in dimension 1–4. Figure 1b
is the ct-SNE embedding where we have input the five colored clusters as prior knowledge. This
figure shows four clusters that are complementary to the five clusters observed in 1a. We see they
are complementary because there is no correlation between the colors and the clusters in Figure 1b.
These four clusters are indeed those defined in dimensions 5–6. Finally, Figure 1c shows that after
combining the labels, ct-SNE yields an embedding capturing only on the remaining noise.

The implementation of ct-SNE and code for the experiments on public data are available at https:
//bitbucket.org/ghentdatascience/ct-sne.

Contributions. This paper makes the following contributions:

• ct-SNE, a new DR method that searches for an embedding such that a distribution defined in terms
of distances in the input space (as in t-SNE) is well-approximated by a distribution defined in terms
of distances in the embedding space after conditioning on the prior knowledge (Sec. 2.2);

• A Barnes-Hut-Tree based optimization method to efficiently find an embedding (Sec. 2.3);
• We illustrate that the concept of conditioning embeddings on prior information can be applied to

other popular non-linear DR methods (mentioned in Sec. 2, with details in Appendix B);
• Extensive qualitative and quantitative experiments on synthetic and real world datasets show

ct-SNE effectively removes the known factors, enables deeper visual analysis of high-dimensional
data, and that ct-SNE scales sufficiently to handle hundreds of thousands of points (Sec. 3).

2 Method

In this section, we first briefly recap the idea behind t-SNE and introduce the basic notation. Then,
we derive ct-SNE and describe a Barnes-Hut based strategy to optimize the ct-SNE objective. Due to
space limitations, we discuss in Appendix B how the idea of factoring out prior information can be
applied to many other existing non-linear DR methods such as LargeVis and UMAP.

2.1 Background: t-SNE

In t-SNE, the input data set X ∈ Rn×d is taken to define a probability distribution for a categorical
random variable e, of which the value domain is indexed by all pairs (i, j) of indices i, j ∈ [1..n]
with i 6= j. This distribution is determined by specifying probabilities 0 ≤ pij ≤ 1 such that
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∑
i 6=j pij = 1, equal to the probability that e = (i, j). For brevity, below we will speak of the

distribution p when we mean the categorical distribution with parameters pij .

More specifically, in t-SNE, the distribution p is defined as follows:

pij ,Pp(e = (i, j)) =
exp

(
−‖xi − xj‖2/2σ2

)∑
k 6=l exp (−‖xk − xl‖2/2σ2)

. (1)

The goal of t-SNE is to find another embedding Y ∈ Rn×d′ , from which another categorical
probability distribution is derived, specified by the values qij defined as follows:

qij ,Pq(e = (i, j)) =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (2)

An embedding Y is deemed better if the distance between these two categorical distributions is
smaller, as quantified by the KL-divergence: KL(p‖q) =

∑
i 6=j pij log

(
pij
qij

)
.

2.2 Conditional t-SNE

Let us now assume that each data point xi has a label li associated, with li ∈ [0..L] for all i ∈ [1..n].
Moreover, let us assume that it is known a priori that same-labeled data points are more likely to be
nearby in X . Our goal is to ensure that the embedding Y does not reflect that information again. This
can be achieved by minimizing the KL-divergence between the distributions p and r (rather than q),
where r is the distribution derived from the embedding Y but conditioned on the prior knowledge.

We formalize this using the following notation. The indicator variable δij = 1 if li = lj and δij = 0
if li 6= lj , and the label matrix ∆ is defined by [∆]ij = δij . The probability that the random variable
e is equal to (i, j), conditioned on the label matrix ∆ (i.e. the prior information) is denoted as:

rij ,Pq(e = (i, j)|∆) =
P (∆|e = (i, j))Pq(e = (i, j))

Pq(∆)
.

In ct-SNE, this is the probability distribution that needs to be similar to p for the embedding to be a
good one. Note that if we ensure that P (∆|e = (i, j)) is larger when δij = 1 than when δij = 0, it
will be less important for the embedding to ensure that qij = Pq(e = (i, j)) is large for same-labeled
data points, even if pij is large. I.e., for same-labeled data points, it is less important to be embedded
nearby even if they are nearby in the input representation. This is precisely the goal of ct-SNE.

To compute Pq(e = (i, j)|∆), we now investigate its different factors. First, Pq(e = (i, j)) = qij is
simply computed as in Eq. (2). Second, we need to determine a suitable form for P (∆|e = (i, j)),
based on the above intuition. To do this, we assume that δij is the sufficient statistic for P (∆|e =
(i, j)), i.e. P (∆|e = (i, j)) = αδijβ1−δij , where α and β can be regarded as the confidence of
points xi and xj being randomly picked to have the same or different labels. Let us further denote
the class size of the l’th class as nl. Then, for this distribution to be normalized, it must hold that:

1 =
∑
∆

P (∆|e = (i, j)),

=α

(∑
l

(n− 2)!

(nl − 2)!
∏
f 6=l nf !

)
+ β

(
n!∏
l nl!

−
∑
l

(n− 2)!

(nl − 2)!
∏
f 6=l nf !

)
,

=
n!∏
l nl!

(
α

∑
l nl(nl − 1)

n(n− 1)
+ β

(
1−

∑
l nl(nl − 1)

n(n− 1)

))
.

This yields a relation between α and β. It also suggests a ballpark figure for α. Indeed, one
would typically set α > β. For α = β (i.e. the lower bound for α), they would both be equal to
α = β =

∏
l nl!

n! , i.e. one divided by the number of possible distinct label assignments (this is of
course entirely logical). Thus, in tuning α, one could take multiples of this minimal value.

We can now also compute the marginal probability Pq(∆) as follows:

Pq(∆) =
∑
i 6=j

P (∆|e = (i, j))Pq(e = (i, j)) =
∑
i 6=j

qijα
δijβ1−δij ,

=α
∑

i 6=j:δij=1

qij + β
∑

i 6=j:δij=0

qij .
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Given all this, one can then compute the required conditional distribution as follows:

rij ,Pq(e = (i, j)|∆) =
P (∆|e = (i, j))Pq(e = (i, j))

Pq(∆)
, (3)

=


αqij

α
∑
i6=j:δij=1 qij+β

∑
i6=j:δij=0 qij

if δij = 1,

βqij
α
∑
i6=j:δij=1 qij+β

∑
i6=j:δij=0 qij

if δij = 0.

It is numerically better to express this in terms of new variables α′ , α n!∏
l nl!

and β′ , β n!∏
l nl!

