1,674 research outputs found

    System upgrade: realising the vision for UK education

    Get PDF
    A report summarising the findings of the TEL programme in the wider context of technology-enhanced learning and offering recommendations for future strategy in the area was launched on 13th June at the House of Lords to a group of policymakers, technologists and practitioners chaired by Lord Knight. The report – a major outcome of the programme – is written by TEL director Professor Richard Noss and a team of experts in various fields of technology-enhanced learning. The report features the programme’s 12 recommendations for using technology-enhanced learning to upgrade UK education

    RAMPVIS: Answering the challenges of building visualisation capabilities for large-scale emergency responses

    Get PDF
    The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support emergency responses under difficult operational conditions. In this paper, we report the experience of a group of VIS volunteers who have been working in a large research and development consortium and providing VIS support to various observational, analytical, model-developmental, and disseminative tasks. In particular, we describe our approaches to the challenges that we have encountered in requirements analysis, data acquisition, visual design, software design, system development, team organisation, and resource planning. By reflecting on our experience, we propose a set of recommendations as the first step towards a methodology for developing and providing rapid VIS capacities to support emergency responses

    Architectural visualisation toolkit for 3D Studio Max users

    Get PDF
    Architectural Visualisation has become a vital part of the design process for architects and engineers. The process of modelling and rendering an architectural visualisation can be complex and time consuming with only a few tools available to assist novice modellers. This paper looks at available solutions for visualisation specialists including AutoCAD, 3D Studio Max and Google SketchUp as well as available solutions which attempt to automate the process including Batzal Roof Designer. This thesis details a new program which has been developed to automate the modelling and rendering of the architectural visualisation process. The tool created for this thesis is written in MAXScript and runs along side 3D Studio Max. N.B.: Audio files were attached to this thesis at the time of its submission. Please refer to the author for further details

    Implementation of computer visualisation in UK planning

    Get PDF
    PhD ThesisWithin the processes of public consultation and development management, planners are required to consider spatial information, appreciate spatial transformations and future scenarios. In the past, conventional media such as maps, plans, illustrations, sections, and physical models have been used. Those traditional visualisations are at a high degree of abstraction, sometimes difficult to understand for lay people and inflexible in terms of the range of scenarios which can be considered. Yet due to technical advances and falling costs, the potential for computer based visualisation has much improved and has been increasingly adopted within the planning process. Despite the growth in this field, insufficient consideration has been given to the possible weakness of computerised visualisations. Reflecting this lack of research, this study critically evaluates the use and potential of computerised visualisation within this process. The research is divided into two components: case study analysis and reflections of the author following his involvement within the design and use of visualisations in a series of planning applications; and in-depth interviews with experienced practitioners in the field. Based on a critical review of existing literature, this research explores in particular the issues of credibility, realism and costs of production. The research findings illustrate the importance of the credibility of visualisations, a topic given insufficient consideration within the academic literature. Whereas the realism of visualisations has been the focus of much previous research, the results of the case studies and interviews with practitioners undertaken in this research suggest a ‘photo’ realistic level of details may not be required as long as the observer considers the visualisations to be a credible reflection of the underlying reality. Although visualisations will always be a simplification of reality and their level of realism is subjective, there is still potential for developing guidelines or protocols for image production based on commonly agreed standards. In the absence of such guidelines there is a danger that scepticism in the credibility of computer visualisations will prevent the approach being used to its full potential. These findings suggest there needs to be a balance between scientific protocols and artistic licence in the production of computer visualisation. In order to be sufficiently credible for use in decision making within the planning processes, the production of computer visualisation needs to follow a clear methodology and scientific protocols set out in good practice guidance published by professional bodies and governmental organisations.Newcastle upon Tyne for awarding me an International Scholarship and Alumni Bursar

    Indicator modelling and interactive visualisation for urban sustainability assessment

    Get PDF
    This chapter presents a novel framework for the integration of the principles of sustainable development within the urban design processes. The framework recognises that decision making for sustainable urban planning is a challenging process: requiring an understanding of the complex interactions amongst environmental, economic, and social issues. Methodologies are required that would support non-experts to become more involved in the urban design process. Towards this, the authors develop an indicator modelling and visualisation tool which comprises 1) indicator selection, 2) modelling techniques that allow spatio-temporal prediction of indicators, 3) interactive 3D virtual world where visualisation techniques are used to present indicator information overlaying the virtual world to facilitate effective communication with a wide range of stakeholders. The sustainability modelling and 3D visualisations are shown to have the potential to enhance community engagement within the planning process, thus enhancing public acceptance and participation within the urban or rural development project

    RAMPVIS: Answering the Challenges of Building Visualisation Capabilities for Large-scale Emergency Responses

    Get PDF
    The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support emergency responses under difficult operational conditions. In this paper, we report the experience of a group of VIS volunteers who have been working in a large research and development consortium and providing VIS support to various observational, analytical, model-developmental, and disseminative tasks. In particular, we describe our approaches to the challenges that we have encountered in requirements analysis, data acquisition, visual design, software design, system development, team organisation, and resource planning. By reflecting on our experience, we propose a set of recommendations as the first step towards a methodology for developing and providing rapid VIS capacities to support emergency responses

    NEUVis: Comparing Affective and Effective Visualisation

    Get PDF
    Data visualisations are useful for providing insight from complex scientific data. However, even with visualisation, scientific research is difficult for non-scientists to comprehend. When developed by designers in collaboration with scientists, data visualisation can be used to articulate scientific data in a way that non-experts can understand. Creating human-centred visualisations is a unique challenge, and there are no frameworks to support their design. In response, this thesis presents a practice-led study investigating design methods that can be used to develop Non-Expert User Visualisations (NEUVis), data visualisations for a general public, and the response that people have to different kinds of NEUVis. For this research, two groups of ten users participated in quantitative studies, informed by Yvonna Lincoln and Egon Guba’s method of Naturalistic Inquiry, which asked non-scientists to express their cognitive and emotional response to NEUVis using different media. The three different types of visualisations were infographics, 3D animations and an interactive installation. The installation used in the study, entitled 18S rDNA, was developed and evaluated as part of this research using John Zimmerman’s Research Through Design methodology. 18S rDNA embodies the knowledge and design methods that were developed for this research, and provided an opportunity for explication of the entire NEUVis design process. The research findings indicate that developing visualisations for the non-expert audience requires a new process, different to the way scientists visualise data. The result of this research describes how creative practitioners collaborate with primary researchers and presents a new human-centred design thinking model for NEUVis. This model includes two design tools. The first tool helps designers merge user needs with data they wish to visualise. The second tool helps designers take that merged information and begin an iterative, user-centred design process
    • …
    corecore