113 research outputs found

    Control and guidance systems for the navigation of a biomimetic autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past three decades. Application areas for AUVs are numerous and varied, from deep sea exploration, to pipeline surveillance to mine clearing. The main concept behind this work was the design and the implementation of a control and guidance system for the navigation of a biomimetic AUV. In particular, the AUV analysed in this project tries to imitate the appearance and approximate the swimming method of an Atlantic Salmon and, for this reason, has been called RoboSalmo

    Nonlinear suboptimal and adaptive pectoral fin control of autonomous underwater vehicle

    Full text link
    Autonomous underwater vehicles (AUVs) are used for numerous applications in the deep sea, such as hydrographic survey, sea bed mining and oceanographic mapping, etc. Presently, significant amount of effort, is being made in developing biorobotic AUVs (BAUVs) with biologically inspired control surfaces. However, the dynamics of AUVs and BAUVs are highly nonlinear and the hydrodynamic coefficients are not precisely known. As such the development of nonlinear and adaptive control systems is of considerable importance; We consider the suboptimal dive plane control of AUVs using the state-dependent Riccati equation (SDRE) technique. This method provides effective means of designing nonlinear control systems for minimum as well as nonminimum phase AUV models. Moreover, hard control constraints are included in the design process; We also attempt to design adaptive control systems for BAUVs using biologically-inspired pectoral-like fins. The fins are assumed to be oscillating harmonically with a combined linear (sway) and angular (yaw) motion. The bias (mean) angle of the angular motion of the fin is used as a control input. Using discrete-time state variable representation of the BAUV, adaptive sampled-data control systems for the trajectory control are derived using state feedback as well as output feedback. We develop direct as well as indirect adaptive control systems for BAUVs. The advantage of the indirect adaptive law lies in its applicability to minimum as well as nonminimum phase systems. Simulation results are presented to evaluate the performance of each control system

    A comparison study of biologically inspired propulsion systems for an autonomous underwater vehicle

    Get PDF
    The field of Autonomous Underwater Vehicles (AUVs) has increased dramatically in size and scope over the past two decades. Application areas for AUVs are numerous and varied; from deep sea exploration, to pipeline surveillance to mine clearing. However, one limiting factor with the current technology is the duration of missions that can be undertaken and one contributing factor to this is the efficiency of the propulsion system, which is usually based on marine propellers. As fish are highly efficient swimmers greater propulsive efficiency may be possible by mimicking their fish tail propulsion system. The main concept behind this work was therefore to investigate whether a biomimetic fish-like propulsion system is a viable propulsion system for an underwater vehicle and to determine experimentally the efficiency benefits of using such a system. There have been numerous studies into biomimetic fish like propulsion systems and robotic fish in the past with many claims being made as to the benefits of a fish like propulsion system over conventional marine propulsion systems. These claims include increased efficiency and greater manoeuvrability. However, there is little published experimental data to characterise the propulsive efficiency of a fish like propulsive system. Also, very few direct experimental comparisons have been made between biomimetic and conventional propulsion systems. This work attempts to address these issues by directly comparing experimentally a biomimetic underwater propulsion system to a conventional propulsion system to allow for a better understanding of the potential benefits of the biomimetic system. This work is split into three parts. Firstly, the design and development of a novel prototype vehicle called the RoboSalmon is covered. This vehicle has a biomimetic tendon drive propulsion system which utilizes one servo motor for actuation and has a suite of onboard sensors and a data logger. The second part of this work focuses on the development of a mathematical model of the RoboSalmon vehicle to allow for a better understanding of the dynamics of the system. Simulation results from this model are compared to the experimental results and show good correlation. The final part of the work presents the experimental results obtained comparing the RoboSalmon prototype with the biomimetic tail system to the propeller and rudder system. These experiments include a study into the straight swimming performance, recoil motion, start up transients and power consumption. For forward swimming the maximum surge velocity of the RoboSalmon was 0.18ms-1 and at this velocity the biomimetic system was found to be more efficient than the propeller system. When manoeuvring the biomimetic system was found to have a significantly reduced turning radius. The thesis concludes with a discussion of the main findings from each aspect of the work, covering the benefits obtained from using the tendon drive system in terms of efficiencies and manoeuvring performance. The limitations of the system are also discussed and suggestions for further work are included

    Design and implementation of biomimetic robotic fish Hongan Wang.