:

rij =


α′qij

α′ ∑
i6=j:δij=1 qij+β

′ ∑
i6=j:δij=0 qij

if δij = 1,

β′qij
α′ ∑

i6=j:δij=1 qij+β
′ ∑

i6=j:δij=0 qij
if δij = 0,

where the relation between α′ and β′ is:

1 =α′
∑
l nl(nl − 1)

n(n− 1)
+ β′

(
1−

∑
l nl(nl − 1)

n(n− 1)

)
. (4)

This has the advantage of avoiding the large factorials and resulting numerical problems. The lower
bound for α′ to be considered is now 1 (in which case also β′ = 1).

Finally, computing the KL-divergence with p, yields the ct-SNE objective function to be minimized:

KL(p‖r) =
∑
i 6=j

pij log

(
pij
rij

)
,

=KL(p‖q) +
∑
i 6=j

pij log

(
α′
∑
i 6=j:δij=1 qij + β′

∑
i 6=j:δij=0 qij

α′δijβ′1−δij

)
,

=KL(p‖q) + log

α′ ∑
i6=j:δij=1

qij + β′
∑

i 6=j:δij=0

qij


−

∑
i 6=j:δij=1

pij log(α
′)−

∑
i6=j:δij=0

pij log(β
′). (5)

Note that the last two terms are constant w.r.t. qij . Moreover, it is clear that for α′ = β′ = 1, this
reduces to standard t-SNE. For α′ > 1 > β′ (and related as per the Eq. (4)), the minimization of
this KL-divergence will try to minimize qij when δij = 1 more strongly (as it is multiplied with the
larger number α′) than when δij = 0 (when it is multiplied with the smaller number β′).

2.3 Optimization

The objective function (Eq. (5)) is non-convex w.r.t the embedding Y . Even so, we find that
optimizing the objective function using gradient descent with random restarts works well in practice.
The gradient of the objective function w.r.t. the embedding of a point yi reads: 1

∇yiKL(p‖r) = 4 (Fattr + Frep) ,

= 4
∑
j

(
pijqijZ(yi − yj)−

δijα
′ + (1− δij)β′

O
· q2ijZ(yi − yj)

)
.

where Z =
∑
k 6=l(1+‖yk−yl‖2)−1 and O = α′

∑
i 6=j:δkl=1 qkl+β

′∑
i 6=j:δkl=0 qkl. The gradient

can be decomposed in attraction and repelling forces between points in the embedding space. Thus
the underlying problem of ct-SNE, just like many other force-based embedding methods, is related to
the classic n-body problem in physics2, which has also been studied in the recent machine learning
literature (Gray & Moore, 2001; Ram et al., 2009). The general goal of the n-body problem is to find

1A detailed derivation of the gradient computation can be found in Appendix A.
2https://en.wikipedia.org/wiki/N-body_problem#Other_n-body_problems
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a constellation of n objects such that equilibrium is achieved according to a certain measure (e.g.,
forces, energy). In the problem setting of ct-SNE, both the pairwise distances between points and
the label information affect the attraction and repelling forces. Particularly, the label information
strengthens the repelling force (assume α′ > 1 > β′ > 0) between two points if they have the same
label and weakens the repelling force if two points have different labels. This is desirable behavior
because we do not want to reflect the known label information in the resulted embeddings.

Evaluating the gradient has complexityO(n2), which makes the computation (both time and memory
cost) infeasible when n is large (e.g., n > 100k). As an approximation of the gradient computation,
we adapt the tree-based approximation strategy described by van der Maaten (2014). To efficiently
model the proximity in high-dimensional space (Eq. (1)) we use a vantage-point tree-based algorithm
(which exploits the fast diminishing property of the Gaussian distribution). To approximate the
low-dimensional proximity (Eq. (3)) we modify the Barnes-Hut algorithm to incorporate the label
information. The basic idea of the Barnes-Hut algorithm is to organize the points in the embedding
space using a kd-tree (which for 2-d embeddings is equivalent to a quad tree). Each node of the
tree corresponds to a cell (dissection) in the embedding space. If a target point yi is far away
from all the points in a given cell, then the interaction between the target point and the points
within the cell can be summarized by the interaction between yi and the cell’s center of mass ycell
that is computed while constructing the kd-tree. More specifically, the summarization happens
when rcell/‖yi − ycell‖2 < θ, where rcell is the radius of the cell, while θ controls the strength of
summarization, i.e. the approximation strength. The summarized repelling force in t-SNE reads
Frep = −ncellq

2
i,cellZ(yi − ycell), where ncell is the number of data points in that cell.

In the ct-SNE approximation, we had to overcome an additional complication though: we also need
to summarize the label information for the points in a cell when the summarization happens. This
can be done by maintaining a histogram in each cell, and counting the numbers of data points with
different labels that fall into that cell. Then the repelling force of a target point yi can be weighted
proportional to the number of points that have same (different) label(s) within the cell. Namely:

F approx.
rep = −α

′ncell,l=li + β′(ncell − ncell,l=li)

O
q2i,cellZ(yi − ycell),

where ncell,l=li is the number of data points in a cell that has the same label as point yi.

As both tree-based approximation schemes have complexity O (n log n), counting the label will add
an extra multiplicative constant L, equal to the number of label values in the prior information. Thus
the final complexity of approximated ct-SNE is O (L · n log n).

3 Experiments

The experiments investigate 4 questions: Q1 Does ct-SNE work as expected in finding complementary
structure? Q2 How should α (or equivalently, β) be chosen? Q3 Could ct-SNE’s goal be achieved
also by using (a combination of) other methods? Q4 How well does ct-SNE scale? Two case studies
addressing Q1 are presented in Sections 3.1–3.3. Two more case studies addressing Q1 as well as the
experiments addressing Q2–Q4 are summarized in Sec. 3.4, and described in detail in Appendix C.

3.1 Datasets used, and experimental settings

The first dataset used in the main paper is a Synthetic dataset consisting of 1000 ten-dimensional
data points, as explained in Section 1. The second in the main paper is a Facebook dataset consisting
of 128-dimensional embedding of a de-identified random sample of 500k Facebook users in the US.
This embedding is generated based purely on the list of pages and groups that the users follow, as
part of an effort to improve the quality of several recommendation systems at Facebook.

To study Q1, both qualitative and quantitative experiments were performed on the synthetic dataset.
On the Facebook dataset we only conducted a qualitative evaluation (given the lack of ground truth).

