
This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognize that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author’s prior consent.

Energy Based Control System Designs for

Underactuated Robot Fish Propulsion

Daniel Thomas Roper

School of Marine Science and Engineering

University of Plymouth

A thesis submitted to the University of Plymouth in partial
fulfilment of the requirements for the degree of:

Doctor of Philosophy

April 2013

Abstract

Energy Based Control System Designs for Underactuated

Robot Fish Propulsion

Daniel Thomas Roper

In nature through millions of years of evolution fish and cetaceans have developed fast
efficient and highly manoeuvrable methods of marine propulsion.

A recent explosion in demand for sub sea robotics, for conducting tasks such as sub
sea exploration and survey has left developers desiring to capture some of the novel
mechanisms evolved by fish and cetaceans to increase the efficiency of speed and
manoeuvrability of sub sea robots.

Research has revealed that interactions with vortices and other unsteady fluid effects
play a significant role in the efficiency of fish and cetaceans. However attempts to
duplicate this with robotic fish have been limited by the difficulty of predicting or
sensing such uncertain fluid effects. This study aims to develop a gait generation
method for a robotic fish with a degree of passivity which could allow the body to
dynamically interact with and potentially synchronise with vortices within the flow
without the need to actually sense them.

In this study this is achieved through the development of a novel energy based gait
generation tactic, where the gait of the robotic fish is determined through regulation
of the state energy rather than absolute state position. Rather than treating fluid
interactions as undesirable disturbances and ‘fighting’ them to maintain a rigid
geometric defined gait, energy based control allows the disturbances to the system
generated by vortices in the surrounding flow to contribute to the energy of the system
and hence the dynamic motion.

Three different energy controllers are presented within this thesis, a deadbeat energy
controller equivalent to an analytically optimised model predictive controller, a H∞

disturbance rejecting controller with a novel gradient decent optimisation and finally
a error feedback controller with a novel alternative error metric. The controllers were

v

tested on a robotic fish simulation platform developed within this project.

The simulation platform consisted of the solution of a series of ordinary differential
equations for solid body dynamics coupled with a finite element incompressible fluid
dynamic simulation of the surrounding flow. results demonstrated the effectiveness of
the energy based control approach and illustrate the importance of choice of controller
in performance.

vi

Contents

Abstract v

Acknowledgements xvii

Author’s declaration xix

Nomenclature xxi

1 Introduction 1

1.1 Motivations . 1

1.2 Objectives . 3

1.3 Contributions . 4

1.4 List of publications . 4

1.5 Outline of thesis . 5

2 Swimming in Nature 9

2.1 Introduction . 9

2.2 Summary of biological swimming modes 10

2.3 Lift and Drag . 13

2.4 Periodic Motion . 14

2.5 Manoeuvrability . 14

2.6 Vortecies in Swiming . 15

2.7 Concluding Remarks . 17

3 Literature Review 19

3.1 Introduction . 19

vii

3.2 Traditional Unmanned Underwater Vehicles 20

3.3 Biomimetic Swimming Machines . 23

3.4 Discussion . 49

3.5 Concluding remarks . 55

4 Modelling of a robotic fish 57

4.1 Introduction . 57

4.2 Modelling a robotic fish as a free floating kinematic chain 59

4.3 Overview of Simulation Study . 65

4.4 Concluding Remarks . 74

5 Energy based gait generation for an underactuated robotic fish 77

5.1 Introduction . 77

5.2 State space orbit as a gait . 80

5.3 Concluding Remarks . 89

6 Deadbeat state energy controller 91

6.1 Introduction . 91

6.2 Deadbeat control . 93

6.3 Deadbeat control of state energy . 94

6.4 Results . 97

6.5 Concluding Remarks . 104

7 Design of a reduced fragility H∞ observer feedback controller for the
control of state energy 109

7.1 Introduction . 109

7.2 H∞ robust energy control for a robotic fish 111

7.3 Parametric Sensitivity of H∞ Norm . 116

7.4 Gradient decent to minimize parametric sensitivity 121

viii

7.5 Results . 121

7.6 Concluding Remarks . 128

8 An alternative error energy control 131

8.1 Introduction . 131

8.2 Alternative Error Metrics for Feedback Control 132

8.3 Alternative error robust feedback control 138

8.4 Results . 140

8.5 Conclusions . 144

9 Analysis of results 147

9.1 Introduction . 147

9.2 Limitations of simulation study . 148

9.3 Comparison of controller performance 149

9.4 Concluding Remarks . 157

10 Conclusions and further work 161

10.1 Summary of thesis and contributions 161

10.2 Concluding remarks . 163

10.3 Recommendations for future work . 163

A H∞ controller Parameters 165

B Simmulation Study 169

B.1 OpenFoam Case files . 169

B.2 Octave ODE solving script . 183

B.3 Additional OpenFoam Source code . 191

Glossary 205

ix

List of references. 205

Bound copies of published papers. 217

x

List of Figures

2.1 The Classification of PMF swimming by fin and movement type
(Sfakiotakis et al. 1999) Copyright c©1979 Elsevier (Permission to
reproduce this image has been obtained through RightsLink R©) 12

2.2 Black Ghost Knife Fish (Aquarium 2011), Copyright c©2011 National
Aquarium (Permission to reproduce this image has been granted by
National Aquarium) . 13

2.3 Digaram showing centre of area (COA) relative to centre of mass

(COM) ; (a) Fins retracted, (b) Fins deployed 15

3.1 MIT Robo Tuna (Barrett 1994) Copyright c©1994 MIT (Permission to
reproduce this image has been granted by MIT) 24

3.2 Draper Laboratories VCUUV (Anderson and Kerrebrock 2000)
Copyright c©2002 Oxford University Press (Permission to reproduce
this image has been obtained through RightsLink R©) 26

3.3 Robitic fish developed by Japanese National Maritime Research
Institute, (NMRI) (Hirata 2000) Copyright c©NMRI 29

3.4 Photograph of Essex university G9 (Liu 2005) Copyright c©2005 Liu
(Permission to reproduce this image has been granted by Liu 31

3.5 Beihang University SPC-III (Wang et al. 2010) Copyright c©2010
Elsevier (Permission to reproduce this image has been obtained
through RightsLink R©) . 32

3.6 MIT Compliant Swimming Device (Alvardo 2007) Copyright c©2007
MIT (Permission to reproduce this image has been granted by MIT) . . 33

3.7 A photograph of Black Bass III (Kato 2000) Copyright c©2000
IEEE (Permission to reproduce this image has been obtained through
RightsLink R©) . 36

xi

3.8 A photograph of AQUA swimming (Georgiades et al. 2004) Copyright
c©2000 IEEE (Permission to reproduce this image has been obtained

through RightsLink R©) . 37

3.9 A CAD drawing of Robo Turtle adapted from (Licht et al. 2004)
(Georgiades et al. 2004) Copyright c©2000 IEEE (Permission to
reproduce this image has been obtained through RightsLink R©) 38

3.10 Top: Festo Aqua Ray, Bottom: Festo: Aqua Penguin; Copyright
c©Festo AG & Co. KG, photographer Walter Fogel. (Permission to

reproduce this image has been granted by Festo) 40

3.11 Swiss Federal Laboratories for materials research DEA fish like airship
(Jordi et al. 2010) Copyright c©2010 IOPscience 46

3.12 A graph showing the relationship between maximum tail beat
frequency and resultant speed for BCF swimmers reported in this chapter 51

4.1 Free floating kinematic chain . 59

4.2 Anchored kinematic chain . 59

4.3 A summary of torques applied to a given body within a kinematic chain 60

4.4 3D geometry used for simulations . 66

4.5 Sectional division of fish geometry . 67

4.6 Localized grid tension and compression of rigid body movement 69

4.7 Disconnected body deformation . 70

4.8 Distributed mesh deformation . 71

4.9 Segment map of geometry . 71

4.10 CFD domain . 72

4.11 Meshed CFD domain . 72

4.12 Vortices shed from caudal fin during motion 73

4.13 Surface mesh remains comparatively uniform throughout body motion . 73

4.14 Flow diagram of solid body and CFD simulation 74

5.1 Inverted pendulum . 79

xii

5.2 PenduBot . 80

5.3 (a) Impulse orbit; (b) Bang bang orbit 81

5.4 Mass spring damper system . 82

5.5 State space orbit . 83

5.6 (a) Simple harmonic orbit on hypersphere; (b) Multiple harmonic orbit
on hypersphere . 85

5.7 Optimal kinematic from Barrett (1996) (a) plot of lateral displacment
of points against time, (b) plot of x and y position of points at sample
times during the motion . 88

5.8 Least square best fit q . 89

5.9 Least square best fit kinematic (a) plot of lateral translation against
time, (b) plot of x and y position of points at sample times during the
motion . 90

6.1 Plot of system state energy against time 99

6.2 Plot of body bearing against time . 100

6.3 Plot of controller input against time 101

6.4 Plot of controller work against time 102

6.5 Plot of body horizontal displacement against time (a) initial motion, (b)
secondary motion . 102

6.6 Plot of system kinematic (a) initial motion, (b) secondary motion 103

6.7 Plot of forward velocity against time 104

7.1 Open loop block diagram of state energy transfer function 112

7.2 Closed loop noise rejection system block diagram 114

7.3 Closed loop noise rejection system with additional input block diagram 114

7.4 Closed loop error feedback control of energy 115

7.5 Complex region, which if all Eigenvalues fall within, system must have
argωmax|Ĝ(ω j)|= 0 . 119

xiii

7.6 Gradient decent increasing stability margin 122

7.7 Plot of state energy against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller. 124

7.8 Plot of controller input signal against time (a) Original H∞ state and
error feedback controller, (b) Gradient optimised H∞ controller 125

7.9 Plot of controller input power against time (a) Original H∞ state and
error feedback controller, (b) Gradient optimised H∞ controller 125

7.10 Plot of body bearing against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller 126

7.11 Plot of forward velocity against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller 127

7.12 Plot of lateral translation against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller 127

7.13 Resultant body kinematic (a) Original H∞ state and error feedback
controller, (b) Gradient optimised H∞ controller 128

8.1 Linear state space objective problem 134

8.2 Quadratic state space objective problem 135

8.3 Quadratic state space objective problem with no controllable intersect . 136

8.4 ẽ(1, |z|,θ) . 137

8.5 Plot of system energy against time . 141

8.6 Plot of controller input against time 142

8.7 Plot of controller work against time 142

8.8 Plot of body bearing against time (corrected for global yaw). 143

8.9 Plot of forward velocity against time 143

8.10 (a) Plot of body lateral translation against time, (b) Plot of system
kinematic . 144

9.1 Plot comparing energy against time for candidate controllers over 3
seconds . 150

xiv

9.2 Plot comparing energy against time for candidate controllers from rest . 151

9.3 Plot comparing work against time for candidate controllers 152

9.4 Plot comparing work against time for candidate controllers (without
deadbeat) . 152

9.5 Plot comparing forward section bearing against time for candidate
controllers . 154

9.6 Plot comparing forward velocity against time for candidate controllers . 155

9.7 Plot comparing velocity corrected for heading against time for
candidate controllers . 156

9.8 A comparison of resultant vortices (a) Deadbeat controller, (b) H∞

(original), (c) H∞ (optimised), (d) alternative error 157

9.9 A graph showing the relationship between maximum tail beat
frequency and resultant speed for BCF swimmers reported in this thesis 158

xv

xvi

Acknowledgements

I am deeply indebted to my supervisory team, Dr Sanjay Sharma, Prof Robert Sutton
and Dr Philip Culverhouse without the support and advice of whom I would never have
completed this project. I particularly wish to acknowledge the amazing patience of
Dr Sharma and Prof Sutton for what must been an aeon they have spent on reading
then giving me feedback and guidance on the all too slowly improving iterations I have
produced of this work and all my other publications to date.

I would also like to thank my wonderful girlfriend Xiaoqing for her patience, support
and pack lunches. She has truly mastered making the most of what is left of a candle
burnt at both ends.

I would like to express my gratitude to my family who have been an endless font of
support over the years, specifically I would like to thank my mother who’s stubborn
determination has always been an inspiration when my moral was low.

I would like to thank all the teachers I have had over the years who believed in me,
often far more than I believed in myself.

xvii

xviii

Authors declaration

At no time during the registration for the degree of Doctor of Philosophy has the author
been registered for any other University award.

Relevant scientific seminars and conferences were regularly attended at which work
was often presented. Several papers have been published in refereed journals.

Signed:

Date:

Word count for the main body of this thesis: 30211

xix

xx

Nomenclature

Throughout this thesis the following convention has been followed for all algebraic
symbols,

a scalar valued identity
a vector or time series valued identity
A matrix valued identity or system identity

Unless otherwise all symbols and abbreviations found throughout this thesis will follow
the bellow convention.

I identity matrix
R f linear reaction force
τ pure torque
mi mass of body i

cd steady state coefficient of drag
θi bearing of body i

q vector of body bearings
q̇ vector of body angular velocities
q̈ vector of body angular accelerations
J inertia of a body
J matrix of inertia
e measured error
ê control vector error
ẽ best case control vector error
u controlable system input
w uncertain system input
t time
E energy
cm length centre meters
ms−1 velocity in meters per second
ms−2 acceleration in meters per second per second
Ls−1 velocity in body lengths per second

xxi

rad s−1 angular velocity radians per second
Hz frequency in Hertz
W energy in Watts
sec time in seconds
MPa pressure Mega Pascals
RMSE root mean square error
UUV unmanned underwater vehicle
ROV remote operated vehicle
AUV autonomous underwater vehicle
BCF body and caudal fin
PMF paired and median fin
CFD computational fluid dynamics
LTI linear time invariant
DC direct current
SMA shape memory alloy
CNT carbon nano tube
IPMC ionic polymer metal composites
DEA dielectric elastomer actuator
PID proportional integral derivative
BCCVE best case control vector error

xxii

Chapter 1

Introduction

This chapter aims to introduce and justify this study.

1.1 Motivations

In recent years an increase in oceanographic engineering projects such as sub sea

cables, pipelines and deep sea oil and gas drilling, combined with an increased interest

in environmental awareness, has led to a demand for new tools for performing sub

ocean tasks. Whilst manned submersibles have been in existence for some time,

the consideration of human life support drives up complexity and cost. As well as

placing limitations on maximum mission time. Furthermore certain sub sea tasks

involve a high risk factor and it is desirable to remove the presence of humans. The

solution has been the development of unmanned underwater vehicles (UUVs) and

more recently a subclass of UUVs called autonomous underwater vehicles (AUVs)

the definition of which being any self contained UUV that can operate without

connection to an external power source or real time operational commands. The

advantage of AUVs over more restricted tethered UUVs often referred to as remote

operated vehicles (ROVs) is increased range, and reduced operating costs. AUV

support vessels can operate in multiple sites as there is no need for real-time contact

with the devices for control. In the offshore industry AUVs are used for tasks such as

ocean floor topographical surveying, pipe or cable inspection and chemical pollution

1

1.1. MOTIVATIONS

sampling (Danson 2003). As well as private sector interests, in the public sector

AUVs are used for military surveillance/reconnaissance, mine disposal, harbour

patrolling, oceanographic seismology and ocean temperature monitoring (Corfield and

Hillenbrand 2003). With such a wide variety of applications it is little surprise that

AUVs come in a wide variety of shapes and sizes.

The design of AUVs has a direct effect on factors such as speed, manoeuvrability,

range, reliability and general robustness. All factors which directly affect operational

costs and thus commercial viability. In order to improve all of these factors developers

are looking towards the growing subject of biomimetics. Biomimetics, also sometimes

called biomimicry or bionics, broadly refers to the deliberate imitation of nature in

man-made systems (Benyus 1997) , (Siochi et al. 2002).