    Get PDF
    The study of biomimetic robotic fish has received a growing amount of research interest in the past several years. This thesis describes the development and testing of a novel mechanical design of a biomimetic robotic fish. The robotic fish has a structure which uses oscillating caudal fins and a pair of pectoral fins to generate fish-like swimming motion. This unique design enables the robotic fish to swim in two swimming modes, namely Body/Caudal Fin (BCF) and Median/Paired Fin (MPF). In order to combine BCF mode with MPF mode, the robotic fish utilizes a flexible posterior body, an oscillating foil actuated by three servomotors, and one pair of pectoral fins individually driven by four servomotors. Effective servo motions and swimming gaits are then proposed to control its swimming behaviour. Based on these results, fish-like swimming can be achieved including forward, backward, and turning motions. An experimental setup for the robotic fish was implemented using machine vision position and velocity measurement. The experimental results show that the robotic fish performed well in terms of manoeuvrability and cruise speed. Based on the experimental data, a low order dynamic model is proposed and identified. Together, these results provide an experimental framework for development of new modelling and control techniques for biomimetic robotic fish

    生物模倣ソフト魚ロボットの研究開発

    Get PDF
    In nature, the environment varies from day to day. Through natural selection and competition law of survival of the fittest, the winning creatures survive and their species are able to retain and persist in nature. Based on this fact, creatures existent in nature have their unique features and advantages adapt to the surrounding environment. In recent years, many researches focused on the features of the creatures in nature have been done actively to clarify their morphology and functions and apply the morphology and functions to various fields. Among these researches, the development of the biomimetic robots based on mimicking the creature’s structures and functions has become an active field in robotics recently. In the research, the development of biomimetic robotic fish is focused. So far, there are many researches on biomimetic robotic fish, but improvement on motion performances and efficiency is still an important issue for robot development. Specially, on the biomimetic soft robotic fish utilizing the flexibility of fishes, the developments have been done by the trial and error approach. That is, the design and control method of soft robotic fish has not been established currently. Therefore, it motives us to investigate the design and control of soft robotic fish by numerical simulation that takes into account the interaction between flexible structure and surrounding fluid to develop the biomimetic soft robotic fish with high performance. In order to develop the biomimetic soft robotic fish with high performance, the basic design method and corresponding numerical simulation system are firstly proposed and constructed in this dissertation. Then, based on finite element method (FEM), modelling of soft robotic fish by mimicking the soft structure and driving mechanism of fishes is carried out. The propulsion motion and propulsive force of the soft robotic fish are investigated through two kinds of numerical analyses. One is the modal and transient analysis considering the surrounding fluid as acoustic fluid. The propulsion mode and amplitude of the propulsion motion of soft robotic fish corresponding directly to the propulsion mechanism and motion performance of the robotic fish can be investigated. The other is the fluid-structure interaction (FSI) analysis. The interaction between soft robot structure and surrounding fluid including the dissipation due to fluid viscosity and influence of wake performance around the soft robotic fish are taken into account. From FSI analysis, the hydrodynamic performances of the soft robotic fish can be obtained for investigating its propulsion motion. It is possible to further improve the performance of the soft robotic fish through its design and control based on FSI analysis. Besides, based on coupling analysis by using acoustic fluid, the turning motion control of the soft robotic fish is investigated by its propulsion modes in the fluid. In order to investigate the feasibility of modelling method and numerical simulation analysis on design and control of the biomimetic soft robotic fish, the performance evaluation is carried out by comparison between the simulation and experiment on an actual prototype. Finally, the optimization and improvement are performed for developing the biomimetic soft robotic fish with higher performance based on verified coupling analysis considering the fluid as acoustic fluid, and corresponding performance evaluation on new robot prototype is presented. The performance improvement of the soft robotic fish is confirmed through the new robot prototype. The dissertation consists of six chapters and the main contents are shown as follows. Chapter 1 is an introduction. The background and