Qualitative experiment. We qualitatively evaluate the effectiveness of ct-SNE through visualizations.
More specifically, we compare the t-SNE visualization of a dataset with the ct-SNE visualization
that has taken into account certain prior information that is visually identifiable from the t-SNE
embedding. Thus by inspecting the presence of the prior information in the ct-SNE embedding
and comparing to the t-SNE embedding, we can evaluate whether the prior information is removed.
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Figure 2: The homogeneity of cluster labels in t-SNE and several ct-SNE embeddings of the synthetic
dataset for k (a parameter of the Laplacian score) ranging from 10 to 100, for the three label sets: (a)
f1−4, (b) f5−6, and (c) f1−6. Colored lines give the scores for different embeddings: t-SNE (blue),
ct-SNE with prior f1−4 (orange), ct-SNE with prior f5−6 (green), and ct-SNE with prior f1−6 (red).

Conversely, we test whether information present in the ct-SNE embedding could have been identified
from the t-SNE embedding to verify whether it indeed contains complementary information.

To select the prior information, we first visualize the t-SNE embedding and manually select points
that are clustered in the visualization. Then we perform a feature ranking procedure to identify the
features that separate the selected points from the rest. This is done by fitting a linear classifier
(logistic regression) on the selected cluster against all other data points. By inspecting the weights
of the classifier, we can identify the feature that contributes the most to the classifier. Repeating
this feature ranking procedure for other clusters, we aim to find a feature that correlates with the
majority of the clusters in the t-SNE visualization. This feature is then treated as prior information
and provided as input to ct-SNE. In the reported experiments, the most prominent feature was always
categorical, so all points with the same value were treated as being in a cluster to define the prior. We
apply exact ct-SNE on Synthetic and approximated ct-SNE (θ = 0.5) on the Facebook dataset.

We also evaluated whether ct-SNE can continuously provide new insights, by repeatedly applying the
cluster selection and feature ranking procedure on ct-SNE embeddings.

Quantitative experiment. In this experiment, we quantify the presence of certain prior information
in a ct-SNE embedding that also take the same prior information as input. For example, if ct-
SNE encodes the prior information using labels, the strong presence of certain prior information
is equivalent to the high homogeneity of the encoded labels in the embedding, i.e., points that are
close to each other in the embedding often have the same label. To quantify such homogeneity, we
developed a measure termed normalized Laplacian score defined as follows. Given an embedding
Y and parameter k, we denote Ak as the adjacency matrix of the k-nearest graph computed from
the embedding. Then, the Laplacian matrix of the kNN graph has the form Lk = Ak −Dk where
Dk = diag(sum(Ak, 1)). We further normalize the Laplacian matrix (D−1/2k LkD

−1/2
k ) to obtain a

score that is insensitive to the node degrees. Given a label vector f with L values where each label l
has nl points, and denote the one-hot encoding for each label l as fl, then the normalized Laplacian
score can be computed as: ∑

l∈[0..L]

nl
n
f ′lD

−1/2
k LkD

−1/2
k fl. (6)

This score is essentially the pairwise difference (in terms of labels) between the data points that
are connected according to the kNN graph. If a label is locally consistent (homogeneous) in an
embedding, the feature difference among the kNN graph neighborhood is small, which results in a
small Laplacian score. Conversely, a less homogeneous label over the kNN graph would have a large
Laplacian score. Thus, if ct-SNE removes certain prior information from its embedding, then the
embedding should have a large Laplacian score on the labels that encode the prior information.

3.2 Case study: Synthetic dataset

Qualitative experiment. The t-SNE visualization of the synthetic dataset shows five large clusters
(Fig. 1a). Feature ranking (Sec. 3.1) shows these clusters correspond to the clustering in dimensions
1-4 of the data. Taking the cluster labels in dimensions 1-4 (f1−4) as prior, ct-SNE gives a different
visualization (Fig. 1b). The feature ranking further shows the ct-SNE embedding indeed reveals the
clusters in the dimension 5-6 of the data. We further combine the labels f1−4 and f5−6 by assigning
a new label to each combinations of the label in f1−4 and f5−6, denoted as f1−6. ct-SNE with f1−6
yields an embedding based only on the remaining noise (Fig. 1c).
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Figure 3: Visualization of 2-d embeddings of the Facebook dataset. Left column: t-SNE embedding,
right column: ct-SNE embedding with region as prior. The two rows show identical embeddings but
with different cluster markings (colors). See Section 3.3 for further info.

Quantitative experiment. We computed the normalized Laplacian scores (Eq. (6)) of the t-SNE
and several ct-SNE embeddings. Subfigures in Fig. 2a–c give the Laplacian score for three label
sets: f1−4, f5−6, and f1−6. Fig. 2a shows that labels f1−4 are less homogeneous (higher Laplacian
score) in the ct-SNE embeddings with prior f1−4 and f1−6 than in the t-SNE embedding, indicating
that ct-SNE effectively discounted the prior from the embeddings. Both the t-SNE embedding and
ct-SNE with prior f5−6 clearly pick up the cluster in f1−4, as indicated by the very low Laplacian
score. Similarly, Figures 2b,c show that ct-SNE removes the prior information effectively for labels
f5−6 and f1−6, respectively, given the associated priors.

3.3 Case study: Facebook dataset

Qualitative experiment. Applying t-SNE on the Facebook dataset gives a visualization with many
visually salient clusters (Fig. 3a). Computing the feature ranking for classification of selected clusters
shows that the geography (i.e., the states) contributes to the embedding the most. This is further
confirmed by coloring the data points according to the geographical region in the visualization as
shown in Fig. 3a: most of the clusters are indeed quite homogeneous with respect to geography.

To understand the effect of an embedding like this in a downstream recommendation system, an
analyst would want to know what type of user interests the embedding is capturing. For this, the
regional clusters are not very informative. To alleviate that we can encode the region as prior
for ct-SNE so that other interesting structures can emerge in the visualization. Using the same
coloring scheme, ct-SNE shows a cluster with large mass that consists of users from different states
(Fig. 3b). There are also a few small clusters with mixed color scattered on the periphery of the
visualization. The visualization indicates that geographical information is mostly removed in the
ct-SNE embedding. This is further confirmed by selecting clusters (highlighted in red color) in
ct-SNE embedding (Fig. 3d) and highlighting the same set of points in the t-SNE embedding (Fig. 3c).
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The cluster highlighted in the ct-SNE embedding spreads over the t-SNE embedding, indicating these
users are not geographically similar. Indeed, feature ranking (Sec. 3.1) indicates that the selected
group of users (Fig. 3d) share an interest in horse riding: they tend to follow several pages related
to that topic. Interestingly, we noticed that some of the clusters in the ct-SNE embedding are also
clustered in the t-SNE embedding. These clusters are indeed not homogeneous in terms of the
geographical regions. For example, the cluster highlighted in blue in the ct-SNE embedding (Fig. 3d)
also exists in the t-SNE embedding (Fig. 3c). Using feature ranking as above we found that these
clusters are not homogeneous in terms of geography, but in terms of users’ interest in Indian culture.
While these clusters can thus also be seen in the t-SNE embedding, ct-SNE removes the irrelevant
(region) cluster structure, such that those other clusters become more salient and easy to observe.