The abundance of life in the Earth’s oceans provides no shortage of suggestions for

locomotion and manoeuvring tactics for a sub sea environment. Fish and cetaceans

after millions of years of evolution have developed impressive speed and agility in sub

sea locomotion. Tuna being an excellent example, able to outperform any man-made

vehicle relative to its size in speed and turning ability (Triantafyllou and Triantafyllou

1995). This makes fish a natural choice for bioinspiration in the design of AUVs of the

future.

Over the past few decades a significant number of prototype devices with biomimetic

marine propulsion systems have been developed with various motives. These

prototypes are loosely referred to in the literature as ’robotic fish’. Within this study

robotic fish is used as a generic term applied to UUVs with designs incorporating

sufficient bioinspiration from fish to be deemed ’fishlike’.

Research into the biomechanics of fish swimming has suggested that in nature fish

can harvest energy from the turbulence in the surrounding fluid to reduce the effort

of swimming (Beal 2003). Biomimicry of such an effect could dramatically increase

2

1.2. OBJECTIVES

range and reduce operational costs of AUVs.

In order to achieve turbulent energy capture a gait generation tactic is needed that

can take energy contribution from the disturbances supplied by the surrounding fluid.

However the current traditional geometric positional control process effectively fights

to resist the effects of external disturbances, meaning that external disturbances result

in an increase in energy cost. By controlling the motion of a robotic fish through

energy rather than through absolute positional commands, energy gained through fluid

interactions will be allowed to contribute to the motion, thus reducing total energy cost.

The overall aim of this study is to develop biomimetic marine propulsion capable

of mimicking the way fish and cetaceans in nature harness unsteady fluid effects to

increase propulsion efficiency in terms of velocity and energetic cost of transport.

1.2 Objectives

This study has four key objectives in order to reach the above stated aim;

1. Review the existing state of the art of biomimetic propulsion systems, identifying

key trends and omissions in the present art. This review should identify key

characteristics of a robotic fish including morphology, actuation mechanisms and

specific sources of bioinspiration.

2. Develop a model of an underactuated robotic fish of sufficient realism to be

considered an effective controller test bed. The model should be as generalizable

as reasonably possible so that it can be easily adapted to different designs.

3. Develop an energy based gait generation approach which can produce an

effective swimming gait for an underactuated robotic fish

4. Develop and assess strategies for the control of energy. The output of the

assessment should recommend a choice of energy controller for the application

3

1.3. CONTRIBUTIONS

of gait generation for an underactuated robotic fish.

1.3 Contributions

This study is considered to have made the following contributions to knowledge;

1. Proof of concept simulation study demonstrating that the control of state energy

can result in effective swimming gait for an underactuated robotic fish.

2. Derivation of a differentiable explicit function for an upper bound of the H∞ norm

of a realisable linear time invariant system. The derivative of which being usable

to asses parametric sensitivity of system norms and hence apply gradient based

optimisation.

3. Definition of an alternative error metric for use with nonlinear control objectives

that allows linear error feedback controllers to be applied to nonlinear control

objective.

4. Derivation of an explicit function of state to determine the local value of the

aforementioned alternative error metric for a state energy objective.

1.4 List of publications

Published Journal Articles :

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; Oscillation and direction

control strategies for a robotic fish Underwater Technology Journal vol. 31, no

2, pp. 67-76, 2013.

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; Energy-shaping gait

generation for a class of underactuated robotic fish. Marine Technology Society

Journal. vol. 46, no 3, pp. 34-43, 2012.

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; A review of developments

4

1.5. OUTLINE OF THESIS

towards biologically inspired propulsion systems for autonomous underwater

vehicles. IMechE part M: Journal of Engineering for the Maritime Environment.

vol. 225, no 2, pp. 77-96, 2011.

Published Conference Papers :

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; Stratergies for control on a

simplified model of a robotic fish Proc IFAC Workshop - Navigation, Guidance

and Control of Underwater Vehicles (NGCUV 2012) Porto, Apr 10-12, 3302

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; Energy based gait control of

an underactuated robotic fish The 14th International Conference on Climbing and

Walking Robots and the Support Technologies for Mobile Machines (CLAWAR

2011) Paris, Sep 6-8, 2011, pp. 135-141

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; A harmonic energy based gait

production strategy for an underactuated robotic fish UK Marine Technology

Postgraduate Conference (UK MTPC 2011) Southampton, Jun 9-10

Submitted for Publication :

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; A novel error metric

for feedback energy control of a robotic fish International Journal of Control

Submitted Dec 2012

Roper, D. Sharma, S. Sutton, R. & Culverhouse, P; H∞ parametric sensitivity of

LTI systems norms for gradient optimisation IEEE Transactions on Automatic

Control Submitted Apr 2013

1.5 Outline of thesis

The remainder of this thesis is divided into nine further chapters.

Chapter 2 contains an introduction to the mechanisms and theory of swimming of

5

1.5. OUTLINE OF THESIS

fish and cetaceans in nature. Identifying and discussing key mechanisms employed

by biological swimmers that are desirable to be emulated in biomimetic swimmers.

Chapter 3 presents a detailed review of the current state of the art in the field of

biomimetic marine locomotion. Within trends in biomimetic propulsion systems are

assessed and conclusions presented on the likely direction of future developments.

Chapter 4 begins with a generalised model for a simplified planar robotic fish. This

generalised model is then used to provide a specific model for the geometry used

throughout this thesis. Simulation methods used throughout this study to integrate fluid

solid interaction are also described in detail.

Chapter 5 discusses the use of energy based control to regulate higher dimensional

motions on an underactuated robotic fish. It is also demonstrated that an arbitrary

realisable swimming gait can be described as a constant energy orbit.

Chapter 6 describes a deadbeat energy controller for the robotic fish. Results are

presented which demonstrate that the energy control based gait generation approach

can result in an effective swimming gait. However results presented also suggest that

further optimisation of the energy controller could result in further improvement to the

approach.

Chapter 7 presents an improved alternative controller for state energy based on robust

H∞ disturbance rejection and error feedback. The chapter goes on to describe novel

parametric norm sensitivity approach. An explanation is given as to how this norm

sensitivity approach was used further to optimise the robustness and fragility of the

disturbance rejection.

Chapter 8 defines an alternative error metric specifically for use with error feedback

control with nonlinear control objectives. The chapter also details an explicit function

of state to quantify this alternative metric for the control of state energy.

6

1.5. OUTLINE OF THESIS

Chapter 9 evaluates and compares results presented in chapters 6, 7 and 8. Comparing

the suggested controllers fitness for the purpose of energy based gait generation for a

robotic fish.

Chapter 10 finally presents concluding remarks and suggests areas for further study

based on the findings presented within this thesis.

7

1.5. OUTLINE OF THESIS

8

Chapter 2

Swimming in Nature

This chapter will introduce the mechanisms and theory of swimming of fish and

cetaceans in nature.

2.1 Introduction

The aim of this study stated in chapter 1 is to develop biomimetic marine propulsion

capable of mimicking the way fish and cetaceans in nature harness unsteady fluid

effects to increase propulsion efficiency in terms of velocity and energetic cost of

transport. The goal of this chapter is to establish a base understanding of the swimming

mechanisms utilised in nature in order to select potential candidate mechanisms for

biomimicry.

Fluid dynamic forces are generally either a result of viscosity effects or pressure; the

comparative dominance of each in a given flow being determined by the Reynolds

number (Re). Fluid effects with low Reynolds numbers i.e. Re < 1 are dominated by

viscous forces whereas fluid effects with higher Reynolds numbers i.e. Re� 1 are

dominated by pressure forces. In fluid dynamics this distinction is usually made by

referring to low Reynolds number flows Re < 1 as belonging to the Stokesian realm

and high Reynolds number flows Re� 1 as belonging to the Eularian realm referring

to the dominant term in the Navier Stokes descriptive equations.

Although there are examples of biological swimmers that operate within the the

9

2.2. SUMMARY OF BIOLOGICAL SWIMMING MODES

Stokesian realm, such swimmers are generally on a microscopic scale such as bacteria

or sperm (Childress 1981). Therefore this study will focus on biological swimmers in

the Eularian realm as the scale of most mechanical AUVs in current operation ensures

that they operate well within the Eularian realm when operating in water. However

Stokesian realm swimming mechanisms may well be of interest in developing devices

for applications where high viscosity fluids such as residual fuel oils are involved.

There exists a significant body of literature relating to the bio-mechanics and

hydrodynamics of fish and cetacean locomotion in the Eularian realm, based on

observation of kinematics and surrounding flow through methods such as milk/ink

plume tracing (Rosen 1959) and in the last few decades digital particle image

velocimetry (DPIV) (Anderson 1996),(Wolfgang et al. 1999).

The remainder of this chapter is divided into six further sections. Section 2.2 will

detail the categorization of swimming modes utilised in nature. Whereas section 2.3

will discuss the roles of lift and drag in swimming. Section 2.4 will discus methods

employed by fish in nature to generate efficient periodic motion. Section 2.5 will

mention some of the mechanism employed by fish for rapid acceleration and high speed

manoeuvring. Section 2.6 will highlight the importance of vortices in the current theory

of fish propulsion and finally section 2.7 will present some concluding remarks.

2.2 Summary of biological swimming modes

This section aims to introduce briefly some of the fundamental swimming modes found

in nature.

The first distinction made between biological swimming modes is between body and/or

caudal fin (BCF) type swimming and paired or median fin (PMF) swimming.

BCF swimming refers to swimming modes that generate thrust through the use of a

translational wave propagated along a portion of the body and translated onto the caudal

10

2.2. SUMMARY OF BIOLOGICAL SWIMMING MODES

Table 2.1: The classification of BCF swimmers Lindsey (1978)

Classification % of body in wave

Anguilliform ≥ 70%
Sub-Carangiform 50-70%
Carangiform 30-50%
Thunniform ≤ 30
Ostraciform Caudal fin only

fin which acts as a propulsive surface.

BCF swimmers are often sub-categorized further according to the proportion of the

body involved in the propulsive wave as shown in table 2.1. Typically with a BCF

swimmer the larger the proportion of the body involved in the propulsive wave the

greater the manoeuvrability. However the smaller the proportion of the body involved

in the propulsive waves the greater the efficiency and speed of locomotion.

Typical BCF swimmers are capable of rapid swimming at speeds in the order of 10 body

length per second (Ls−1), (Bainbridge 1958), and rapid turning, often taking much less

than 1 body length to turn 180 degrees.

PMF swimming refers to swimming modes that achieve locomotion through the

actuation of paired pectoral fins, dorsal fins, anal fins or paired dorsal and anal fins, the

classification of which can be found in Figure 2.1.

Typical PMF swimmers are capable of precision manoeuvring with 6 degrees of

freedom, including station keeping and reversing manoeuvre.

A more complete review of fish locomotion modes can be found in, (Sfakiotakis et al.

1999).

11

2.2. SUMMARY OF BIOLOGICAL SWIMMING MODES

Figure 2.1: The Classification of PMF swimming by fin and movement type
(Sfakiotakis et al. 1999) Copyright c©1979 Elsevier (Permission to
reproduce this image has been obtained through RightsLink R©)

12

2.3. LIFT AND DRAG

Figure 2.2: Black Ghost Knife Fish (Aquarium 2011), Copyright c©2011 National
Aquarium (Permission to reproduce this image has been granted by
National Aquarium)

2.3 Lift and Drag

Lift and drag mechanisms play a large part in the efficiency of swimming motion (Fish

1996). Generally undulation based propulsion is more drag based and oscillation based

propulsion is more lift based. Fins designed for lift based propulsions such as the caudal

fin of the blue fin tuna are smooth and hydrodynamic.

However figure 2.2 shows a photograph of a black ghost knife fish which utilises drag

gymnotiform type propulsion. As can be seen the black ghost knife fish has vertical

ridges on the long anal fin almost orthogonal to the direction of motion. These ridges

act to increase the drag. Suggesting that undulation based swimming methods may

benefit from an increase in drag which reduces the slip of the fluid conveyor action.

13

2.4. PERIODIC MOTION

2.4 Periodic Motion

Like most biological creatures, both BCF and PMF swimmers rely on a periodic motion

or gait to generate locomotive thrust. It has been demonstrated that many fish use

passive muscles to generate torsional elasticity along the body (Pabst 1996). This gives

rise to the model of a fish as a spring oscillator. Estimates suggest that passive muscle

elasticity can result in up to 30% energy savings (Harper et al. 1998).

It is thought that by altering the state of excitation of the muscle fish can control the

stiffness of their body and hence change the frequency and amplitude of the gait (Long

and Nipper 1996).

Since propulsion energy costs are a primary limiting factor on many vehicles any

mechanisms that can reduce the cost of transport are of significant interest to

biomimetic swimming mechanism design.

2.5 Manoeuvrability

Whilst PMF type swimming modes offer increased manoeuvrability at low speeds,

many BCF fish employ novel kinematics to achieve rapid acceleration and high speed

manoeuvres.

Cetaceans and other carangiform and subcarangiform swimmers often employ the so

called ‘C’ or ‘S’ start swimming kinematics to achieve rapid acceleration (Spierts and

Leeuwen 1999).

Whilst swimming at speed many BCF swimmers are or can make themselves

dynamically unstable in yaw, allowing them to make rapid changes in direction (Weihs

2001), (Fish 2002). This can be achieved if the centre of cross-section area (COA) (i.e.

the centre of area the longitudinal vertical planar central cross section) is forward of

the centre of mass (COM). By employing variable dorsal and anal fins fish are able to

14

2.6. VORTECIES IN SWIMING

COA
COM COACOM

(a) (b)

Figure 2.3: Digaram showing centre of area (COA) relative to centre of mass (COM)
; (a) Fins retracted, (b) Fins deployed

adjust the position of the centre of cross section area relative to the centre of mass and

hence the level of yaw stability as shown in figure 2.3.

Assuming that the friction and drag forces are aligned in the opposite direction to the

direction of motion and act approximately at the COA. Also assuming the body pivots

around the COM. Then if the COA is aft of the COM then the presence of yaw will

cause the drag forces to create a course correcting moment. However if the COA is

forward of the COM then the drag forces will cause a course destabilising moment.

This is of significant interest in the design phase of biomimetic swimming devices.

By closely emulating the morphology of biological fish, biomimetic devices will be

potentially able to achieve high yaw rates at speed dramatically increasing high speed

manoeuvrability.

2.6 Vortecies in Swiming

Early experiments involving towing euthanized dolphins at anecdotal swimming speeds

suggested that dolphins appear to have a 7 fold shortage of muscle mass to generate

sufficient power to overcome drag forces (Gray 1936). Although it has been shown

that these findings often referred to as ‘Gray’s Paradox’ grossly over estimate the

shortfall (Lee et al. 2009) and argued that many of the assumptions made in the original

study were fundamentally flawed (Fish 2006). There is a general consensus that novel

15

2.6. VORTECIES IN SWIMING

drag reduction methods are utilised by dolphins and other BCF type swimmers to

actively reduce drag. This consensus has lead to a great deal of research into BCF

type swimming mechanism used in nature (Barrett et al. 1999).

Early theories of fish swimming were based on lamina lift and drag fluid interaction

assumption, however the development of flow visualization techniques demonstrated

that vorticity plays an important role in generation of propulsive forces.

Photographs of fish swimming in water over a thin layer of milk covering a dark

background, have revealed the generation of vortices and their propagation along the

fish’s body. From these photographs it was theorised that these vortices act as pegs

against which the fish can push its body to gain thrust (Rosen 1959).