relative previous work about biomimetic soft robotic fish are briefly reviewed. It summarizes the current research status and problems of biomimetic soft robotic fish, and describes the purposes of this research. Chapter 2 presents the design method, procedures and numerical simulation system in the present research for developing the biomimetic soft robotic fish with high performance. Different from previous development method, our purpose is how to design and control the soft robotic fish by utilizing interaction between the flexible structure and surrounding fluid effectively based on numerical simulations. Therefore, it is necessary to model a fish-like soft robot structure including soft actuators and an enclosed fluid. Besides, by the numerical analysis considering the interaction between flexible structure and fluid, the fish-like propulsion motion should be realized and established, and then the robot structure and control inputs are needed to be optimized for performance improvement. In order to meet these requirements of designing and developing the optimal soft robotic fish, the design method based on modelling, simulation analysis and improvement is presented and the numerical simulation system for soft robotic fish is built. In the simulation system, modelling of soft robotic fish, modal and transient analysis considering the enclosed fluid as acoustic fluid are firstly described based on FEM to realize the fish-like propulsion motion with large amplitude for the soft robotic fish. Then, the FSI analysis is performed to describe and establish the hydrodynamic performances of the soft robotic fish. Based on this numerical simulation system, it is possible to develop the biomimetic soft robotic fish with high performance effectively by optimization of design and control of the soft robotic fish. Chapter 3 describes the modelling and numerical analysis of biomimetic soft robotic fish by using the method presented in Chapter 2. The soft robotic fish uses the piezoelectric fiber composite (PFC) as soft actuator. Firstly, the relationships between the input voltage and generated stress of the PFC are derived. The generated stress can be applied on soft structure to investigate the motion performance of the soft robotic fish. To support the driving model of the PFC, the corresponding experiments on simple beam model are carried out. By comparing the simulation results with experimental results, the effectiveness of the driving model is verified. Then, the modal analysis in which the fluid is considered as acoustic fluid is performed. The structural mode frequencies and mode shapes of the soft robotic fish in the fluid are calculated. By comparing these modes’ motion with those of the real fishes, the fish-like propulsion mode is identified to realize the corresponding propulsion motion of the soft robotic fish. Furthermore, based on the verified driving model of soft actuator, the amplitude of the main propulsion motion of soft robotic fish is calculated. Through FSI analysis, the relationships of driving frequencies of input signal with propulsive force and displacement of propulsion motion, and vortex distribution in the wake around the soft robotic fish are investigated for the case of fixing robot head. Besides, the motion control of soft robot is investigated to realize turning motion in the fluid. Through controlling the input voltage amplitude on soft actuators of the robot, turning right and turning left motion are identified in the swimming when the input voltage amplitudes on two actuators are in asymmetric distribution. Chapter 4 is experiment evaluation. In order to validate the results of numerical simulation analysis described in Chapter 3, the mode shapes, amplitude of propulsion motion, propulsive force and vortex distribution around soft robotic fish for the case of fixing robot head, and turning motion are measured by using actual robot prototype. The present simulation results are congruent with experiments. By the results, the effectiveness of the modelling method and numerical analysis used in the research is verified and they are useful to predict the propulsion characteristics of the soft robotic fish in the fluid for performance improvement. Chapter 5 develops a new soft robotic fish with high performance based on above modelling method and numerical analysis by optimization. Firstly, the structural parameters of the robot are allowed to vary within a range and the amplitude of the propulsion motion for the soft robot is calculated for different parameters by the numerical analysis. Then the structural parameters of the robot capable of propulsion motion with largeramplitude are chosen for improvement. Based on this result, new soft robot is designed and evaluated by experiments. From the experimental results of the new soft robot, it is confirmed that the higher swimming speed, better fish-like swimming performance and larger turning velocity are realized. It can be said that the new soft robotic fish has been developed successfully for improvement. Chapter 6 summarizes the conclusions and future works of this research.電気通信大学201