3.4 Summary of additional experimental findings

Two other case studies (App. C.2–C.3) on the UCI adult dataset (Dheeru & Karra Taniskidou, 2017)
and a DBLP citation network dataset (Tang et al., 2008) confirm the ability of ct-SNE visualizations
to reveal insightful clusters after conditioning on prior information that dominates the t-SNE visu-
alizations (Q1). In Appendix C.4 we also analyzed the sensitivity of the ct-SNE embedding with
respect to the hyperparameter α′ (or β′) (Q2). By varying the hyperparameter, we found ct-SNE
yields low-dimensional embeddings that better approximate the original data than t-SNE (i.e., smaller
KL-divergence). The analysis also shows that using a small β′ (e.g., β′ = 0.01) is a good rule of
thumb when using ct-SNE for visualization. To answer Q3, we compared ct-SNE to two non-trivial
baselines that remove the known factors from the high-dimensional data using either an adversarial
auto-encoder (AAE (Makhzani et al., 2015)) or canonical correlation analysis (CCA (Hotelling,
1936)) and then apply t-SNE for visualization (App. C.5). We show that these baselines are either
difficult to tune (AAE-based baseline) or have limited applicability (CCA-based baseline), while
ct-SNE has essentially only one parameter to tune, and does not suffer from the limitations of the
CCA baseline. Finally, we conducted a runtime experiment (App. C.6) showing that the approximated
ct-SNE can efficiently embed large, high-dimensional data, without substantial quality loss (Q4).

4 Related Work

Many dimensionality reduction methods have been proposed in the literature. Arguably, n-body
problem based methods such as MDS (Torgerson, 1952), Isomap (Tenenbaum et al., 2000), t-SNE
(van der Maaten & Hinton, 2008), LargeVis (Tang et al., 2016), and UMAP (McInnes & Healy, 2018)
appear to be the most popular ones. These methods typically have three components: (1) a proximity
measure in the input space, (2) a proximity measure in the embedding space, (3) a loss function
comparing the proximity between data points in the embedding space with the proximity in the input
space. ct-SNE belongs to this class of DR methods. It accepts both high-dimensional data and priors
about the data as inputs, and searches for low-dimensional embeddings while discounting structure in
the input data specified as prior knowledge.

As a core component of ct-SNE is the prior information specified by the user, it can be considered an
interactive DR method. Closely related to ct-SNE, there is a group of interactive DR methods that
adjust the algorithms according to a user’s inputs (e.g., Kang et al., 2016; Puolamäki et al., 2018;
Dıaz et al., 2014; Alipanahi & Ghodsi, 2011; Barshan et al., 2011; Paurat & Gärtner, 2013). These
methods contrast with ct-SNE in that the user feedback must be obeyed in the output embedding,
while for ct-SNE the prior knowledge defined by the user guides what is irrelevant to the user.3

5 Conclusion

We introduce conditional t-SNE to efficiently discover new insights from high-dimensional data.
ct-SNE finds the lower dimensional representation of the data in a non-linear fashion while removing
the known factors. Extensive case studies on both synthetic and real-world datasets demonstrate that
ct-SNE can effectively remove known factors from low-dimensional representations, allowing new
structure to emerge and providing new insights to the analyst. A tree-based optimization method
allows ct-SNE to scale to a high dimensional dataset with hundreds of thousands of data points.

3For an extended discussion about the related work, please refer to Appendix D.

8



6 Acknowledgement

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no.
615517, from the FWO (project no. G091017N, G0F9816N), from the European Union’s Horizon
2020 research and innovation programme and the FWO under the Marie Sklodowska-Curie Grant
Agreement no. 665501, and from the EPSRC (SPHERE EP/R005273/1). We thank Laurens van der
Maaten for helpful discussions.

References
Alipanahi, B. and Ghodsi, A. Guided locally linear embedding. PRL, 32(7):1029–1035, 2011.

Barshan, E., Ghodsi, A., Azimifar, Z., and Zolghadri Jahromi, M. Supervised principal component
analysis: Visualization, classification and regression on subspaces and submanifolds. PR, 44(7):
1357–1371, 2011.

Cavallo, M. and Demiralp, Ç. A visual interaction framework for dimensionality reduction based
data exploration. In CHI, pp. 635, 2018.

Dheeru, D. and Karra Taniskidou, E. UCI machine learning repository, 2017.

Dıaz, I., Cuadrado, A. A., Pérez, D., Garcıa, F. J., and Verleysen, M. Interactive dimensionality
reduction for visual analytics. In ESANN, pp. 183–188, 2014.

Edwards, H. and Storkey, A. Censoring representations with an adversary. arXiv:1511.05897, 2015.

Faust, R., Glickenstein, D., and Scheidegger, C. Dimreader: Axis lines that explain non-linear
projections. TVCG, 25(1):481–490, 2019.

Gray, A. G. and Moore, A. W. N-body’problems in statistical learning. In NeurIPS, pp. 521–527,
2001.

Grover, A. and Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of
the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864. ACM, 2016.

Hotelling, H. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R. ipca: An interactive system
for pca-based visual analytics. In CGF, volume 28, pp. 767–774, 2009.

Kang, B., Lijffijt, J., Santos-Rodríguez, R., and De Bie, T. Subjectively interesting component
analysis: data projections that contrast with prior expectations. In KDD, pp. 1615–1624, 2016.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. Learning adversarially fair and transferable
representations. arXiv:1802.06309, 2018.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. Adversarial autoencoders.
arXiv:1511.05644, 2015.

McInnes, L. and Healy, J. Umap: Uniform manifold approximation and projection for dimension
reduction. arXiv:1802.03426, 2018.