It has been shown that not only can fish utilise vortices generated by their own

movement to generate thrust, but they can also utilise vorticity present in the

surrounding flow to reduce muscle expenditure. Experiments with live trout have

demonstrated that if placed in a strong turbulent flow, the trout synchronize with

vortices within the flow . Furthermore experiments with euthanized trout have revealed

that the trout body was capable of swimming against the current of the flow without

any muscular input. The experiment revealed that the trout body automatically

synchronises with the vortices which stimulate a forward swimming gait without any

input from the fish itself (Beal 2003).

This suggests not only that the dynamics of BCF swimming fish bodies are highly

adapted to take advantage of vorticity in the flow. But also that fish employ a degree

of passivity in their swimming in order to allow vorticies to affect their gait. The fact

this can be achieved by dead fish suggests that sensing the vorticies is not essential to

synchronisation. Naturally it is highly desirable for BFC swimming mechanism to be

able to dynamically interact with vorticity in the surrounding fluid in order to reduce

cost of transport (Anderson 1996).

16

2.7. CONCLUDING REMARKS

2.7 Concluding Remarks

In this chapter some of the biological swimming mechanisms utilised by fish and

cetaceans in nature were discussed, and their particular interest to the design of

biomimetic swimming devices.

The use of passive muscle to generate elasticity within the body and the ability of fish

bodies to interact with vortices within the surrounding fluid to reduce the energetic cost

of transport is of particular interest for this study. The fact this achievable by dead fish

suggests that sensing of the vortices is not essentialist for vortex synchronization.

The ability of dead fish to synchronise with turbulent flows to swim against the current

suggests that the body dynamics are a critical factor in efficient swimming.

Chapter 3 will present a review of the available literature relating to biomimetic

swimming devices and discuss how other studies have attempted to mimic the

biological swimming mechanisms highlighted here.

17

2.7. CONCLUDING REMARKS

18

Chapter 3

Literature Review

There are already a great number of unmanned and autonomous underwater

vehicles in use, this chapter aims to provide a comprehensive review of the

past and current trends in the development of biomimetic propulsion systems

for autonomous underwater vehicles, drawing from the available literature that

has been published.

3.1 Introduction

Chapter 2 described some of the swimming mechanisms utilised by fish and mammals

in nature to generate thrust and manoeuvre in the marine environment. This chapter

aims to provide a comprehensive review of previous attempts to emulate such

mechanism in biomimetic devices drawing from the available published literature.

Biomimetic swimming devices will be divided into the two primary swimming modes

discuses in chapter 2, body and caudal fin (BCF) type swimmers and paired and

median fin (PMF) type swimmers. However prior to this it is necessary to discuss the

construction of more traditional unmanned underwater vehicles in order to establish the

relevant design and construction constraints for autonomous underwater vehicles.

This chapter will be divided into four further sections. Section 3.2 will give a brief

overview of the design and construction of traditional unmanned underwater vehicles.

Section 3.3 will give a history of the more notable biomimetic swimming machines

19

3.2. TRADITIONAL UNMANNED UNDERWATER VEHICLES

past and present. Section 3.4 will discuss some of the trends in the development

and evolution of the biomimetic swimming machines. Finally section 3.5 will present

concluding remarks drawn from this review of the available literature.

3.2 Traditional Unmanned Underwater Vehicles

Prior to discussing biomimetic underwater vehicles it is necessary to discuss the design

of more traditional AUVs, in order to establish the associated design and construction

constraints. This section will be divided into two further sub sections. The first will

discuss the various AUV designs currently in commercial use. The second subsection

will give details of the construction principals used to ensure that the devices can

survive in harsh sub sea environments.

3.2.1 Design

The first and perhaps the simplest AUVs were the self propelled torpedoes first

developed for military use in the 1800s (Blidberg 2001). The first torpedoes were

developed with simple long thin bodies to help them maintain on a straight course and

dual counter rotating screw propellers at the rear for propulsion, a design principal

that to this day many AUVs developers still follow. The addition of a control plane

behind the propeller gives course adjustment abilities and by adjusting the size more

batteries can be included for longer mission durations and/or larger payloads can be

accommodated. One such torpedo shaped AUV is the 7m long Autosub, developed by

the National Oceanography Center Southampton (Griffiths et al. 2004). Designed for

long range survey missions a large proportion of the hull mass is devoted to batteries

(up to 700kg). On acoustic survey missions the electrical load of the sensors alone can

be as much as 1700W (Collar et al. 1994). Energy is usually the main limiting factor in

mission duration. Although torpedo shaped AUVs are known to be reasonably low in

hydrodynamic drag and thanks to military research very well understood, their shape

20

3.2. TRADITIONAL UNMANNED UNDERWATER VEHICLES

originates from a design selected for its course holding characteristics giving them

poor manoeuvrability. Some of these vehicles take several body lengths to perform

a 180 degree turn, (Bandyopadhyay 2005). Speed wise most commercially available

torpedo type AUVs have design speeds of between 1.5 and 3 ms−1 (Budiyono 2009).

For shorter range missions with smaller payloads and greater manoeuvrability

requirements, there have been several AUVs developed with multiple cross axis

thrusters. By employing thrusters arranged to deliver forces in all three Cartesian axes,

such designs offer greater manoeuvrability and station keeping abilities. However such

designs also result in the extra weight of multiple motors, the majority of which are

redundant during forward locomotion. Also the designs often sacrifice hydrodynamic

efficiency for stable thrust delivery platforms.

For situations where manoeuvrability is not an issue underwater gliders can be used.

Gliders operate on a varying buoyancy drive. By taking on water the gliders reduce

their net buoyancy force and sink. Whilst sinking the relative vertical motion of the

water over the wing produces a forward lift force. By expelling the water at a given

depth, the glider increases its net buoyancy and floats to the surface (Stommel 1989).

By repeating this gliders can travel large distances using very little energy at speeds of

around 0.5 ms−1 (Budiyono 2009). Steering is achieved either with a control plane or

by an active roll mechanism that changes the resultant lift direction (Blidberg 2001).

Although gliders offer a very efficient platform for long range survey missions, their

low speed, lack of manoeuvrability and reliance on depth variation can be restrictive in

terms of mission selection.

Although it has been shown that complex hull shapes can reduce drag, many AUV

manufacturers are still using hull designs based on uniform diameter cylinder, which

lend themselves to modular construction, for easy extendibility.

Details of some of the many AUVs currently commercially available can be found at

21

3.2. TRADITIONAL UNMANNED UNDERWATER VEHICLES

(AUVAC 2013).

3.2.2 Construction

Most AUVs are designed around cylindrical or spherical pressure vessels, (chosen

for strength under compression), that house electrical or other pressure sensitive

components. The remainder of the hull comprises of either flooded sections or buoyant

foam, exposed to the outside pressure. Since some AUVs can reach depths of up to

6000m they must be able to withstand pressures of over 600 bar (Collar et al. 1994).

In order to minimize the amount of additional buoyant material needed and maximize

the payload and battery weight allowance, there has been a great deal of research

into lightweight materials for the construction of AUVs and their pressure vessels.

Materials such as carbon fibre and ceramics have been investigated as well as new

buoyant materials that maintain volume under high pressure (Stevenson and Graham

2003).

At great depths one of the largest problems is the protection of the prime mover from sea

water. Surface vessels have simple sealing glands where the propeller shaft penetrates

the hull to keep the water out. However such a gland would not be effective with

a pressure differential of over 600 bar. One solution is to equalize the pressure by

mounting the prime mover in a deformable hull section, and flooding it with a non

compressible fluid tolerable to the prime mover. Certain mineral oils for instance are

non conducting and non corrosive. Therefore such oils will not affect the operation

of an electric motor when immersed. However such a solution does reduce running

efficiency, as the motor must also overcome viscous forces within the fluid (Sharkh

2003). Some larger AUVs have employed synchronous magnetic couplings that allow

the prime mover to be mounted within a pressure vessel with no penetrations, and the

propeller shaft to be in a freely flooded compartment. But such couplings are large and

22

3.3. BIOMIMETIC SWIMMING MACHINES

can become unsynchronized if subjected to a jarring force (Sharkh 2003).

3.3 Biomimetic Swimming Machines

Unlike biological evolution which over millions of years has tended to lead to a

general increase in sophistication of biological swimmers, the evolution of biomimetic

swimmers commenced with intricate complex mechanism and seems to be reducing

in complexity with subsequent generations as the fundamental principals are distilled.

The remainder of this section will be divided into five further subsections. Subsection

3.3.1 discusses the evolutionary path of robotic BCF type swimmers. Subsection

3.3.2 on the other hand discusses the evolutionary path of robotic PMF swimmers.

Subsection 3.3.3 describes attempts made to combine BCF and PMF. Subsection 3.3.4

details some of the recent developments in the field of artificial muscle, and their

application to robotic fish. Finally subsection 3.3.6 describes some of the present

modelling methods used for robotic fish.

3.3.1 Body and caudal fin swimming machines

The ancestry of almost all biomimetic swimmers can be traced back to the

Massachusetts Institute of Technology (MIT) RoboTuna an illustration of which

can be found in figure 3.1. RoboTuna was a 1.2m towing tank replica of a real tuna.

Built in order to better understand the mechanism involved in forward BCF swimming

(Barrett 1994).

The tuna was chosen as a source of bioinspiration because they are one of the fastest

swimming fish in nature. Capable of long periods of swimming at high speeds,

implying likely use of novel hydrodynamic drag reducing techniques. Other factors

that affected the decision to use a tuna for biological inspiration was that different

subspecies of tuna have similar morphology despite differences in size. This was

thought to imply that any resulting design would be easily scalable for future use as an

23

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.1: MIT Robo Tuna (Barrett 1994) Copyright c©1994 MIT (Permission to
reproduce this image has been granted by MIT)

AUV. Furthermore the thunniform swimming mode that allowed a large proportion of

the body to remain rigid, would allow for a larger payload.

When in operation RoboTuna was attached to an overhead sled by a towing mast in the

position of the dorsal fin. The forward speed during runs was determined by the sled.

In order to ensure that RoboTuna could approximate actual tuna kinematics as closely

as possible, every aspect of the design was over engineered. The shape itself was taken

from a casting of a real blue fin tuna, using a custom built 3D profile meter, the shape

was copied exactly. The tail movement came from a seven vertebrae backbone. The six

joints were each actively actuated by cable tendons that fed through the body and up

the mast. The tendons were driven by six large brush less DC servo motors mounted

externally on the towing sled. The servo motors were deliberately over sized to avoid

actuator saturation during more rigorous kinematics.

Two vertical flexible splines were fixed along the backbone, which transformed the

discrete angles of the backbone to a smooth curve. Ribs were mounted onto these

24

3.3. BIOMIMETIC SWIMMING MACHINES

smoothly curving splines at regular intervals to give shape. Over the ribs the tail was

fleshed out with thick reticulated foam. Finally to give the whole body a smooth

waterproof skin, a conformal Lycra sock was stretched over the entire length of the

body. To avoid the complication of fully waterproofing flexible body, the entire hull

was allowed to flood via vents cut into the outer skin.

Since the goal of the RoboTuna project was to better understand the underlying

mechanisms of BCF swimming, a multitude of force sensors were incorporated, to

measure the torque on the motors, the drag forces on the mast, and the pressure on

the caudal fin. The large amount of sensors, and controllable parameters meant that in

all five computers were directly involved in the control monitoring and recording of

parameters during each run (Barrett 1996).

The study went on to determine seven key parameters involved in BCF swimming, and

by running live experiments with RoboTuna, a genetic algorithm was used to produce

an optimal set of swimming kinematics. Furthermore results from the RoboTuna project

did indeed suggest a reduction in drag force for certain kinematics, agreeing with Gray’s

Paradox which states that some swimming creatures seem to have insufficient muscle

mass to overcome linear drag forces at speeds at which they are known to swim (Gray

1936).

Following the success of the RoboTuna project, MIT in partnership with Draper

Laboratories developed the Vorticity Controlled Unmanned Underwater Vehicle

(VCUUV) (Anderson and Kerrebrock 2000) using many of the techniques developed

during the RoboTuna project. The VCUUV was a self contained free swimming

robotic tuna, built as a proof of concept prototype of a biomimetic AUV. Once again

the morphology of a real blue fin tuna was used, however this time the shape was

scaled up to 2.4m in length, comparable in size to some of the smaller conventional

AUVs in use at the time.

25

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.2: Draper Laboratories VCUUV (Anderson and Kerrebrock 2000) Copyright
c©2002 Oxford University Press (Permission to reproduce this image has

been obtained through RightsLink R©)

VCUUV’s tail movement came from a simplified five vertebrae backbone, with the four

joints actively controlled by a closed loop hydraulic system (Cho 1997). The backbone

in turn acted on a spline and rib structure similar to the one used in RoboTuna. The skin

used was Lycra bonded to neoprene rubber. Like RoboTuna rather than trying to seal a

flexible structure, the tail was allowed to be flooded.

The forward section of the body was constructed as a single pressure vessel,

and contained the hydraulic system and the electronics. The hydraulic actuation

system selected for its high power density, consisted of a reservoir, a small positive

displacement pump, a pressure accumulation vessel, four servo valves and four

cylinders. The cylinders being the only components outside the pressure vessel. The

only penetrations needed through the pressure vessel walls were for hydraulic hoses.

A diagram of the VCUUV layout can be found in figure 3.2.

By directly taking the forward swimming parameters derived during the RoboTuna

project it was assumed that VCUUV would have a near optimal swimming kinematic

without any further optimisation. The freedom from a towing tank sled meant that

VCUUV could also be used as a testbed for turning manoeuvre kinematics.

During the testing of the VCUUV it was found that it was capable of turning rates of

26

3.3. BIOMIMETIC SWIMMING MACHINES

up to 75◦s−1, vastly outperforming conventional AUVs which usually have turning

rates of approximatly 4◦s−1. Unfortunately VCUUV was unable to reach its design

speed of 1Ls−1 due to saturation of the actuator system at tail beat frequencies

above 1Hz, however a top speed of 0.61Ls−1 was achieved (Anderson and Chhabra

2001). The most recent direct application of the RoboTuna design can be seen in

Boston Engineering’s GhostSwimmer (Engineering 2009), which is a tuna based AUV

currently being developed under commission from the US government for use in

harbour monitoring.

The next generation of robotic swimmer to emerge from MIT was RoboPike. At

approximately 80cm in length RoboPike was originally built as an undergraduate

design project and later became an experimental test bed for experimentation on

carangiform rapid manoeuvring kinematics (Kumph 2000). The pike was chosen as a

source of bioinspiration because of the rapid manoeuvring, and acceleration abilities

demonstrated by it in nature.

RoboPike’s tail movement came from a further simplified four vertebrae backbone, with

the three joints actively controlled by tendons driven by waterproofed brush less DC

servo motors mounted in the midsection of the body. The backbone was connected to a

novel helical wound fibreglass rib structure, stiffened in the vertical axis by a vertically

mounted flexible spline. Over the rib structure a neoprene Lycra skin was stretched

to form the outer hull. It was thought that the helical wound rib structure would give

the tail elastic energy storing properties, similar to those reportedly used in real fish

to increase metabolic efficiency while swimming (Pabst 1996). Robopikes forward

section was constructed as a single pressure vessel housing batteries and electronic

sub systems, however the tail and the mid body were flooded. Without parameter

optimization RoboPike had a maximum speed of around 0.3Ls−1 at a tail beat frequency

of 1Hz.