    Theoretical and Experimental Investigation on the Multiple Shape Memory Ionic Polymer-Metal Composite Actuator

    Full text link
    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. The ionic polymer-metal composite (IPMC) is an emerging smart material in actuation and sensing applications, such as biomimetic robotics, advanced medical devices and human affinity applications. Here, we report a Multiple Shape Memory Ionic Polymer-Metal Composite (MSM-IPMC) actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. Theoretical and experimental investigation on the MSM-IPMC actuator were performed. To date, the effect of the surface electrode properties change on the actuating of IPMC have not been well studied. To address this problem, we theoretically predict and experimentally investigate the dynamic electro-mechanical response of the IPMC thin-strip actuator. A model of the IPMC actuator is proposed based on the Poisson-Nernst-Planck equations for ion transport and charge dynamics in the polymer membrane, while a physical model for the change of surface resistance of the electrodes of the IPMC due to deformation is also incorporated. By incorporating these two models, a complete, dynamic, physics-based model for IPMC actuators is presented. To verify the model, IPMC samples were prepared and experiments were conducted. The results show that the theoretical model can accurately predict the actuating performance of IPMC actuators over a range of dynamic conditions. Additionally, the charge dynamics inside the polymer during the oscillation of the IPMC are presented. It is also shown that the charge at the boundary mainly affects the induced stress of the IPMC. This study is beneficial for the comprehensive understanding of the surface electrode effect on the performance of IPMC actuators. In our study, we introduce a soft MSM-IPMC actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of our knowledge, this MSM-IPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. The shape memory properties of MSM-IPMC were theoretically and experimentally studied. We presented the multiple shape memory properties of Nafion cylinder. A physics based model of the IPMC was proposed. The free energy density theory was utilized to analyze the shape properties of the IPMC. To verify the model, IPMC samples with the Nafion as the base membrane was prepared and experiments were conducted. Simulation of the model was performed and the results were compared with the experimental data. It was successfully demonstrated that the theoretical model can well explain the shape memory properties of the IPMC. The results showed that the reheat glass transition temperature of the IPMC is lower than the programming temperature. It was also found that the back-relaxation of the IPMC decreases as the programming temperature increases. This study may be useful for the better understanding of the shape memory effect of IPMC. Furthermore, we theoretically modeled and experimentally investigated the multiple shape memory effect of MSM-IPMC. We proposed a new physical principle to explain the shape memory behavior. A theoretical model of the multiple shape memory effect of MSM-IPMC was developed. Based on our previous study on the electro-mechanical actuation effect of IPMC, we proposed a comprehensive physics-based model of MSM-IPMC which couples the actuation effect and the multiple shape memory effect. It is the first model that includes these two actuation effects and multiple shape memory effect. Simulation of the model was performed using finite element method. To verify the model, an MSM-IPMC sample was prepared. Experimental tests of MSM-IPMC were conducted. By comparing the simulation results and the experimental results, both results have a good agreement. The multiple shape memory effect and reversibility of three different polymers, namely the Nafion, Aquivion and GEFC with three different ions, which are the hydrogen, lithium and sodium, were also quantitatively tested respectively. Based on the results, it is shown that all the polymers have good multiple shape memory effect and reversibility. The ions have an influence on the broad glass transition range of the polymers. The current study is beneficial for the better understanding of the underlying physics of MSM-IPMC. A biomimetic underwater robot, that was actuated by the MSM-IPMC, was developed. The design of the robot was inspired by the pectoral fish swimming modes, such as stingrays, knifefish and cuttefish. The robot was actuated by two soft fins which were consisted of multiple IPMC samples. Through actuating the IPMCs separately, traveling wave was generated on the soft fin. Experiments were performed for the test of the robot. The deformation and the blocking force of the IPMCs on the fin were measured. A force measurement system in a flow channel was implemented. The thrust force of the robot under different frequencies and traveling wave numbers were recorded. Multiple shape memory effect was performed on the robot. The robot was capable of changing its swimming modes from Gymnotiform to Mobuliform, which has high deformability, maneuverability and agility