Paurat, D. and Gärtner, T. Invis: A tool for interactive visual data analysis. In ECML-PKDD, pp.
672–676, 2013.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 701–710. ACM, 2014.

Pezzotti, N., Lelieveldt, B. P., van der Maaten, L., Höllt, T., Eisemann, E., and Vilanova, A. Ap-
proximated and user steerable tsne for progressive visual analytics. TVCG, 23(7):1739–1752,
2017.

9



Puolamäki, K., Oikarinen, E., Kang, B., Lijffijt, J., and De Bie, T. Interactive visual data exploration
with subjective feedback: An information-theoretic approach. In ICDE, pp. 1208–1211, 2018.

Ram, P., Lee, D., March, W., and Gray, A. G. Linear-time algorithms for pairwise statistical problems.
In NeurIPS, pp. 1527–1535, 2009.

Stahnke, J., Dörk, M., Müller, B., and Thom, A. Probing projections: Interaction techniques for
interpreting arrangements and errors of dimensionality reductions. TVCG, 22(1):629–638, 2016.

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. Arnetminer: extraction and mining of
academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 990–998. ACM, 2008.

Tang, J., Liu, J., Zhang, M., and Mei, Q. Visualizing large-scale and high-dimensional data. In WWW,
pp. 287–297, 2016.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319–2323, 2000.

Torgerson, W. S. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401–419,
1952.

van der Maaten, L. Accelerating t-sne using tree-based algorithms. The Journal of Machine Learning
Research, 15(1):3221–3245, 2014.

van der Maaten, L. and Hinton, G. Visualizing data using t-sne. JMLR, 9(Nov):2579–2605, 2008.

van der Maaten, L. and Hinton, G. Visualizing non-metric similarities in multiple maps. MLJ, 87(1):
33–55, 2012.

10



A Detailed derivation of the gradient of the ct-SNE objective function

Here we derive in detail the gradient of the ct-SNE objective function. Denote the euclidean distance
between points as dij , ‖yi − yj‖2. The derivative of dij with respect to embedding yi reads:

∇yidij =
yi − yj
dij

.

Denote the cost (KL-divergence) by C:

C = KL(p‖r)

= C1 + C2 −
∑

k 6=l:δkl=1

pkl log(α
′)−

∑
i6=j:δ=0

pkl log(β
′),

where

C1 = KL(p‖q),
and

C2 = log

α′ ∑
k 6=l:δkl=1

qkl + β′
∑

k 6=l:δkl=0

qkl

 .

Following the derivation from tSNE paper, the derivative of C1 with respect to yi reads:

∇yiC1 = 4
∑
j

(pij − qij)(1 + ‖yi − yj‖2)−1(yi − yj).

To compute the derivative of C2 with respect to yi, we first have:

∇yiC2 = 2
∑
j

∂C2

∂dij
· yi − yj

dij
.

Denote O = α′
∑
i 6=j:δkl=1 qkl + β′

∑
i 6=j:δkl=0 qklThe derivative of C2 with respect to dij can be

computed as:

∂C2

∂dij
=

1

O

∂

∂dij

α′ ∑
k 6=l:δkl=1

qkl + β′
∑

k 6=l:δkl=0

qkl


=

1

O

α′ ∑
k 6=l:δkl=1

∂qkl
∂dij

+ β′
∑

k 6=l:δkl=0

∂qkl
∂dij


=

1

O

(
α′
(
− 2δijqij(1 + d2ij)

−1dij + 2
∑

k 6=l:δkl=1

qklqij(1 + d2ij)
−1dij

)

+ β′
(
− 2(1− δij)qij(1 + d2ij)

−1dij + 2
∑

k 6=l:δkl=0

qklqij(1 + d2ij)
−1dij

))

=
1

O

(
2α′
(
− δij +

∑
k 6=l:δkl=1

qkl

)
qij(1 + d2ij)

−1dij

+ 2β′
(
− (1− δij) +

∑
k 6=l:δkl=0

qkl

)
qij(1 + d2ij)

−1dij

)

= 2

(
1− δijα

′ + (1− δij)β′

O

)
· qij(1 + d2ij)

−1dij .

Thus we have derivative of C2 with respect to yi

∇yiC2 = 4
∑
j

(
1− δijα

′ + (1− δij)β′

O

)
· qij(1 + d2ij)

−1 · (yi − yj).
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Finally, we have derivative:

∇yiC = ∇yiC1 +∇yiC2

= 4
∑
j

(
pij −

δijα
′ + (1− δij)β′

O
· qij

)
· (1 + ‖yi − yj‖2)−1(yi − yj).

B On generalizing the idea of ct-SNE

The idea of removing known factors from low-dimensional representations can be generalized to
other n-body problem based DR methods. Oftentimes, the gradient of the n-body problem based
methods can be viewed as a summation of attraction forces and repelling forces. Removing a known
factor thus amounts to re-weighting the attracting and repelling forces such that points that have the
same label repel each other and points with different labels attract each other. For example, LargeVis
(Tang et al., 2016) differs from t-SNE by modeling input space proximity using random KNN graph.
Thus we can use the same conditioning idea as in ct-SNE to remove the known factors in LargeVis.
However, for Uniform Manifold Approximation and Projection (UMAP) McInnes & Healy (2018),
conditioning is not readily applicable. In contrast to t-SNE, UMAP uses fuzzy sets to model the
proximity in both input space and embedding space. Then the cross entropy between two fuzzy sets
serves as loss function to compare the modeled proximity between input space and the embedding
space. In the UMAP setting, it is not straightforward to condition the lower dimensional proximity
model on the prior. But we can still directly re-weight the repelling forces: for data points with the
same label, the pushing effect is strengthened by α; for samples with different labels, the pushing
effect is weakened by multiplying with β, with assumption α > 1 > β > 0. However, without
proper conditioning, parameter α and β loose their probabilistic interpretation and along with it their
one-to-one correspondence (as in ct-SNE), thus both parameters α and β need to be set.

C Extended experiments

C.1 Datasets

In this section, we introduce two additional datasets:

UCI Adult dataset. We sampled 1000 data points from the UCI adult dataset (Dheeru &
Karra Taniskidou, 2017) with six attributes: the three numeric attributes age, education level, and
work hours per week, and the three binary attributes ethnicity (white/other), gender, and income
(>50k).