27

3.3. BIOMIMETIC SWIMMING MACHINES

The Japanese National Maritime Research Institute, (NMRI), developed a series of

further simplified link based robotic fish, including a three link 34cm robotic sea bream

denoted PF-300 to study turning performance (Hirata et al. 2000). The sea bream was

selected as a source of bioinspiration because in nature its large side profile area and

carangiform swimming style makes it an excellent fast turning fish. The two joints were

actuated directly by brushless DC servo motors housed in small pressure vessels, the

actuation mechanism penetrated the pressure vessel through a corrugated waterproof

boot (Hirata 2000). The tail itself was left in a naked skeletal state, as it was thought that

the majority of the propulsive force would be generated by the caudal fin, thus accurate

representation of the rest of the body morphology was thought to be unnecessary. Servo

control came from a standard radio control unit, A float held the aerial at the surface,

and ensured that the PF-300 maintained a constant depth.

The PF-300 was able to produce tail beat frequencies of up to 2.3Hz, turning diameters

as small as 75mm could be achieved and a top speed of approximately 0.6Ls−1.

Subsequent robot swimmers developed by NMRI, include the 65cm four link PF-600,

the 70cm four link PF-700, the 97cm three link UPF-2001, the 26cm two link PF-200,

and the 57cm three link PF-550.

The PF-600, designed to study propulsion performance, had a cylindrical body housing

two brushless DC servo motors, one servo motor actively controlled the two foremost

joints, whilst the second servo motor was devoted entirely to actuating the caudal fin,

allowing experimentation with phase angle between fin and tail movements.

The PF-700, was built for experiments on fast swimming, the body had a long slim

cylindrical form designed for low drag. Through the use of a combination of brushless

DC servo motors and a larger DC motor driving a Scotch yolk mechanism tail beat

frequencies of up to 10 Hz could be achieved, resulting in a top speed of 1Ls−1.

The UPF-2001, was a simple three link robot designed as a multi purpose research

28

3.3. BIOMIMETIC SWIMMING MACHINES

platform. The tail was driven by a single DC motor and Scotch yoke mechanism,

driving both the tail joint and the fin joint with a phase difference generated through

a novel mechanical mechanism, like the PF-700 a tail beat frequency of 10Hz was

required to generate a speed of 1Ls−1. The PF-200 was a small proof of concept

prototype that used a shifting mass mechanism to give active pitch control for

manoeuvring in the vertical axis. The most recent robotic swimmer from NMRI is

the PF-550, using a simple three link design, actuation came from two brush less DC

servomotors, the entire tail mechanism is mounted on a rotating shaft, allowing the

primary propulsor to be rotated to give agility in the vertical axis.

Like the PF-300 all the subsequent robot swimmers to emerge from NMRI relied

on radio communication remote control, limiting them to operations on or near the

surface. With the exception of the UPF-2001 all were constructed with open skeletal

joints, however effort was made to approximate the profile of real fish tails by attaching

moulded sections to the tail vertebra.

Figure 3.3 shows some of the robotic fish developed at NMRI. From the top the figure

shows the PF-300, PF-600, PF 700, UPF-2001 and the PF-550.

This figure has been removed due to Copyright restrictions

Figure 3.3: Robitic fish developed by Japanese National Maritime Research Institute,
(NMRI) (Hirata 2000) Copyright c©NMRI

The Tokyo Institute of Technology (TIT), developed two robotic dolphins aimed as

prototypes toward the design of a biomimetically propelled AUV (Nakashima and Ono

29

3.3. BIOMIMETIC SWIMMING MACHINES

2002). The first had a pneumatic actuation system, the second a DC servo motor.

Both robots had a three vertebrae design 1.5m in length with one active joint at the

top of the tail and a passive joint at the caudal fin. By varying the stiffness of the

passive joint it was found that a wide variety of tail beat kinematics could be achieved

(Nakashima et al. 2004).

The bodies were constructed from an aluminium frame wrapped in carbon fibre

reinforced plastic. The deformable tail shapes were made from fibre reinforced plastic

rings connected by a non elastic waterproof membrane. The stiffness of the passive

joint was adjusted by interchanging springs of variable elastic modulus. Through

experimentation it was found that speeds of around 0.6Ls−1 could be achieved with

tail beat frequencies of around 1.8 Hz. The popularity of ‘Gray’s Paradox’ (Gray

1936) makes dolphins an obvious source of bioinspiration. So much work has been

done investigating the paradox that dolphin swimming kinematics are among the best

understood in nature (Fish 2006). Furthermore their size in nature is comparable to the

size of existing AUVs.

Developers at the Istanbul Technical University (ITU), also developed a robotic

dolphin AUV prototype. The aim was to improve upon the propulsion efficiency

found in conventional AUV (Dogangil et al. 2005a). The Istanbul dolphin had a four

vertebrae construction with each of the three joints actuated by an opposing bellows

type pneumatic system. The Istanbul dolphin was constructed from sheet aluminium

and polymerized formaldehyde plastic.

The flexing tail section was covered in a waterproof membrane supported by a flexible

structure to allow the tail joints to remain dry. The caudal fin was made from cast silicon

in order to mimic the flexibility of a real dolphin’s caudal fin. Turning manoeuvrability

was achieved using pectoral fins actuated in pitch. The Istanbul dolphin was able to

swim at a speed of 1Ls−1, with a tail beat frequency of 1.35Hz.

30

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.4: Photograph of Essex university G9 (Liu 2005) Copyright c©2005 Liu
(Permission to reproduce this image has been granted by Liu

The University of Essex developed a series of multi link carangiform and

sub-carangiform robot swimmers (Liu 2007). The latest of which the G9, based

on a four vertebrae tail structure constructed using stereo lithography apparatus resin.

The three joints were actively controlled by three powerful DC servo motors, capable

of bending the body through an angle of 90◦ in 0.2s (Hu 2006). The G9 achieved

manoeuvres in the vertical axis through a shifting mass mechanism, which moves the

centre of gravity to alter the pitching moment, much like in the PF-200. No specific

fish was chosen as a source of bioinspiration, instead an attempt was made to capture

the more generalised principals of fish morphology.

The debut of the Essex fish at the London Aquarium in 2005 has made them perhaps the

most well known robotic fish. They are currently being implemented in a collaborative

project entitled, Search and monitoring of harmful contaminants, other pollutants and

leaks in vessels in port using a swarm of robotic fish (SHOAL). Figure 3.4 shows a

photograph of the G9 robotic fish that featured in the London Aquarium.

31

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.5: Beihang University SPC-III (Wang et al. 2010) Copyright c©2010
Elsevier (Permission to reproduce this image has been obtained through
RightsLink R©)

Beihang University Robotics Institute also developed a series of robotic fish based on

non specific bioinspired morphology for use as UUVs. Among these the SPC-II and

SPC-III had a common two joint BCF type propulsion module. The two joints were

each actuated by a 150w brushless DC motor located within a sealed part of the vehicle.

In water the DC servo motors were capable of driving the tail with beat frequencies of

up to 2.5Hz.

SPC-II has a roughly fish like morphology designed like the PF-300 with a large side

profile area for rapid turning ability, with an overall length of 1.2m. The forward part

of the body was constructed as a rigid pressure vessel, and the tail mechanism was

attached behind. The tail mechanism was capable of driving SPC-II at speeds of up to

1.2Ls−1, and producing yaw rates of up to 70◦s−1. Despite having a maximum depth

rating of only 5m SPC-II proved useful as a visual assistant in underwater archaeology

(Liang et al. 2005).

SPC-III was constructed in many ways like a traditional AUV however in place of the

propeller the two joint BCF tail was attached as shown in figure 3.5. With a 1.6m

32

3.3. BIOMIMETIC SWIMMING MACHINES

rigid body section , the hydrodynamic shape enabled the propulsion system to drive the

vessel at speeds of up to 1.17Ls−1 (Wang et al. 2010).

Following on from a biological study that demonstrated that dead fish exposed to

harmonic stimulus could produce a forward swimming gait (Beal 2003). Researchers

at MIT have developed a simplified compliant body method for generating BCF

swimming gaits for small biomimetic AUVs suitable for multi agent survey tasks as

shown in figure 3.6 .

Figure 3.6: MIT Compliant Swimming Device (Alvardo 2007) Copyright c©2007
MIT (Permission to reproduce this image has been granted by MIT)

A simple DC servo motor driven mechanism embedded into a moulded silicon body,

can produce a travelling body wave if activated periodically (Alvardo 2007). It was

found that by doping the silicon the body could be given a different elastic modulus

and hence produce different kinematics.

Various compliant body prototypes have been made, the largest being around 32cm in

length, and reached a speed of 1Ls−1 at a tail beat frequency of 3.5Hz. Reports indicate

33

3.3. BIOMIMETIC SWIMMING MACHINES

that these simplified designs have proven to be fairly robust and give good longevity.

The University of Glasgow also developed a single actuator swimming mechanism

for comparison experiments between biomimetic and conventional propulsion (Watts

2009). An 85cm robotic salmon named RoboSalmon, was built with a 10 vertebrae

backbone actuated by a single tendon running down either side. A single DC servo

motor drove the tendons to produce tail oscillations. However the resulting tail

movement more closely resembled ocilliform swimming than carangiform.

The shape of the tail itself came from plastic ribs attached to intermittent vertebra

forming a rib cage. This rib cage was covered in a waterproof membrane giving a dry

tail. The second generation of the RoboSalmon also had a novel turning head section,

that it was thought could compensate for excessive yaw oscillations observed in the

original RoboSalmon during forward swimming and increase yaw rates during turning.

The poor tail beat kinematic resulted in a maximum speed of only 0.2Ls−1 at

frequencies around 1Hz. However experiments with the RoboSalmon did demonstrate

that even such a sub-optimal kinematic RoboSalmon did produce more efficient

propulsion than a propeller drive system at similar speeds, and was capable of far

superior manoeuvrability.

A summary of BCF swimming Robots can be found in Table 3.1.

3.3.2 Paired and median fin propulsion

The excellent manoeuvrability and station keeping ability of PMF swimmers in nature

inspired researchers at Tokai University to develop the robotic black bass (Kato

2000). The black bass was chosen because in nature it is a species known to use

pectoral fins for low speed locomotion, and station keeping manoeuvres. By using

two servomotors for each pectoral fin, the fins could be actuated in yaw and pitch

axis respectively. By controlling the relative phase and magnitude of yaw and pitch

34

3.3. BIOMIMETIC SWIMMING MACHINES

Table 3.1: A Summary of BCF Swimming Robots

Institution Name # Joints Actuators LOA Year

MIT1 RoboTuna 6 6 DC servo 1.2m 1994
Draper VCUUV 4 4 Hydraulic 2.4m 1997

Piston
MIT Robopike 3 3 DC Servo 80cm 2000
NMRI2 PF-300 2 2 DC Servo 34cm 1999
NMRI PF-600 3 2 DC Servo 65cm 2000
NMRI PF-700 2 1 DC motor 70cm 2001

+1 DC Servo
NMRI UPF-2001 2 1 DC motor 26cm 2001
NMRI PF-550 2 2 DC Servo 57cm 2003
TIT3 Robot Dolphin 1 2 1 Pneumatic 1.8m 2002

motor
TIT Robot Dolphin 2 2 1 DC Servo 1.8m 2004
ITU4 Robot Dolphin 3 3 Pneumatic 2m 2005

Paired Bellows
Essex G9 3 3 Dc Servo 52cm 2007
BRI5 SPC-II UUV 2 2 DC Servo 1.2m 2005
BRI SPC-III UUV 2 2 DC Servo 1.8m 2010
MIT Compliant N/A 1 DC Servo ≤32cm 2007
Glasgow RoboSalmon 10 1 DC Servo 85cm 2009

1 Massachusets Institute of Technology
2 National Maritime Research Institute of Japan
3 Tokyo Institute of Technology
4 Istanbul Technical Universty
5 Biehang University Robotics Institute

oscillations, manoeuvring forces in the full six degrees of freedom could be achieved.

Through experimentation it was demonstrated that precision docking manoeuvres

could be performed in currents of up to 0.05ms−1. The black bass project could

be looked at as the equivalent to PMF locomotion, as what RoboTuna was to BCF

locomotion. Figure 3.7 shows a photograph of the third generation of Black Bass from

Tokai University.

35

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.7: A photograph of Black Bass III (Kato 2000) Copyright c©2000
IEEE (Permission to reproduce this image has been obtained through
RightsLink R©)

Despite the success of Kato’s robotic black bass using a single pair of propulsive

fins several subsequent BCF propelled AUV designs have used multiple pairs of fins.

AQUA was a six finned robot swimmer developed at McGill University (Georgiades

et al. 2004). The swimming gait was roughly based on ostraciform swimming, with

the six fins only actuated in the pitch axis. The fins were flipper shaped rather than

wings shaped to produce a drag based thrust. The body itself was based on an earlier

RHex terrestrial robot design, with expectations that it could be developed into a fully

amphibious AUV platform.

The AQUA project demonstrated that using multiple simple single axis actuated

flippers, heave, surge, pitch, roll and yaw motions can be achieved. A photograph of

AQUA swimming can be found in figure 3.8.

MIT researchers have also developed a multi paired fin swimming AUV (Licht 2008).

Based roughly on the morphology of a sea turtle, MIT’s RoboTurtle was a four finned

labriform type swimmer. The four finned design was selected as it was thought that the

symmetry would provide a more stable and easier to control platform.

For simplicity of expansion RoboTurtle’s fins were constructed as self contained

modules (Licht et al. 2004). Each module contained a 190W DC brushed motor to

36

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.8: A photograph of AQUA swimming (Georgiades et al. 2004) Copyright
c©2000 IEEE (Permission to reproduce this image has been obtained

through RightsLink R©)

provide actuation in roll and a 15W DC brushed motor to provide motion in pitch.

All the corresponding motor control circuits and all the connections required to add

one more fin module, giving devices a ’plus one’ type infinite expandability. Like

the robotic black bass manoeuvring forces were controlled by altering the phase and

amplitude of oscillations. Figure 3.9 shows a CAD drawing of Robo Turtle with the

modular fin unit.

A similar four finned modular design has been adopted by the commercially available

Transphibian AUV from the iRobot Corporation (iRobot Corporation 2010), by using

the fins as legs, the Transphibian is also able to produce limited terrestrial locomotion.

More recently a collaboration between The Pertoleum Institure in United Arab

Emirates and University of South Queensland has focused on employing a similar

fin mechanisms to on a 6 finned robot turtle with a goal of amphibious locomotion

(Cubero 2012).

37

3.3. BIOMIMETIC SWIMMING MACHINES

Figure 3.9: A CAD drawing of Robo Turtle adapted from (Licht et al. 2004)
(Georgiades et al. 2004) Copyright c©2000 IEEE (Permission to reproduce
this image has been obtained through RightsLink R©)

Inspired by an observation that in nature, many amphibious animals despite having four

limbs tend to only use only two for aquatic propulsion, developers at Vassar Collage

developed a four finned swimming robot for experimentation regarding the specific

advantage of four and two fin swimming gaits (Long et al. 2006) like the AQUA robot,

the fins on the Vassar robot were operated as flippers with actuation only in pitch.

Experiments carried out using the Vassar robot comparing two and four fin swimming

gaits indicted that although four fin gait did produce improved acceleration and

breaking rates compared to two fin gaits, peak velocities achieved were the same for

both two and four fin gaits. Furthermore the overall energy cost of transport for four

fin gaits was more than double that of the two fin gaits.