    Energy Based Control System Designs for Underactuated Robot Fish Propulsion

    Get PDF
    In nature through millions of years of evolution fish and cetaceans have developed fast efficient and highly manoeuvrable methods of marine propulsion. A recent explosion in demand for sub sea robotics, for conducting tasks such as sub sea exploration and survey has left developers desiring to capture some of the novel mechanisms evolved by fish and cetaceans to increase the efficiency of speed and manoeuvrability of sub sea robots. Research has revealed that interactions with vortices and other unsteady fluid effects play a significant role in the efficiency of fish and cetaceans. However attempts to duplicate this with robotic fish have been limited by the difficulty of predicting or sensing such uncertain fluid effects. This study aims to develop a gait generation method for a robotic fish with a degree of passivity which could allow the body to dynamically interact with and potentially synchronise with vortices within the flow without the need to actually sense them. In this study this is achieved through the development of a novel energy based gait generation tactic, where the gait of the robotic fish is determined through regulation of the state energy rather than absolute state position. Rather than treating fluid interactions as undesirable disturbances and `fighting' them to maintain a rigid geometric defined gait, energy based control allows the disturbances to the system generated by vortices in the surrounding flow to contribute to the energy of the system and hence the dynamic motion. Three different energy controllers are presented within this thesis, a deadbeat energy controller equivalent to an analytically optimised model predictive controller, a HH_\infty disturbance rejecting controller with a novel gradient decent optimisation and finally a error feedback controller with a novel alternative error metric. The controllers were tested on a robotic fish simulation platform developed within this project. The simulation platform consisted of the solution of a series of ordinary differential equations for solid body dynamics coupled with a finite element incompressible fluid dynamic simulation of the surrounding flow. results demonstrated the effectiveness of the energy based control approach and illustrate the importance of choice of controller in performance

    Open loop performance of a biomimetic flapping foil autonomous underwater vehicle

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 63-65).Flapping foil propulsion is emerging as an alternative to conventional propulsion for underwater vehicles. MIT's Biomimetic Flapping Foil Autonomous Underwater Vehicle is a prototype vehicle that uses four three-dimensional flapping foil actuators as its means of propulsion. The vehicle providing an opportunity for investigating the efficiency and maneuverability capabilities of a flapping foil system. This thesis presents and analyzes open-loop performance test data for the Biomimetic Flapping Foil Autonomous Underwater Vehicle. The vehicle is capable of actuating in four different modes of motion, surge, heave, sway, and yaw. These four modes are explored through a range of flapping parameters. For each mode, the parameters were varied to obtain an approximate maximum velocity for the vehicle. Maximum velocity in surge was measured as 1.3827 mis, in sway as 0.4810 m/s, and in heave as 0.3831 m/s. In yaw, the maximum angular velocity was measured as 80.2 degrees per second.(cont.) The performance of the vehicle as reported in this thesis compare well to the previously recorded performance measurements and to theoretical estimates based on the capabilities of the actuators. However, measurements of performance would benefit greatly from better control during testing and from a larger testing space. Developing a more effective means of sway actuation would also benefit the vehicle's performance.by Malima Isabelle Wolf.S.M

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties
    corecore