DBLP dataset. We extracted all papers from 20 venues4 in four areas (ML/DM/DB/IR) of computer
science from the DBLP citation network dataset (Tang et al., 2008). We sampled half of the papers and
constructed a network (122, 962 nodes5) based on paper-author, paper-topic, paper-venue relations.
Finally, we embedded the network into a 64 dimensional euclidean space using node2vec (Grover &
Leskovec, 2016) with walk length 80, window size 10. In our experiment, both p and q are set to 1.
Under this setting, node2vec is equivalent to DeepWalk (Perozzi et al., 2014).

C.2 Case study: UCI Adult dataset

Qualitative experiment. Fig. 4a shows t-SNE gives an embedding that consists of clusters grouped
according to combinations of three attributes: gender, ethnicity and income (>50k). By incorporating
the attribute gender as prior, the ct-SNE embedding (Fig. 4b) contains clusters with a mixture of
male and female points, indicating the gender information is removed. Instead, by incorporating
the attribute ethnicity the ct-SNE embedding (Fig. 4c) contains clusters with a mixture of ethnici-
ties. Finally, incorporating the combination of attributes gender and ethnicity as prior, the ct-SNE
embedding contains data points grouped according to income (Fig. 4d).

4These venues are: NIPS, ICLR, ICML, AAAI, IJCAI, KDD, ECML-PKDD, ICDM, SDM, WSDM, PAKDD,
VLDB, SIGMOD, ICDT, ICDE, PODS, SIGIR, WWW, CIKM, ECIR.

5The network consists of 43, 346 paper nodes, 63, 446 author nodes, 16, 150 topic nodes and 20 venue
nodes.

12



(a) (b) (c) (d)

Figure 4: Visualization of 2-d embeddings of the UCI Adult dataset. Points are visually encoded
according to their attributes. gender: female (orange color), male (blue color); ethnicity: white
(circle), other (triangle); income (>50k): true (unfilled marker), false (filled marker). (a) t-SNE
embedding shows clusters that are grouped according to the combinations of all three attributes. (b)
With attribute gender as prior, ct-SNE embedding shows four clusters each has a mixture of points
with different genders, indicating the gender information is removed. (c) With attribute ethnicity as
prior, ct-SNE embedding also shows four clusters but each has a mixture of points with different
ethnicities. (d) Incorporating the combination of attributes gender and ethnicity as prior, the resulted
ct-SNE embedding shows two clusters that are correlated with the remaining attribute: income (>50k).

20 40 60 80 100
K

0.00

0.25

0.50

0.75

1.00

La
pl

ac
ia

n 
sc

or
e

(a)
t-SNE
ct-SNE gender
ct-SNE ethnicity
ct-SNE ethnicity & gender

20 40 60 80 100
K

0.00

0.25

0.50

0.75

1.00 (b)

20 40 60 80 100
K

0.00

0.25

0.50

0.75

1.00 (c)

Figure 5: The homogeneity of cluster labels in t-SNE and several ct-SNE embeddings of the UCI
Adult dataset for k (a parameter of the Laplacian score) ranging from 10 to 100 with step size
10. Colored lines correspond to scores for different embeddings: t-SNE (blue), ct-SNE with prior
gender (orange), ct-SNE with prior ethnicity (green), and ct-SNE with prior ethnicity & gender (red).
Subfigures give homogeneity scores for various labels: (a) gender (b) ethnicity (c) gender & ethnicity.
(a) The attribute gender has lower homogeneity (high Laplacian score) in the ct-SNE embedding with
gender or ethnicity & gender as prior than in t-SNE embedding and ct-SNE embedding with ethnicity
as prior. (b) The attribute ethnicity has lower homogeneity in the ct-SNE embedding with ethnicity
or ethnicity & gender as priors than in the t-SNE embedding and ct-SNE with gender as prior)
embeddings. (c) The attribute ethnicity & gender has high homogeneity in the t-SNE embedding
only.

Quantitative experiment. We analyzed the homogeneities (Laplacian scores) of attributes gender,
ethnicity and income (>50k) measured on both t-SNE and ct-SNE embeddings. Fig. 5a shows
ct-SNE with prior gender removes the gender factor from the resulted embedding, while ct-SNE with
prior ethnicity makes the gender factor in the resulted embedding clearer. Similarly, Figure. 5b,c
show ct-SNE removes the prior information effectively for labels ethnicity and ethnicity&gender
respectively, given the associated priors.

C.3 Case study: DBLP dataset

Qualitative experiment. Applying t-SNE on the DBLP dataset gives a visualization with many
visual clusters (Fig. 6a). Feature ranking for classification of the selected clusters shows the topics
that contribute the most to the visualization. Moreover, we used mpld36 (an interactive visualization
library) to inspect (i.e., hovering over data points and check tooltips) the metadata of t-SNE plot.
Upon inspection, the visualization appears to be globally divided according the four areas. This is
further confirmed by coloring the data points according to the four areas: most of the clusters are
indeed quite homogeneous with respect areas

Knowing from the t-SNE visualization the papers are indeed divided according to areas, the area
structure in the visualization is not very informative anymore. Thus we can encode the area as prior
for ct-SNE so that other interesting structures can emerge. Using the same color scheme, ct-SNE

6https://mpld3.github.io
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Figure 6: Visualization of 2-d embeddings of the DBLP dataset. Left column: t-SNE embedding,
right column: ct-SNE embedding with area as prior. The rows contains different cluster markings.
(a) t-SNE embedding shows a clustering according to four areas in computer science (red - machine
learning, green - data mining, blue - data base, orange - information retrieval). (b) ct-SNE embedding
shows a different clustering, with area information removed. (d) Newly emerged visual clusters
(magenta - topic ‘privacy’, dark green - topic ‘data stream’, orange - topic ‘computer vision’) in
ct-SNE embedding spread over in the t-SNE embedding (c), corresponding to users interested in horse
riding. (d) Clusters (grass green - topic ‘clustering’, purple - topic ‘active leraning’) stood-out in the
ct-SNE embedding also exists in the t-SNE embedding (c). These are a few out of many clusters that
we found to exhibit a much more informative, interest-centric structure than the t-SNE projection.

shows a visualization that has many clusters with mixed colors (Fig. 6b). This indicates the area
information is mostly removed in the ct-SNE embedding. This is further confirmed by selecting
clusters in ct-SNE embedding (Fig. 6d) and highlight the same set of points in the t-SNE embedding
(Fig. 6c). The clusters highlighted in the ct-SNE visualization often consists of clusters (topics) from
different areas (i.e., t-SNE clusters with different colors) that spread over the t-SNE visualization.
Indeed, feature ranking indicates that papers in the selected ct-SNE cluster have similar topics in e.g.,
‘privacy’, ‘data steam’, ‘computer vision’. Finally, we noticed that some clusters in ct-SNE (Fig. 6d)
embedding also exist in the t-SNE embedding (Fig. 6c). Using feature ranking as above we found
these clusters are not homogeneous in terms of area of study, but in terms of topics (e.g., ‘clustering’,
‘active learning’), indicating a tightly connected research community behind the topic. Thus, by
removing the irrelevant area structure using ct-SNE, clusters that persists in both visualizations
become more salient and easier to observe.