Tufts University initiated the development of a large manta ray based swimmer/glider

(Brower 2006). The manta ray was selected as a source of bioinspiration, because in

nature manta rays are relatively fast, efficient swimmers and their large wing area make

them a good candidate for glider design. The Tufts project looked at using pneumatic

38

3.3. BIOMIMETIC SWIMMING MACHINES

pistons to actuate a multi-joint skeletal arm. The pistons were to be inserted into a

moulded PVC ray wing, with the hope of producing a ray like swimming motion. The

final design was to be approximately 50cm long with a total wing span of 1m. However

after construction of one wing it was found that the combined effects of the inertia of

the large wing span, the inertia of the water to be moved and the rigidity of the PVC

meant that despite the use of a relatively powerful pneumatic system the actuators were

unable to move the wing whilst it was in the water.

However two such manta ray based swimmer/glider AUVs have subsequently been

developed in the commercial sector (Festo 2007; Logics 2013). Festo and Evo Logics

have developed manta ray based AUVs, both using a novel fin ray effect designed by

Evo Logics to maintain constant volume within the flexible structure. The Festo Ray

shown in figure 3.10 uses a powerful hydraulic actuation system to control its wings,

which have a 96cm span. The Evo Logics Ray comes in a variety of sizes from 1.5m

up to 3.5m wing span, and incorporate a buoyancy driven glider mechanism, and a

hydro jet propulsion system for precision manoeuvring as well as the ray like swimming

motion.

Most recently researchers at the Robotics Institute of Beihang University have

developed a robotic cow nosed ray (Cai et al. 2010). Robo-ray II was built over a

single flexible rib, actuated by two Mckibben type pneumatic muscles, and a vertically

flexing rudder section, also pneumatically actuated. This skeleton was then fitted with

laterally oriented spines. Finally the whole structure was cast into silicon using a ray

shaped mould. The overall design had a total wing span of 56cm and a total length of

32cm, and had a top speed of around 0.5Ls−1 with a wing beat frequency of 1.2Hz.

Festo have gone on to use the aforementioned fin ray effect in their penguin inspired

AUVs shown in figure 3.10 (Festo 2009). Festo’s AquaPenguin uses two pectoral fins in

a labriform mode for propulsion. Both fins are driven in the roll plane by a single shared

39

3.3. BIOMIMETIC SWIMMING MACHINES

DC motor, with mechanical gearing to give a synchronized roll oscillation. On each

fin pitch control is achieved using a dedicated DC servo motor. The fins themselves

are constructed on a sprung steel wire mesh embedded in moulded silicon polyamide,

closely following the morphology of real penguin wings. The AquaPenguins have an

overall length of about 77cm and a top speed of around 2Ls−1.

Figure 3.10: Top: Festo Aqua Ray, Bottom: Festo: Aqua Penguin; Copyright c©Festo
AG & Co. KG, photographer Walter Fogel. (Permission to reproduce
this image has been granted by Festo)

Whilst the majority of investigations into PMF swimming have focused on oscillatory

type motions, there has been some interest in undulatory type PMF locomotion.

North Western University has developed a ribbon fin device based on the gymnotiform

locomotion used by black ghost knifefish (Epstein et al. 2006). The knifefish was

selected as a source of bioinspiration because of its ability to manoeuvre effectively in

all six degrees of freedom, including reversing manoeuvres, despite having a relatively

stiff body. The ribbon fin device comprised of a flexible membrane suspended between

spines arranged in a line down the underside of the craft. The spines themselves

are each oscillated in the roll plane. By controlling the phase and amplitude of the

40

3.3. BIOMIMETIC SWIMMING MACHINES

Table 3.2: A Summary of PMF Swimming Robots

Institution Name # fins Movement Year

Tokai University Robot Blackbass 2 Yaw and Pitch 2000
McGill University AQUA 6 Pitch 2004

MIT RoboTurtle 4 Roll and Pitch 2004
iRobot Transphibian 4 Roll and Pitch 2010

Vassar colage Madeleine 4 Pitch 2006
Festo AquaRay 2 Roll 2007

Evo Logics Subsea Glider 2 Roll 2007
Beihang University Robo-ray II 2 Roll 2010

Festo AquaPenguin 2 Roll and Pitch 2009
North Western University Ribbon Fin 1 Undulatory 2006
Nayang Tech University Knife Fish 1 Undulatory 2006
Nayang Tech University Sting Ray 2 Undulatory 2006

Delft University Galatea 2 Undulatory 2009

oscillations it was found that a propulsive wave could be propagated forwards or

backwards and the introduction of various offsets could generate a great variety of

manoeuvres.

Similar ribbon fin devices were used for propulsion systems in small scale experimental

robots developed at the Nayang Technological University (Low and Willy 2006). A

robot knifefish using gymnotiform propulsion and a robotic stingray using rajiform

propulsion, where two such ribbon fin devices were mounted in the pectoral positions

for propulsion.

The most practicaly scaled example of such a propulsion mechanism can be found in

the Delft University’s Galatea , a box like AUV using rajiform locomotion (Simons

et al. 2009).

A summary of the more notable PMF swimming robots can be found in Table 3.2.

41

3.3. BIOMIMETIC SWIMMING MACHINES

3.3.3 Combined BCF and PMF swimmers

Having developed both fast/efficient BCF swimming and precision stable PMF

swimming mechanisms, the natural logical progression is to combine both to create a

versatile AUV platform. Although several BCF swimming robots have incorporated

actuated pectoral fins for vertical lift generation (Dogangil et al. 2005a; Hirata 2000).

The availability of self contained modular pectoral fin arrangements as outlined in

Licht et al. (2004), should make the incorporation of PMF swimming mechanism into

existing BCF or even propeller driven devices relatively straight forward. Despite this

there have been relatively few attempts to incorporate more sophisticated pectoral fin

manoeuvring systems into BCF swimmers.

Peking University has been developing a 1.2m robotic dolphin, which combines BCF

and PMF swimming. The BCF motion for the Peking University’s dolphin comes

from a novel adjustable amplitude Scotch yoke mechanism driven by a 150W DC

brush motor driving the tail section and a 20W DC servo motor actively controlling

the caudal fin (Yu et al. 2007). The tail itself is constructed with a three vertebrae

design, covered in a steel rib structure. The ribs are connected with sprung steel joints

that allow flexibility, and in turn are covered in a rubber waterproof membrane, to give

a dry tail section (Hu et al. 2008).

The simple BCF mechanism is capable of tail beat frequencies in excess of 3Hz, and

manoeuvring can be achieved by reducing the DC motor in the tail to performing partial

rotations.

The PMF motion comes from pectoral fin modules similar to those outlined in Licht

et al. (2004) and enable the robotic dolphin to perform station keeping and reversing

manoeuvres.

Other developers working on combined propulsion systems include the National

42

3.3. BIOMIMETIC SWIMMING MACHINES

Taiwan University (Guo 2006), and the Chinese Academy of Science Beijing (Zhou

et al. 2008).

The Taiwan University’s Biomimetic Autonomous Underwater Vehicle (BAUV), is a

2.4m biologically inspired swimming robot that incorporates a three vertebrae BCF

swimming mechanism, with two pectoral fins actuated in roll and pitch, to provide

both high speed BCF swimming with PMF precision manoeuvring (Guo 2006).

Developers at the Chinese Academy of Science Beijing have developed a 78cm

biomimetic swimmer that uses a novel mechanical linkage system similar to the one

used in the UPF 2001. The mechanical linkage system is able to derive actuated control

over two links from a single DC motor to provide BCF propulsion. The resultant

prototype was capable of tail beat frequencies of up to 4Hz and a top speed of around

0.5Ls−1. PMC manoeuvring comes from two pectoral fins driven by a three motor

arrangement similar to the one found in Festo’s AquaPenguin, giving active roll and

pitch control for labriform locomotion (Zhou et al. 2008).

3.3.4 Alternative actuators

Conventional actuators used in robotics, such as DC motors or servo motors and

pneumatic or hydraulic pistons can be fairly restrictive when trying to synthesize the

movement of biological mechanisms. Ideally developers of biomimetic devices would

like biomimetic actuators, which emulate the behaviour of natural muscle.

Natural Muscle

Natural muscle is an elastic linear actuator, typical mammalian muscle can produce

stress of around 0.35MPa and strains of around 20% (Mirfakhrai et al. 2007).

Biomimetic actuators can be roughly divided into piezoelectric materials, shape

memory material electro active polymers, chemo-mechanical actuators.

43

3.3. BIOMIMETIC SWIMMING MACHINES

Piezoelectric materials

Some crystalline structures mostly found in ceramics, react to deformational stress

by producing an electrical charge, and conversely react to an electrical charge by

producing a deformation (Haertling 1999). Typical piezoelectric actuators can produce

deformation forces in the order of 40MPa, however with typical strain generation of

less than 0.5% displacement amplification is needed for use in robotics, which in turn

reduces force.

Shape memory materials

It was discovered that certain deformable polymers and alloy will return to a pre-trained

shape when exposed to stimulus such as heat. Typical shape memory materials such

as Ni Ti shape memory alloy (SMA) can produce contraction stresses in the order of

200MPa, and strains of around 8% Shinjo (2005). When used in wire form SMA is

widely accepted to be a good approximation of biological muscle, in terms of flexibility.

Electro active polymers

Several polymer constructions react to an electrical charge with large deformations;

Dielectric elastometer actuators (DEAs) produce stress in the order of 1MPa and strains

of up to 100%, however their reliance on high voltage can make them hazardous

in larger applications that require higher currents; Ionic polymer-metal composites

(IPMCs) can give strains of up to 2% and stress of 30MPa, actuators are usually

formed into bi-metallic strips, where linear contraction is translated into curvature;

Carbon nano tubes (CNTs) have developed a lot of excitement in the field of actuators,

with maximum strain levels typically just less than 2%. Incredible stresses can be

generated with relatively low voltages, around 640 MPa at around 7V, and the incredible

work density around 1MJm−3 make them a very attractive actuator, however with a

current production cost of around 500,000$kg−1 large scale implementations are cost

44

3.3. BIOMIMETIC SWIMMING MACHINES

prohibitive (Mirfakhrai et al. 2007).

Chemo-mechanical actuators

Certain resins react to a change in PH with a change in volume. By using a Mckibben

type actuator, this change in volume can be translated to linear contraction or

expansion Tondu et al. (2010). Furthermore there have been developments towards

solid state chemo mechanical actuators Choe and Kim (2006), however although PH

driven actuators could potentially allow for greater energy storage densities, current

technologies are limited by long actuation times, (in the order of minutes).

Alternative actuators in swimming machines

There have been a few attempts to implement solid state artificial muscle technologies

in robotic swimmers. For example implementation of IPMC actuators on small scale

swimmer was discussed in (Guo et al. 1998; Zhang et al. 2006) and (Hu et al. 2009).

However the restriction of IPMC actuator sizes available make them a poor choice for

large scale projects. Use of SMA to actuate a small tadpole robot was discussed in

in Kim et al. (2005). The first investigation into the use of biomimetic actuators on

a larger scale swimmer was carried out at the Florida Institute of Technology (Shinjo

2005). SMA was used to directly emulate the muscle structure of a 50cm South Atlantic

Bonito. It was found that with sufficient independent lengths of SMA natural body

movement could be accurately duplicated at tail beat frequencies of up to 1Hz. The

SMA selected was the NiTinol (Ni Ti) wire commercially available in a variety of

diameters (GMBH 2013). A subsequent attempt to produce a simplified SMA actuated

tuna was made by the University of Victoria Canada, using the configuration (Suleman

and Crawford 2008), it was found that by flooding the tail, the actuators had better

cooling and thus could maintain higher tail beat frequencies, up to 2Hz, however the

SMA design was eventually abandoned for a more conventional servo driven tail, as it

45

3.3. BIOMIMETIC SWIMMING MACHINES

was found that the reliance of SMA on temperature fluctuation for activation made it

thermodynamically inefficient, and the low cycle life of around 106 actuations would

result in an unacceptably short operational lifespan (Suleman and Crawford 2009).

Recently Researchers at the Swiss Federal Laboratories for materials research, have

developed a fish like airship, that uses DEA sheets to produce a large scale carangiform

motion (Jordi et al. 2010). Figure 3.11 shows a CAD drawing of the Swiss Federal

Laboratories for materials research fish like airship. The construction is similar to

the multi body kinematic chain structure used by many of the BCF type swimmers

featured earlier in this chapter, however liner actuators are used rather than axial torque

generating actuators. To date however there has been no attempt to realize this in an

aquatic environment.

This figure has been removed due to Copyright restrictions

Figure 3.11: Swiss Federal Laboratories for materials research DEA fish like airship
(Jordi et al. 2010) Copyright c©2010 IOPscience

3.3.5 Control Signal Generation

All of the biomimetic swimming devices featured within this chapter have relied on

periodic oscillation or undulation to to generate forward thrust. The generation of such

periodic motion is an area that has received a great deal of work in itself. Whilst

the majority of devices reported relied on strict set of predefined kinematic patterns

(Barrett 1996), (Watts 2009), (Liu 2007). The navigation control is then restricted to

switching between a finite number pre defined gaits. Such an approach can obviously

46

3.3. BIOMIMETIC SWIMMING MACHINES

be restrictive in terms of manoeuvrability. In the ideal world the motion should be

adaptive to surroundings and higher level navigation commands. In an effort to achieve

this researchers are attempting to generate gaits in real-time.

One common approach to real time gait generation is the use of central pattern

generators (CPG)s. A CPG can be described as are neural network capable of

providing a co-ordinated set of rhythmic output signals from a non rhythmic input

signal (Crespi et al. 2008). From the biomimetic perspective it is thought that a CPG

emulates the low level neuromechanical control of real fish in nature.

The Swiss Federal Institute of Technology have developed a simple three finned robotic

fish with a single DV servo motor dedicated to each fin. A geometric position signal for

the three fins was prescribed using the CPG. The Servos then attempted to match this

position by using proportional differential control. Experiments demonstrated that such

and approach can generate an effective multi-fin swimming gait in real time (Crespi

et al. 2008).

Similarly researchers at China’s National University of Defence Technology developed

a gymnotiform robotic fish. The gymnotiform motion was generated by nine DV

servo motors each controlled by a dedicated CPG. The CPGs for each servo were

interconnected to ensure co-ordination of the motion. Experiments demonstrated

that the approach could generate effective manoeuvring control for a undulatory type

robotic fish with a high degree of actuation (Zhang et al. 2008).

Researchers at the National Natural Science Foundation of China have demonstrated

that CPG gait generation can be effective for a fully actuated four joint BCF swimmer.

DV servo motors positioned in each joint were responsible for actuation (Yu et al.

2011).

Whilst it is argued in (Crespi et al. 2008), (Zhang et al. 2008) and (Yu et al. 2011)

47

3.3. BIOMIMETIC SWIMMING MACHINES

that CPGs represent an more accurate representation of the way fish generate there

muscle stimulus, all three studies mentioned used the the CPG signal to prescribe

geometric position. It has been suggested that prescribed geometric control is a poor

representation of biological muscle as it precludes force driven or spasticity driven

motions (Stefanini et al. 2006). A possible solution would be to use a CPG for open

loop actuator excitation control however the absence of feedback could generate

stability issues.

3.3.6 Modelling and Simulation

Parallel to the development of physical prototypes of robotic swimming devices,

increases in the availability and sophistication of computers has led to an increase

in the development of analytical and computational models, for the exploration and

optimization of fish like swimming. Several studies have applied a purely analytical

approach to the fluid modelling, such as the previously mentioned Harper et al.