C.4 Parameters sensitivity

To understand the effect of the parameter α′ (or equivalently, β′) on ct-SNE embeddings (Q3),
we study ct-SNE embeddings on the synthetic dataset with the prior fixed to be the cluster labels
in dimensions 1–4. First, we try to understand the relation between the ct-SNE objective and
the parameter α′ (or equivalently, β′). We evaluated the ct-SNE objective (Eq. 5) on the ct-SNE
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Figure 7: Visualizing the effect of different β′s (α′s) have on the ct-SNE embeddings. The embed-
dings are computed on the synthetic dataset with the prior information to be the cluster labels in
dimensions 1-4. (a) The values of ct-SNE objective (green), t-SNE objective (blue), and ct-SNE prior
term (orange) against different β′s. ct-SNE achieves smaller KL-divergence than t-SNE. (b) ct-SNE
embedding with β′ = 0.2 has smallest KL-divergences but is not the best visualization. (c) ct-SNE
embedding with β′ = 0.01 gives a better visualization.

embeddings obtained by ranging β′ (and α′ correspondingly) from 0.01 (strong prior removal effect)
to 1.0 (no prior remove effect, equivalent to t-SNE) with step size 0.1. We also evaluated the t-SNE
objective (first term in Eq. 5) and the second term in Eq. 5 (the only term that depends on the prior,
subsequently referred to as the prior term) for the ct-SNE embeddings associated with various β′s.

Fig. 7a visualizes the values of the ct-SNE objective, t-SNE objective, and ct-SNE prior term against
different β′s. Observe that by using a prior, the ct-SNE embedding achieves a better approximation
to the higher dimensional data. That is, ct-SNE achieves a lower KL-divergence (lowest at β′ = 0.3)
than t-SNE does (β′ = 1). This is because the prior term in the ct-SNE objective can be negative.
Although the t-SNE objective increases when β′ decreases, it is compensated by the negative value
contributed by the prior term. Indeed, by factoring out certain prior from the lower dimensional
embedding, the necessity of the embedding to represent the prior is alleviated, enabling ct-SNE to
have more freedom to approximate the high-dimensional proximities.

Interestingly, we observe that the embedding with smallest KL-divergence does not necessarily give
better visualization (e.g., clear separation of the clusters). We visualize the ct-SNE embedding that
achieves smallest KL-divergence (β′ = 0.3, Fig. 7b) and compare it with the ct-SNE embedding
that has strongest prior removal effect but larger KL-divergence (β′ = 0.01, Fig. 7c). Although the
embedding with stronger prior removal effect has larger objective value, it gives a clearer clustering
than in the embedding with smaller KL-divergence (β′ = 0.3). As a result, the clusters in dimensions
5–6 are easier to identify. Hence, we propose as rule of thumb when using ct-SNE for visualization
to use small β′ (e.g., β′ = 0.01).

C.5 Baseline comparisons

In this section, we compare ct-SNE with two non-trivial baselines. The basic idea is to first remove
the known factor from the dataset, and perform t-SNE to produce lower dimensional representations.
Here we use a non-linear and a linear method to remove the known factors: adversarial auto-encoder
(AAE) and canonical correlation analysis (CCA). The implementation of the baselines and code
for comparison experiments are also available at https://bitbucket.org/ghentdatascience/
ct-sne.

Baseline: AAE and t-SNE. Adversarial auto-encoder (AAE) Makhzani et al. (2015) can be used to
learn a latent representation that prevents the discriminator from predicting certain attributes (Madras
et al., 2018). In order to remove prior information from the low-dimensional representation of a
dataset using AAE, we can configure the discriminator to predict the prior attributes, and using the
auto-encoder to adversarially remove the prior from the latent representation of the dataset.

We adopt the AAE configuration described by Edwards & Storkey (2015). AAE is in general difficult
to tune: it has 8 hyperparameters (4 network structure parameters, 2 weights in the objective, and 2
learning rates) and a few design choices about the network architecture (e.g., the number of layers
in each subnetwork and activation functions). We tried different parameter settings and managed
to remove the clustering label information in dimensions 1–4 (Fig. 8a) and 5–6 (Fig. 8b) from the
data. In Figure 8a, the AAE approach manages to remove the prior information, but it fails to pick
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(a)(a)(a)(a) (b)(b)(b)(b) (c)(c)(c)(c)

Figure 8: Visualization of 2-d embeddings obtained by applying the AAE based approach on the
synthetic dataset. The data points are colored according to the cluster label in dimensions 1-4. The
data points are also plotted using different markers based on the cluster labels in dimensions 5-6.
(a) The AAE based approach successfully removed the clustering information in dimensions 1-4,
but failed to reveal the clusters in dimensions 5-6 (b) AAE successfully removed the clustering
information in dimensions 5-6 and also reveals the clusters in dimensions 1-4 (c) AAE failed to
remove the clustering information in dimensions 1-6.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 9: Visualization of 2-d embeddings obtained by applying CCA-based approaches and ct-SNE
on a synthetic 5 dimensional dataset. (a) Projecting data onto the null space of CCA top components
and then apply t-SNE gives an embedding that picks up the 10 large clusters (plotted with different
markers) but failed to pick up the structure of two small clusters (colored differently) within each
large cluster. (b) Projecting the data onto CCA components with least correlation and then apply
t-SNE also fails to pick up the two-cluster structure within the large clusters. (c) ct-SNE removes
the 10 cluster information in the embedding and shows clearly the two cluster structure within each
larger cluster.

up the complementary structure in the data (clusters in dimensions 5–6). It also fails to remove the
prior information (cluster labels in dimension 1–6) in Figure 8c. Comparing to this baseline, ct-SNE
practically has only one parameter (β′) to tune, which often can be set to a small positive number
(e.g., 0.01).

Baseline: CCA and t-SNE. Canonical correlation analysis (Hotelling, 1936) aims to find a linear
transformation for two random variables such that the correlation between transformed variables
is maximized. To remove the prior information from data using CCA, one approach is to first find
the (at most) d− 2 subspace (d is the dimensionality of the data) in which the transformed data and
the prior information (one hot encoding of the labels) have the largest correlation. Then the data is
whitened by projecting it onto the null space (at least 2-d) of the subspace found in the first step. By
doing so, the whitened data is less correlated to the known factor.

Another variant of the CCA-based approach is directly projecting the data onto the 2-dimensional
subspace found by CCA in which the transformed data and labels has smallest correlation. To be
consistent, we also apply t-SNE to the transformed data.
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Table 1: Average runtime (in seconds) of exact and approximated ct-SNE in computing one gradient
update step. To measure the runtime of ct-SNE on a dataset with similar size as the Facebook dataset,
we scaled the Synthetic dataset up to 500, 000 data points with 128 dimensions.

name size dim. exact apprx. (θ = 0.5)
Synthetic 1,000 10 0.06 0.01
UCI Adult 1,000 6 0.07 0.01

DBLP 43,346 64 503.97 0.45
Synthetic 500,000 128 100,278 9.1

Our experimental results show the CCA-based approaches can easily remove label information that
is orthogonal to other attributes in the data. For example, in the UCI Adult dataset, the gender
information is orthogonal to the ethnicity and income, which can be easily removed using the CCA
approach. However, the CCA-based approach performs poorly when the known factor is correlated
with other attributes. Moreover, the CCA-based approaches also have the limitation that the number
of the projection vectors is upper-bounded by the dimensionality of the data. If the number of unique
values of an attribute exceeds the dimensionality of the data, the CCA projection would not be able to
remove the label info entirely from the data. To illustrate our points, we synthesized a 5-dimensional
dataset with 1,000 data points. The data points are grouped into 10 clusters each corresponding
to a multi-variate Gaussian with random location and small variance. Additionally, each cluster is
separated into two small clusters (one contains 20% points of the cluster, and another includes the
rest) along one randomly chosen axis. Figure 9a,b shows both the CCA approaches pick up only the
10 large clusters (differentiated using marker shape) but failed to pick up the structure of two small
clusters (plotted in different colors) within each large cluster. On the other hand, ct-SNE removes the
10 cluster information in the embedding and shows each large cluster can be further separated in to
two smaller clusters.

Thus, the CCA-based baselines perform poorly when the known factor is correlated with other
attributes. Moreover, the number of the projection vectors in CCA-based baselines is upper-bounded
by the dimensionality of the data. Meanwhile, ct-SNE does not have these limitations.

C.6 Runtime

We measure the runtime of the exact ct-SNE and the approximated version (θ = 0.5) on a PC
with a quad-core 2.3GHz Inter Core i5 and a 2133MHz LPDDR3 RAM. By default, the maximum
number of iterations of ct-SNE gradient update is 1,000. For larger datasets and prior attributes
that have many values, more iterations are required to achieve a convergence. For example, the
synthetic dataset (1,000 samples and 10 dimensions) requires fewer than 1,000 iterations to converge
while the Facebook dataset (500,000 examples and 128 dimensions) requires 3,000 iterations to
converge. Table. 1 shows that approximated ct-SNE is efficient and applicable to large data with high
dimensionality, while exact ct-SNE is not.

D Extended related work

Many dimensionality reduction methods have been proposed in the literature. Arguably, n-body
problem based methods7 such as MDS (Torgerson, 1952), Isomap (Tenenbaum et al., 2000), t-SNE
(van der Maaten & Hinton, 2008), LargeVis (Tang et al., 2016), and UMAP (McInnes & Healy, 2018)
appear to be the most popular ones. These methods typically have three components: (1) a proximity
measure in the input space, (2) a proximity measure in the embedding space, (3) a loss function
comparing the proximity between data points in the embedding space with the proximity in the input
space. When minimizing the loss over the embedding space, the data points (i.e., the n bodies) have
pairwise interactions and the embedding of all points needs to be updated simultaneously. Since the
optimization problem is not convex, local minima are typically accepted as output. ct-SNE belongs
to this class of DR methods. It accepts both high-dimensional data and priors about the data as inputs,
and searches for low-dimensional embeddings while discounting structure in the input data specified
as prior knowledge. Closely related, in the multi-maps t-SNE work (van der Maaten & Hinton, 2012)
factors that are mutually exclusive are captured by multiple t-SNE embeddings at once. Comparing to
multi-map t-SNE, ct-SNE allows users to disentangle information in a targeted (subjective) manner,
by specifying which information they would like to have factored out.

7In Section 2.3 we provide more information on the n-body problem
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As a core component of ct-SNE is the prior information specified by the user, it can be considered
an interactive DR method. Existing papers on interactive DR can be categorized into two groups.
The first group aim to improve the explainability and computation efficiency of existing DR methods
via novel visualizations and interactions. iPCA (Jeong et al., 2009) allows users to easily explore
the PCA components and thus achieve better understanding of the linear projections of the data onto
different PCA components. Cavallo & Demiralp (2018) helps the user to understand low-dimensional
representations by applying perturbations to probe the connection between input attributed space
and embedding space. Similarly, Faust et al. (2019) introduce a method based on perturbations
to visualize the effect of a specific input attribute on the embedding, while Stahnke et al. (2016)
introduce ‘probing’ as a means to understand the meaning of point set selections within the embedding.
Steerable t-SNE (Pezzotti et al., 2017) aims to make t-SNE more scalable by quickly providing a
sketch of an embedding which is then refined only upon the user’s interests.

The second group of interactive DR methods adjust the algorithms according to a users’ inputs. SICA
(Kang et al., 2016) and SIDE (Puolamäki et al., 2018) explicitly model the user’s belief state and find
linear projections that contrast to it. These two methods are linear DR methods thus cannot present
non-linear structures in the low-dimensional representations. Work by Dıaz et al. (2014) allows
users to define their own metric in the input space, after which the low-dimensional representation
reflects the adjusted importance of the attributes. This method puts the burden on the user for direct
manipulation of the input space metric. Many variants of existing DR methods have been introduced
where user feedback entails editing of the embedding, and such manually embedded points are used
as constraints to guide the dimensionality reduction (e.g., Alipanahi & Ghodsi, 2011; Barshan et al.,
2011; Paurat & Gärtner, 2013). These methods contrast with ct-SNE in that the user feedback must
be obeyed in the output embedding, while for ct-SNE the prior knowledge defined by the user guides
what is irrelevant to the user.
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