(1998), which used a quasi steady third order approximation of the Theodorsen

method on a hydrofoil to approximate the flow over a caudal fin. However this

model ignored all upstream hydrodynamic effects that would be created by the fish

body. In Mason (2003), a quasi steady Joukowski transformation method was used

to create a two dimensional model of a fish swimming. However the nature of

Joukowski deformations does not allow for a standing body wave, characteristic of

carangiform and sub carangiform swimming, so the model could at best been said

to be a two dimensional approximation of ocilliform locomotion. The limitations of

analytical modelling techniques stem from the dependence on geometries describable

by mathematical functions. In order to model situations with more complex geometries

computational numerical methods for solving the incompressible Navier Stokes

equations of fluid motion are often employed. However as pointed out in Mittal (2004),

to capture accurately all the features of the higher Reynolds number flows typical

48

3.4. DISCUSSION

for AUV size models such methods require high resolution numerical discretization,

resulting in very large processing requirements. Furthermore for very high Reynolds

number flows typical for larger AUVs or manned marine vessels areas of low pressure

can be generated within the flow below the fluids vaporisation point, causing cavitation.

Cavitation cannot be modelled with standard incompressible direct Navier Stokes

solvers because they operate on the assumption that conservation of mass is sustained

through conservation of volume, however cavitation can result in a local volume

increase in the order of (104 :1). Since it has been shown that boundary layer cavitation

can dramatically affect both lift and drag on a hydrofoil (Schnerr 2003), the modelling

of cavitation has been a major research subject in naval architecture, several methods

have been developed for modelling such cavitation (Schnerr 2003; Kinnas and Fine

1993). A further challenge arises when in comes to model validation, since the

most complete experimental datasets such as the experimental data obtained from the

RoboTuna project, were obtained using relatively shallow towing tanks, free surface

effects will have been prevalent within the data. However most CFD modellers work

with the assumption that the vehicle is at sufficient depth to ignore free surface effects,

thus avoiding the added computational cost. Still further complication is added when

considering interactions between cavitation and a free surface. A boundary element

CFD method for the solution of such flows can be found in Bal and Kinnas (2002).

3.4 Discussion

3.4.1 Swimming Performance

The design history of biomimetic swimming devices has shown a strong general

tendency towards simplification with fewer moving parts and simpler control

requirements. In several cases this drive for simplification seems to have resulted

in under engineered systems which have not lived up to their design expectations,

49

3.4. DISCUSSION

for instance the authors of Anderson and Kerrebrock (2000),Kumph (2000) and

Watts (2009), all noted disappointment in the maximum speed demonstrated by their

vehicles.

The shortfalls in speed among BCF swimming robots can be attributed to two possible

causes. The possible causes are insufficient actuation power/speed or poor swimming

kinematics. The authors of Anderson and Kerrebrock (2000) and Kumph (2000)

suggested that actuator saturation was the major factor in limiting top speeds, each

limited to a maximum tail beat frequency of 1Hz. However a biological study carried

in the 1950s demonstrated that for BCF swimmers, similar tail beat frequencies result

in similar swimming speeds relative to body length regardless of specific morphology

(Bainbridge 1958). Yet as can be seen from figure 3.12 there is little correlation among

the tail beat frequencies and swimming speeds reported. For example the NMRI

PF-700 and UPF-2001 each achieved tail beat frequencies of 10Hz resulting in a speed

of 1Ls−1, whereas the Istanbul Technical University’s Robot Dolphin managed 1Ls−1

at a tail beat frequency of only 1.35Hz. This lack of cohesion between swimming

speeds and tail beat frequencies suggests that many of the Biomimetic swimmers

featured were operating with poor swimming kinematics. Assuming that studies

featured to the left of the plot are more optimal it would then be desirable to ensure

that future developed Biomimetic swimmers lie in approximate correlation which is

roughly given by the line Speed (L/S) = 0.5×Frequency (Hz).

It was shown in Triantafyllou and Triantafyllou (1995), that swimming efficiency is

extremely sensitive to variation in kinematic parameters. Since propulsion efficiency

was one of the main motives for developing biomimetic BCF swimming devices,

it should be considered a high priority of future developments to ensure that good

kinematics can be achieved.

The level of kinematic control available from a given design will inevitably determine

50

3.4. DISCUSSION

(Anderson: 1999)

(Kumph: 2000)

(Hirata: 2000) (Hirata: 2000)

(Dogangil: 2005) (Alvardo: 2007)

(Liang: 2005)

(Wang: 2010)

(Nakashima:

2004)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

S
p

e
e

d
 L

/s

Frequency Hz

Figure 3.12: A graph showing the relationship between maximum tail beat frequency
and resultant speed for BCF swimmers reported in this chapter

the kinematic parameter optimization approaches available to developers. Whilst

complex designs that offer high levels of kinematic control are suitable for on line

optimization. Simpler designs with relatively low levels of kinematic control require

off line optimization in the design phase, to ensure that good kinematics are achievable.

Advances in fluid dynamic modelling have increased the effectiveness of off line

kinematic parameter optimization. New techniques in computational fluid dynamics

and analytical analysis of flapping foils has given developers a myriad of new tools.

A review of research into modelling flapping foils can be found in Triantafyllou et al.

(2003).

3.4.2 Actuator Selection

The choice of actuators is also a subject of some interest in the development of

biomimetic swimming devices. Brushless DC servo motors are a popular choice with

developers, the combination of high torque density and a high level of controllability

51

3.4. DISCUSSION

make them a good candidate for actuator selection. However high performance DC

servo motors can be very expensive.

Several developers have opted for the combination of a continuously run DC motor and

a mechanical oscillator such as a Scotch yoke. A scotch yoke can convert rotational

motion to a simple harmonic oscillation and allow the use of relatively cheap motors.

By using larger continuously run motors higher tail beat frequencies can be achieved.

However such designs result in a reduction in controllability.

Pneumatic or hydraulic systems can offer excellent power densities and good

controllability, depending on the arrangement of the control system. Hoses can easily

penetrate pressure vessels without producing complex sealing problems making them

an appealing choice for deep sea applications provided the ambient pressure has no

effect on the operational cost. This could be problematic for McKibben type pneumatic

actuators. A further benefit of piston or bellows type actuators is that they produce

linear actuation similar to biological muscle, this makes them an appealing option from

the biomimetics point of view. However such actuators require large support systems

and may have lower actuation speeds than electrical systems.

It is widely expected that artificial muscle will play a role of increasing importance in

biomimetic design. Several of the current technologies can vastly outperform biological

muscle in strain and stress generating characteristics. However current technologies are

not without their weaknesses; SMA has a short cycle life, and relies on thermal energy

loss to work, resulting in low energy efficiency. IPMC and piezoelectric actuators are

currently not available in large enough sizes for large scale robot actuation and Carbon

nano tubes are currently cost prohibitive. Dielectric elastometer actuators possibly offer

the most interesting solution at present, however their reliance on high voltages for

actuation make the prospect of using them in aquatic environments unappealing.

As well as the choice of actuators, developers have been contemplating the number

52

3.4. DISCUSSION

of actuators required. After the early prototype BFC swimmers developed by MIT

and Draper, most developers have opted for a two actuator design. With two active

joints it is possible to actively move the caudal fin through a wide variety of swimming

kinematics. Despite this there are some like the Istanbul Institute of technology robot

dolphin team and the university of Essex robotic fish team who are still opting for a

three or more actuator design. On the other hand there is the emergence of single

actuator designs such as the Tokyo Institute of Technology’s robotic dolphin series and

MIT’s compliant swimming devices which suggest that satisfactory kinematics can be

achieved through the use of passive joints or compliant body sections of appropriately

elastic modulus. Reduction in the number of required actuators has a dramatic cost and

complexity saving implication

3.4.3 Hull Design

The design of flexible hull structures has also seen progress. From the early free flooded

or open tail sections, there seems to be a trend towards closed dry tail sections. The

development of flexible exostructures, that maintain internal volume such as the fin

ray structure have enabled the use of sealed dry tail sections. However how well

such structures can resist the high pressures of deeper operations remains to be seen.

Moulded compliant bodies are also emerging as a popular option for flexible hull

design.

The moulded body designs used on MIT’s compliant body devices and Beihang

University’s Robo-Ray II, demonstrated that it can be a robust construction method and

provided no air pockets are left by the moulding process can result in good pressure

resistance. However for long duration deployments cooling of actuators could become

a problem as such designs do not allow any internal thermal convection. Furthermore

the lessons learned from the Tufts Ray project suggest that this construction method

might not be suitable for larger constructions.

53

3.4. DISCUSSION

The tendency in traditional AUVs towards modular cylindrical designs suggests the

possibility of a market for interchangeable propulsion modules, as used by Watts

(2009). The PF-600, PF-700 and SPC-III have demonstrated that BCF propulsion can

be effective with cylindrical body forms. SPC-III also demonstrated that reasonable

turning performance can still be achieved with a torpedo shaped rigid bodied BCF

swimmer.

3.4.4 PMF swimmers

Developers working on PMF swimming modes seem to have displayed a preference

towards pectoral fin labriform type swimming. It has been shown that paired fins

mounted orthogonal to the body and actuated with two degrees of freedom can produce

propulsive forces for manoeuvres in a full six degrees of freedom. It has also been

demonstrated that such pectoral fin propulsion systems can be constructed with a

modular architecture, making them compatible for retrofitting existing rigid body

AUVs (Bandyopadhyay 2005).

3.4.5 Comparison with traditional AUVs

PMF swimmers share many of the manoeuvrability characteristics of the multiple axis

thruster AUVs in current operation. Their station keeping make them suitable for

missions involving physical interaction such as sub sea welding, or mineral sampling

on the sea bed. However the scalability may be an issue.

BCF like torpedo type AUVs require forward motion to achieve manoeuvrability.

However once forward motion is established the manoeuvrability of BCF swimmers is

far superior. The BCF type robotic swimmer is a good candidate for survey missions

where manoeuvrability is critical, such as shallow water found on littoral zone, or

in the presence of submersed obstacles. The necessity for body deformation would

perhaps be a restrictive factor on the maximum depths achievable.

54

3.5. CONCLUDING REMARKS

The complexity is also a major factor limiting commercial viability as higher

complexity also affects both the cost of purchase and maintenance. The tendency

towards fewer actuators reflects a desire to keep costs low and maintenance simple.

3.5 Concluding remarks

This chapter has presented a comprehensive review of the currently available literature

relevant to biomimetic swimming devices.

Based on this review it has been concluded that further development of biomimetic

swimming machines, requires development of offline optimisation methods for

optimisation of design and control without capital expenditure associated with physical

prototyping.

Furthermore it has been concluded that gait generation and controller selection are

critical factors determining propulsion efficiency.

Whilst PMF swimmers offer greater manoeuvrability, by their nature they require

multiple actuated fins. Whilst multiple fins may afford a degree of redundancy they

also necessarily increase complexity and weight. As such the remainder of this study

will focus on BCF swimming mechanisms.

Although moulded silicon type bodies such as utilised by MIT’s Compliant swimmers

offer the simplest design principal, the resultant devices are restricted in the available

kinematics compared to multiple vertebrae type designs such as Essex G9. Furthermore

it is thought that multiple vertebrae type designs have more scope for integration into

existing modular AUV designs and offer better scalability.

In the next chapter the focus will be on the modelling of a multiple rigid vertebrae BCF

type robotic fish.

55

3.5. CONCLUDING REMARKS

56

Chapter 4

Modelling of a robotic fish

This chapter will describe a harmonic oscillator model of a simple robotic fish,

capable of generating a body and caudal fin (BCF) locomotive gait.

4.1 Introduction

In chapter 3 the design and performance of numerous physical prototype robotic fish

were discussed. Whilst ultimately physical prototypes offer the most robust proof of

concept, the rigidity of physical prototypes limits the scope of experimentation. A

mathematical model on the other hand can be more easily and quickly adapted and

optimised.

The goal of this chapter is to develop an adaptable model for a robotic fish, suitable for

an experimental study. The model must be generic to enable adaptation to changes in

parameters and geometry, the model must bear an acceptable resemblance to reality i.e.

must relate to a physically realizable device.

Mason (2003) modelled a fish as a 2 dimensional deformable Joukowski foil, solving

fluid flow using semi-steady state analytical methods. Such an approach does not

include unsteady fluid effects such as vortex interactions. Moreover by sacrificing

the third dimension orthogonal to the plane of tail movement the effects of caudal,

dorsal and anal fins were completely neglected. Furthermore, variations in body

profile were also completely neglected. Whilst such omissions may be acceptable for

57

4.1. INTRODUCTION

the modelling of anguilliform swimming the Joukowski foil method precludes the

presence of multiple waves within the body, or varying of amplitude along the wave.

Some studies have neglected the body dynamics altogether and simply modelled the

fluid around the caudal fin (Pedro et al. 2003). Such an approach could be valid for

applications where the size of the caudal fin is large in proportion to the profile of the

anterior section of the body, however it does not include the effect of tail motion on

heading. Terzopoulos et al. (1994) presented an intricate deformable fish body model

based on 91 springs forming a deformable mesh. However this study was primarily

for simulation purposes. It is unlikely that anyone would actually attempt to build a

physical device of such complexity.

Dogangil et al. (2005b) used a 4 DOF kinematic chain combined with linear fluid lift

and drag equations. The simplicity of such an approach makes it highly attractive.

However, it could be argued that the omission of unsteady fluid effects may have

resulted in an oversimplification.

The approach taken in this study is to integrate a kinematic chain model of the robotic

fish, with a finite element solution of the Navier Stokes equations of motion on the

surrounding fluid. This will hopefully result in the integration of unsteady fluid effects

with the dynamics of the fish. The system will be modelled with torque generating

actuators placed at the joints in keeping with the use of DC servo motors, which

were identified as the most popular actuator choice for robotic fish in chapter 3. For

simplicity of modelling cavitation effects will be omitted from the CFD simulation

study allowing the use of an incompressible flow solving algorithm.

The remainder of this chapter is divided in to three further section. Section 4.2 will

describe a generic model of a robotic fish as a free floating kinematic chain. Section

4.3 will give an overview of the specific simulation arrangement used throughout this

study, describing both the physical geometry and the finite element analysis of the

58

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

surrounding fluid. Finally section 4.4 will present some concluding remarks.

4.2 Modelling a robotic fish as a free floating kinematic chain

A common feature of the majority of the BCF style robotic swimming machines

surveyed in chapter 3 was a rigid multi-body construction with either actuated or

passive joints between the vertebrae constrained to rotate about a single axis.

Such a vertebrae structure can be modelled as a planar free floating multi body

kinematic chain as shown in figure 4.1.

m1, J1 m2, J2 m3, J3

u1

u2

θ2θ1 θ3

mn, Jn

un−1

θn

. . .
u3

Figure 4.1: Free floating kinematic chain

m1, J1 m2, J2 m3, J3

u1

u2

u3

θ2θ1 θ3

mn, Jn

un

θn

. . .
u4

Figure 4.2: Anchored kinematic chain

Figure 4.2 shows an n bodied anchored kinematic chain. The position is able to move in

n degrees of freedom. There are n−1 inputs in the form of torques between joints and

1 torque between the anchor point and the chain. It is logical to use the joint positions

as the degrees of freedom so that inputs align with states.

Figure 4.1 shows an n body free floating kinematic chain, disregarding global

translation but including global yaw the position of the bodies relative to the global

59

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

centre of mass is able to move in n degrees of freedom. There are n− 1 inputs in the

form of torques between the bodies. As there are fewer inputs than degrees of freedom,

the system is underactuated and as such it is no longer logical to align states with

inputs.

In this study the global bearing of each of the bodies is taken as a degree of freedom

and will be denoted individually as θi or in vector form as q.

τext(i)

Rfy(i−1)

Rfx(i−1)

Rfyi

−Rfxi

li−
θi

li+
θi

−τJoint(i−1)

τJoint(i)

Figure 4.3: A summary of torques applied to a given body within a kinematic chain

The motion of each body can then be determined by summing all the torque forces

and applying Newton’s 2nd Law. Figure 4.3 shows a summary of all the torques

experienced by a given body i within a kinematic chain, where τext(i) is the external

torque experienced as a result of external stimulus, τJoint(i) is the torque experienced at

joint i due to the summation of joint actuation torques and spring torques incorporated

into this model due to observations made that fish in nature use passive muscle tension

to generate spring forces in parallel with active muscle tension (Pabst 1996), finally the

linear reaction forces at the joints R fy,(i) and R fx,(i) will generate torques. Also shown

within the figure li+ and li− are the lengths from the forward of the body and the aft of

the body to the centre of mass respectively and θi is the bearing of the body.

60

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

τR f =

[
−diag{sin(q)}L diag{cos(q)}L

]



R fx

R fy


 (4.1)

Where L is the n× (n−1) matrix of lengths given by,

L =




l1− 0 0 . . . 0

l2+ l2− 0 . . . 0

0 l3+ l3− . . . 0
...

...

0 0 . . . 0 ln+




(4.2)

Resolving the reaction forces at the joints R fx and R fy first requires the resolution of

the relative linear acceleration experienced by the bodies.

By taking the sum of the moments from the local centre of mass to the centre of mass

of each of the other bodies, then dividing by the total mass. The coordinates of the local

centre of mass of each body can be calculated relative to the global centre of mass as a

function of the vector of degrees of freedom q. The x and y coordinates of each body’s

centre of mass relative to the global centre of mass can be found as,

[
x y

]
= M

[
cos(q) sin(q)

]
(4.3)

where M is the (nxn) matrix of moments divided by total mass given by,

Mi, j =−
l j−
(

∑
n
k= j+1 γ(i,k)mk−∑

j
k=0 γ(i,k)mk

)
+ l j+

(
∑

n
k= j γ(i,k)mk−∑

j−1
k=0 γ(i,k)mk

)

∑m
(4.4)

61

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

and γ(i,k) is the function,

γ(i,k) =





0 i = k

1 otherwise
(4.5)

The ith row of M gives the position of the ith body relative to the global centre of mass.

l j− and l j+ are the froward and aft lenghts of the jth body relative to its centre of mass.

M is time invariant. Therefore the relative internal velocities and accelerations of the

bodies can be found through differentiating equation 4.3 twice with respect to time as

such,

[
ẋ ẏ

]
= M

[
−sin(q)q̇ cos(q)q̇

]
(4.6)

where
[

ẋ ẏ
]

and
[
−sin(q)q̇ cos(q)q̇

]
is an n×2 vector. Similarly,

a =

[
ẍ ÿ

]
= M

[
−sin(q)q̈− cos(q)q̇2 cos(q)q̈− sin(q)q̇2

]
(4.7)

By Newtons 2nd law the transposed (n− 1)× 2 matrix of reaction forces at the joints

can be calculated as,

R f T =

[
R f T

x R f T
y

]
= M2

(
a+A− Fext

m

)
(4.8)

Where Fext is the vector of external forces acting on each of the bodies, m is the vector

of masses of the bodies, a is the local acceleration given by equation 4.7 and A is the

acceleration experienced by the global centre of mass given by,

A =
∑Fext

∑m
(4.9)

62

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

and M2 is the (n−1)×n matrix made up of masses given by,

M2(i,k) =





mi i≤ k

0 otherwise
(4.10)

=




m1 0 0 . . . 0

m1 m2 0 . . . 0

m1 m2
. 0

...
...

... . . . 0

m1 m2 . . . mn−1 0




(4.11)

By applying Newtons 2nd law the motion can then be described by the second order

system of ordinary differential equations,

Jq̈ = ∑τ = (τR f + τExt + τu) (4.12)

Substituting equations 4.1, 4.7 and 4.8 into the term τR f yields,

Jq̈ =

(
diag{sin(q)}LM2

(
M
[
−sin(q)q̈− cos(q)q̇2]+Ax−

Fextx
m

))

−
(

diag{cos(q)}LM2

(
M
[
cos(q)q̈− sin(q)q̇2]+Ay−

Fexty

m

))

+τExt + τu (4.13)

This can be transformed into the standard manipulator form,

H(q, q̇)q̈+C(q, q̇)q̇+Kq+D+Bu = 0 (4.14)

63

4.2. MODELLING A ROBOTIC FISH AS A FREE FLOATING KINEMATIC CHAIN

Where the matrix function H(q, q̇) is given by,

H = J+
[

diag{sin(q)} diag{cos(q)}
]

LM2M




diag{sin(q)}

diag{cos(q)}


 (4.15)

and the matrix function C(q, q̇) is given by,

C =Cconst+

[
−diag{sin(q)} diag{cos(q)}

]
LM2M




diag{cos(q)}

diag{sin(q)}


diag{q}≈ 0∀q∈Rn

(4.16)

Cconst is the constant damping matrix corresponding to dampening coefficients of the

joints in the form,

Cconst =




c1 −c1 0 0 . . . 0

−c1 c2 + c1 −c2 0 . . . 0

0 −c2 c2 + c3 −c3 . . . 0
...

...

0 0 . . . 0 −cn cn




(4.17)

and K is a spring matrix included to simulate the presence of axial springs at the joints,

K will be in the form of an n× n time invariant singular matrix with the following

structure,

K =




k1 −k1 0 0 . . . 0

−k1 k2 + k1 −k2 0 . . . 0

0 −k2 k2 + k3 −k3 . . . 0
...

...

0 0 . . . 0 −kn kn




(4.18)

D will be the composition of the pure external disturbance torques and the torque

64

4.3. OVERVIEW OF SIMULATION STUDY

components of τR f corresponding to the external linear forces.

If the robot fish n body system has n− 1 controllable pure torque inputs at the joints,

the corresponding n× (n−1) controllable input matrix B will be,

B =




1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0
...

...

0 0 . . . 0 −1




(4.19)

or a singular input at joint i will correspond to an n× 1 input matrix Bi where all the

values are 0 except the ith which equals 1 and the (i+1)th which equals −1.

4.3 Overview of Simulation Study

4.3.1 Structure

The starting point for the structural element of the simulation was a three dimensional

model generated by using a CAD software package. The base geometry selected

comprised of an approximately tuna shaped hull orientated facing forward along the

X axis, symmetrical over the XY plane and the XZ plane. Added to the hull was a thin

caudal fin orientated in the ZX plan, again symmetrical over the XY and XZ planes.

Dorsal, anal and pectoral fins were omitted, a third angle view of the geometry can

be found in figure 4.4. As can be seen the plan and profile cross sections of the body

appear as smooth hydrofoils. The caudal fin is a lamina fin shape.

The key dimensions of the model were as follows; length 1m, maximum beam 0.15m,

maximum height 0.3m and total volume 0.23849m3. This gave the fish a forward facing

area of ≈ 0.0707m2.

65

4.3. OVERVIEW OF SIMULATION STUDY

Figure 4.4: 3D geometry used for simulations

Steady state CFD simulation of the body stationary in a flow of 0.2ms−1 gave the drag

force as ≈ 0.063176N. The non dimensional coefficient of drag is given by

cd =
2Fd

ρv2A
(4.20)

where Fd is the measured drag force, ρ is the density of the surrounding fluid and

A is the cross sectional area. The nondimensional drag coefficient of the body was

calculated as cd ≈ 0.04468 which is typical for a streamlined body in lamina flow.

The geometry was divided into four sections with divisions parallel to the ZY plane as

66

4.3. OVERVIEW OF SIMULATION STUDY

shown in figure 4.5, these four sections were then modelled as four rigid bodies within

a kinematic chain with joints located on the X axis at the intersection on the sections.

Figure 4.5: Sectional division of fish geometry

The forward section shown in red in the figure comprised of 60% of the total body

length, in keeping with tunniform locomotion where movement is restricted to the

anterior 40% of the body. Locating the joint between the forward most two segments at

the origin, and the other two joints on the X axis at locations x = [−0.14 −0.28]m

respectively, the centre of mass of the four bodies was found on the X axis at locations

x = [0.2422 −0.06175 −1.193 −0.349]m respectively. Assuming the body had

uniform density equal to the density of fresh water the masses of the bodies were

calculated as, [19.18 3.226 1.155 0.288]Kg respectively. The rotational moment

of inertia of each body around the Z axis at its centre of mass for each body was found

to be

[4.07e−1 1.336e−3 2.2e−4 1.797e−4]Kg m2

Substituting the mass and position data for the bodies into equation 4.4 gave the matrix

67

4.3. OVERVIEW OF SIMULATION STUDY

of moments (M) as,

M =




4.7416e−2 1.6824e−2 4.2574e−3 8.3324e−4

−1.9478e−1 −4.4926e−2 4.2574e−3 8.3324e−4

−1.9478e−1 −1.2318e−1 −4.8743e−2 8.3324e−4

−1.9478e−1 −1.2318e−1 −1.3574e−1 −6.8167e−2




(4.21)

substituting the same mass and position data into equations 4.2 and 4.10 then taking the

product yields,

LM2 =




4.64540 0 0 0

2.68520 0.25243 0 0

2.68520 0.45164 0.10049 0

1.32342 0.22259 0.07969 0




(4.22)

These values for M and LM2 have been used throughout this study. A summary of the

properties of the four sections can be found in table 4.1 and joint positions are shown

in table 4.2.

Table 4.1: Summary of section properties

Section 1 2 3 4
mass (Kg) 19.18 3.226 1.155 0.288
J (Kg m2) 4.07e-1 1.336e-3 2.2e-4 1.797e-4

COM




x
y
z


(m)




0.2422
0
0






−0.06175

0
0






−1.193

0
0






−0.349

0
0




Table 4.2: Joint location

Joint 1 2 3

Position




x
y
z


(m)




0
0
0






−0.14

0
0






−0.28

0
0




68

4.3. OVERVIEW OF SIMULATION STUDY

4.3.2 Fluid

The fluid interactions were solved using the open source finite element solver

openFoamT M. In order to include fluid interactions with the motion of the body a

dynamic mesh fluid solver was required. The native openFoam pimpleDyMFoam

solver was selected which is a multiphase solver utilizing the PIMPLE algorithm,

alongside a dynamic mesh solver.

The PIMPLE algorithm is a hybrid of the semi implicit method for pressure linked

equations (SIMPLE) and pressure implicit with splitting operators (PISO) algorithms

for the solution of the Navier Stokes equations of motion common to computational

fluid solvers. The combination aims to maintain the robustness, accuracy and low

computational cost of the PISO along with the comparability of SIMPLE with

additional equations for turbulent transport terms (Barton 1998).

bodyi bodyi+1

bodyi

bodyi+1

Area of grid tension

Area of grid compression

Figure 4.6: Localized grid tension and compression of rigid body movement

Limitations of rigid body mesh transformation proved restrictive. It was discovered

that if rigid bodies were used the grid will suffer from localized stretching and

compression around the joints. Figure 4.6 illustrates this problem, as the angle between

the bodies increases the compression in the shaded area below the joint increases as

69

4.3. OVERVIEW OF SIMULATION STUDY

does the tension in the shaded area above. This resulted in significant restrictions on

the maximum amplitude of joint movement in order to avoid grid elements becoming

prohibitively small or large.

One possible solution considered was to regularly re-mesh whenever mesh elements

became overly deformed, however such a method was deemed to be prohibitively

computationally expensive.

bodyi bodyi+1

bodyi

bodyi+1

Distributed deformation

Figure 4.7: Disconnected body deformation

A second solution considered was to disconnect the segments providing space between

the segments to allow for distribution of mesh deformation as illustrated by figure 4.7.

However it was suggested that the discontinuity of the resultant body surface could

cause additional turbulence and was unrealistic in terms of potential application.

The final solution arrived at was to include a deformable segment of the geometry

between the rigid segments. This is illustrated in figure 4.8 where the deformable

sections distribute the deformation. The result was that mesh deformations are then

distributed over the deformable segment of the geometry rather than localized at the

joint. This was considered in-keeping with the use of a flexible membrane to cover

rigid vertebrae design principal used in several robotic fish featured in chapter 3.

Therefore the boundaries between rigid segments from figure 4.5 were separated by

70

4.3. OVERVIEW OF SIMULATION STUDY

bodyi bodyi+1

bodyi

bodyi+1

Distributed deformation

Figure 4.8: Distributed mesh deformation

Figure 4.9: Segment map of geometry

deformable segments. Figure 4.9 shows the final segmentation of the geometry, with

rigid segments alternating with deformable segments. The green, turquoise, light

blue and dark blue segments are rigid and the red orange and yellow segments are

deformable.

The fluid domain was selected as a cylinder orientated along the X axis, with centre at

the origin, a total length of 6m and a radius of 2m. Since the geometry was selected to

be symmetrical about the XY plane and all rotation was constrained to be around the

71

4.3. OVERVIEW OF SIMULATION STUDY

mirror

wall
outlet

time varying inlet

6m

4m

model

Figure 4.10: CFD domain

Z axis, it was assumed that the fluid motion would also be symmetrical about the XY

plane. A diagram of the CFD domain complete with dimensions can be found in figure

4.10.

Figure 4.11: Meshed CFD domain

The original mesh was generated with the native openFoam mesh generation algorithm

snappyHexMesh. As the primary interest was the fluid structure interactions rather

than the far field flow, a coarse far field mesh was selected with graduated refinement

towards the structure of interest. Figure 4.11 shows a 3D image of the mesh used, the

densely meshed area in the centre contained the robotic fish.

Figure 4.12 demonstrates that the near field mesh was fine enough to capture turbulent

72

4.3. OVERVIEW OF SIMULATION STUDY

Figure 4.12: Vortices shed from caudal fin during motion

effects such as vortex formation. A pair of attached vortices can be seen at tail, and a

further two shed vortices can be seen down stream.

The mesh deformations were solved using the native openFoam mesh deformation

algorithm displacmentLaplacian with inverse distance diffusivity. Figure 4.13 shows

the mesh surrounding the robotic fish in a flexed position. This demonstrates that the

deformable segment approach taken allowed for significant body deformation whilst

maintaining good uniformity of the surface mesh.

Figure 4.13: Surface mesh remains comparatively uniform throughout body motion

Exogenous inputs to the mechanical system could then be calculated at each time step

through integration of pressure over the surface to calculate fluid induced forces and

73

4.4. CONCLUDING REMARKS

torques.

4.3.3 Coupling fluid and structure

For simplicity an explicit step approach was used in conjunction with a coupling

relaxation and a very small time step. The ordinary differential equations (ODEs) were

resolved with a time step of the order of 1e− 5s to compensate for the high degree of

coupling between fluid and structure models. It was found that this approach resulted

in a stable coupling between the two models although it is conceded that an implicit

algorithm may have significantly reduced computational cost.

Open Foam (CFD solver)

Octave (solid body ODE solver)

Forces and torques txt filesPosition of bodies txt files

Figure 4.14: Flow diagram of solid body and CFD simulation

Figure 4.14 shows a flow diagram illustrating the coupling between the fluid and

structure solvers. Full details of the hardware and software used including all code

produced for this study can be found in appendix B.

4.4 Concluding Remarks

In this chapter a nonlinear state space model for a robotic fish modelled as an n bodied

free floating kinematic chain has been derived.

The model incorporates a spring term, with the goal of storing energy during the non

inertia phases of periodic motion in order to reduce the negative work characteristically

associated with periodic motion.

Further to this fluid interactions have been solved on a dynamic meshed finite element

74

4.4. CONCLUDING REMARKS

Navier Stokes solver, using the open source CFD software package openFoamT M.

The geometry used is a closed shell with alternating rigid and flexible section to allow

for smooth mesh deformations. This is in keeping with a sheathed vertebrae design

used by several examples discussed in chapter 3.

Chapter 5 will go on to discuss methods for generating an effective propulsion gait for

the model.

75

4.4. CONCLUDING REMARKS

76

Chapter 5

Energy based gait generation for an

underactuated robotic fish

This chapter will discuss gait generation for an underactuated body and caudal

fin (BCF) type robotic fish based on the control of state energy.

5.1 Introduction

In chapter 4 a kinematic model of a free floating robotic fish was described. This

chapter will focus on the production of an effective swimming gait for the model.

As illustrated in chapter 3 generation of an appropriate gait is critical in producing

effective propulsion.

In chapter 4 it was mentioned that a free floating kinematic chain is necessarily

underactuated by at least a degree of one, meaning that there exists at least one

fewer control input than degrees of freedom. The degree of actuation of a system is

determined by the number of actuators compared to the number of degrees of freedom.

For instance if a robotic manipulator is designed to move in R6 space and possesses 6

actuators i.e. one for each degree of freedom. The robot is said to be fully actuated.

If however the robot possesses < 6 actuators the robot is said to be underactuated.

Conversely if the robot possesses > 6 actuators then it can be described as over

actuated.

77

5.1. INTRODUCTION

Over actuated devices have often been used in critical applications where a degree of

redundancy is required. However the control of underactuated devices has been an

area of growing interest. Traditionally robotic engineers have pursued a geometric

approach to kinematic motion control, i.e. at time t position should be x. Whilst such a

control approach can in theory generate any given kinematic pattern for fully actuated

systems. When significant unmodelled disturbances are present accurate geometric

control requires a high degree of stiffness in the control which results in highly energy

intensive movement. Furthermore interactions with unsteady fluid effects, such as

the vortex interactions as mentioned in chapter 2 require a degree of passivity for the

gait to adapt to the surrounding flow. A more passive structure can be achieved by

reducing the amount of active control inputs and relying more on the system dynamics

to create the motion. This increases the degree of underactuation of the system. In the

robot fish world MIT’s compliant swimming devices (Alvardo 2007) and the Beihang

University Robo-ray II (Cai et al. 2010) are both highly underactuated swimming

devices; both devices use system dynamics to determine kinematic motion rather than

active controllable inputs. Other applications where underactuation has been employed

include underactuated manipulator arms for space vessels (Mukherjee 1993).

Methods for the control of underactuated systems have mostly focused on the cart

pendulum or the PenduBot. Figure 5.1 shows a diagram of the typical cart pendulum

arrangement. The system consists of a rigid pendulum mounted on a free moving cart.

The cart pendulum as shown has two degrees of freedom, the angle of the pendulum θ

and the horizontal displacement of the cart x. Typically the model is simulated with a

single controllable input in the form of horizontal input force acting on the cart. Figure

5.2 shows a diagram of the typical PenduBot arrangement. The system consists of two

rigid bodies connected in series to a fixed point pivot. The PenduBot as shown has

two degrees of freedom measurable as either the orientation of the two bodies or the

78

5.1. INTRODUCTION

m

x

θ

g

l

Figure 5.1: Inverted pendulum

angle of the two joints, θ1 and θ2. Typically the pendubot is controlled through a single

torque input located at the pivot. Each of these devices can be described by a system

of nonlinear ordinary differential equations similar in form to equation 4.14, with joint

variables q = [θ x]T for the cart pendulum, q = [θ1 θ2]T for the PenduBot.

A typical geometric control objective for the cart pendulum could be to ‘swing up’

from an initial stable point to a dynamicaly unstable point. i.e. [π 0 0 0]T →

[0 0 0 0]T . Or for the PenduBot [π π 0 0]T → [0 0 0 0]T .

Spong (1996) presented a swing up control method for the Pendubot. Astrom and

Furuta (2000) presented swing up control of the cart pendulum, similarly (Zhong and

Rock 2001) presented a swing up method for the double cart pendulum, an expansion

of the cart pendulum where two pendulums were placed on a single cart.

More of interest for this study is the control of a periodic motion over underactuated

79

5.2. STATE SPACE ORBIT AS A GAIT

m1, J1

m2, J2

u1

θ2

θ1

g

Figure 5.2: PenduBot

systems. Periodic motions can be described as an orbit in the state space around some

point. Aracil et al. (2002),de Wit et al. (2002) and Shiriaev et al. (2005) all reported on

orbital stabilization of cart pendulum.

The remainder of this chapter will be divided into two further sections. Section 5.2

discusses the theory of orbital control of a state space and how such a method could be

used to generate a gait on an underactuated robotic fish. Whereas section 5.3 presents

some concluding remarks.

5.2 State space orbit as a gait

BCF swimming locomotion like most biological locomotion relies on a periodic motion

or gait. Any stable periodic motion can be plotted in state space as an enclosed path

through the space. Figure 5.3 shows two such paths. Figure 5.3 (a) shows a symmetrical

impulse orbit, the state travels at uniform velocity to a fixed point, then experiences

80

5.2. STATE SPACE ORBIT AS A GAIT

q0 q

q̇

0 q0 q

q̇

0

(a) (b)

Figure 5.3: (a) Impulse orbit; (b) Bang bang orbit

instantaneous acceleration to a uniform velocity in the opposite direction. An impulse

orbit could be analogous to a ping-pong ball being hit back and forth in the absence of

air resistance and gravity. Figure 5.3 (b) shows a symmetrical bang bang orbit, the state

accelerates uniformly in one direction to a fixed velocity then accelerates uniformly in

the opposite direction. A bang bang orbit could be analogous to a binary oscillation of

acceleration.

In addition to those shown in figure 5.3 there is an infinite number of possible shapes

possible for a state space orbit. Each one corresponding to a different periodic motion.

The goal is to find an orbit, or a group of orbits which will result in some degree of

optimality in BCF swimming.

Many studies have confined the search space for optimum BCF gaits for a robotic tuna

to those based around simple harmonic motions, i.e. x(t) = asin(2πt/λα) where α

is some phase angle, a is an amplitude and λ is a wave length (Barrett 1996; Watts

2009). Such a motion results in an elliptical orbit through the state space and as such

this study will focus on elliptical orbits or orbits on the surface of a transformed hyper

81

5.2. STATE SPACE ORBIT AS A GAIT

sphere (hyper ellipse).

5.2.1 Orbital stabilisation control

M

q(t) m

C

K

F (t) N

Figure 5.4: Mass spring damper system

Figure 5.4 shows a simple mass spring damper system, a mass is placed on a surface

and is allowed to move along the horizontal axis. The mass is attached to a point on

the horizontal axis via a spring providing linear force proportional to translation of the

mass and a damper providing linear force proportional to translational velocity. The

mass spring damper system can be described as a second order system with a single

degree of freedom. Assuming the system is based on a frictionless surface and motion

is orthogonal to gravity the system in figure 5.4 can be described by,




q̇

q̈


=




0 1

−M−1K −M−1C







q

q̇


+




0

M−1


F (5.1)

where K is the linear spring constant, C is the dampening coefficient and M the mass.

A harmonic periodic motion of the mass can be described as,

q(t) = q0±
√

2sin(t +α) (5.2)

where q0 is an arbitrary point within the system and α is an arbitrary phase value. The

82

5.2. STATE SPACE ORBIT AS A GAIT

velocity time function must then be,

q̇(t) =±
√

2cos(t) (5.3)

Equations 5.2 and 5.3 can be plotted as an orbit around the point q0 as shown in figure

5.5. A classical geometric control approach to achieving this motion would be to

prescribing the position at time t to equal the output of equation 5.2. However if it is

sufficient that system merely follows the path from figure 5.5 the values α is completely

arbitrary. For a given state error at one α value will be different from error at another

α value. An incorrect choice of α can result in an error even when the state lies on the

desired path, if that α corresponds to a different orbit.

q0 q

q̇

0

Figure 5.5: State space orbit

Figure 5.5 shows the orbital path of the motion described in equation 5.2. The motion

follows a uniform elliptical path around q0.

83

5.2. STATE SPACE ORBIT AS A GAIT

The set of all possible orbits that follow the same path as equation 5.2 can be expressed

as,
[
(q−q0) q̇

]



(q−q0)

q̇


= xTIx = 2 (5.4)

Equation 5.4 can be rewritten,
1
2

p2 +
1
2

ṗ2 = 1 (5.5)

where p = q−q0. Equation 5.5 is equivalent to the sum of stored spring and inertia

energy for a system with spring constant 1Nmrad−1 and mass of 1KG. Therefore

equation 5.4 can be described as a unit spring mass state energy equation.

For an n dimensional system a unit spring mass state energy equation of the form

xTIx = 2 can be satisfied by the set of all possible orbits on the surface of a n

dimensional hypersphere. This set will include simple harmonic orbits describable as

uniform elliptical motion through the state space as shown in figure 5.6 (a), and more

complex orbits with multiple harmonics as shown in figure 5.6 (b) where the orbital

path travels around the surface multiple times before repeating itself.

Furthermore it can be deduced that any possible stable elliptical state space orbit

of system can be represented as a unit state energy equation with some state

transformation.

xTQx = 1 (5.6)

where Q > 0 is some full rank positive definite matrix.

Proof: If T is any real invertible matrix, then an orbit satisfying equation 5.4 in the

space z = Tx must necessarily satisfy xTTTTx = xTQx = r in the space x. It is also

clear that TTT = Q is positive definite.

The control of state energy is a central concept in the control of underactuated systems.

84

5.2. STATE SPACE ORBIT AS A GAIT

(a) (b)

Figure 5.6: (a) Simple harmonic orbit on hypersphere; (b) Multiple harmonic orbit on
hypersphere

Since the state energy level will guarantee that the state is on the orbital path the

regulation of multi dimensional motions can be achieved through the control of a single

output (Ortega et al. 2001).

Note there is no actual need for the physical energy of the system to correspond to the

energy function used, for example the physical energy of the system in figure 5.4 is

given by,

E =
1
2

[
q q̇

]



K 0

0 M







q

q̇


 (5.7)

however any positive definite Q could be described as an energy equation.

The difference between the physical and control energy equation may result in negative

work for example. For the orbit described by equations 5.2 and 5.3 applied to the system

described in equation 5.1, the state energy will be determined by the time dependent

function,

Ėr = (K−M)sin(2t) (5.8)

85

5.2. STATE SPACE ORBIT AS A GAIT

Ėr < 0 implies a reduction in total state energy is required. This can be achieved either

through dissipation of energy or negative work form the controller. For the system

described in equation 5.1 dissipation of energy can be calculated as,

Ėd =−Dq̇2 (5.9)

therefore the required controller power input will be,

Pin = Ėr− Ėd = (K−M)sin(2t)+2Dcos2(t) (5.10)

In this study the search space for BCF swimming gaits will be restricted to gaits where

the energy equation of the orbit is a close match to the physical energy coefficients. It is

thought that this will improve efficiency through avoiding negative work, i.e. work that

actively removes energy from the state. However it can be surmised that if the energy

dissipation is at all times greater than any negative gradient of the systems physical

energy during the orbit, then no negative work will occur. As the robotic fish is expected

to operate in a fluid environment, there will be significant dissipation of inertia energy

into the surrounding fluid. Therefore it is likely that a small underestimation of the

inertia will not result in negative work. As such for this study fluid induced added

inertia terms can be safely omitted from the inertia term in the control energy equation.

5.2.2 Gait and Orbit

Barrett (1996) experimentally derived an optimal gait for a tuna geometry. The gait was

based on the restricted set of kinematics of the from,

y(x, t) = [c1x+ c2x2]sin(ωt +
2πx
λ

) (5.11)

where x is longitudinal displacement along the tail, [c1x + c2x2] is the amplitude

86

5.2. STATE SPACE ORBIT AS A GAIT

envelope, ω is the body wave frequency, λ is the body wave length and t is time in

seconds. The optimal values determined in Barrett (1996) are given in table 5.1.

Applying this kinematic to the model described in chapter 4, the lateral translation for

the body centres of mass are given by the time lines shown in figure 5.7 (a). Figure 5.7

(b) shows a plot of the position of the centres of mass for the three bodies at sample

points during the motion, the motion envelope can be seen to increase towards the

anterior of the robotic fish. Equation 4.3 gave the forward kinematic between body

bearing space and lateral displacement space as y = Msin(q). However det(M) = 0

implies that a global inverse kinematic does not exist. A least square error best fit for q

is shown in figure 5.8. With the corresponding displacement time line shown in figure

5.9 (a). Figure 5.9 (b) shows a plot of body position at sample points during the motion

for the least square kinematic. It can be noted that the motion envelope is marginally

narrower than the original towards the end of the body. This is due to the physical

constraints of the four body kinematic chain, by adding more links to the chain the

kinematic could be more closely approximated.

Table 5.1: Optimal tuna kinematic parameters (Barrett 1996)

c1 0.00372
c2 0.00483
ω 5.5401
λ 1.27

For the time series shown in figure 5.8 the following state energy equation was solved

numerically for Q,
[

qT q̇T
]

Q




q

q̇


= 1 (5.12)

The resulting Q matrix found was,

87

5.2. STATE SPACE ORBIT AS A GAIT

(a) (b)

Figure 5.7: Optimal kinematic from Barrett (1996) (a) plot of lateral displacment of
points against time, (b) plot of x and y position of points at sample times
during the motion

Q =


3.97 4.31 22.93 75.80 4.25 22.09 75.05 −24.48

4.31 7.27 33.32 109.92 6.09 31.95 108.33 −37.35

22.93 33.32 178.06 584.60 32.60 170.16 577.44 −193.73

75.80 109.92 584.60 1934.80 109.02 564.40 1918.68 −609.15

4.25 6.09 32.60 109.02 7.52 32.30 110.92 −24.14

22.09 31.95 170.16 564.40 32.30 166.34 563.50 −164.76

75.05 108.33 577.44 1918.68 110.92 563.50 1924.56 −530.74

−24.48 −37.35 −193.73 −609.15 −24.14 −164.76 −530.74 465.66




(5.13)

with a mean square error over the time series of 2.1867× 10−18. This demonstrates

that the set of state space orbits described by xTQx for the system described in chapter

4 contains almost the exact motion described in figure 5.8.

88

5.3. CONCLUDING REMARKS

Figure 5.8: Least square best fit q

5.3 Concluding Remarks

In this chapter the concept of state energy orbits has been discussed for the control of

motion on underactuated systems.

By controlling state energy rather than absolute position, high dimensional motion can

be controlled with a single measurable output.

It was argued that a constant physical state energy orbit results avoid negative work, and

as such could be considered most energy efficient. It was also argued that if sufficient

inertia dissipation is present in the system underestimation of inertia energy will not

result in negative work, as such fluid induced added inertia can be safely omitted from

control state energy equations.

The next chapter will introduce a model based deadbeat control method for the control

of state energy in order to apply the methods described here to the system described in

chapter 4.

89

5.3. CONCLUDING REMARKS

(a) (b)

Figure 5.9: Least square best fit kinematic (a) plot of lateral translation against time,
(b) plot of x and y position of points at sample times during the motion

90

Chapter 6

Deadbeat state energy controller

This chapter will discuss a deadbeat strategy for the control of energy on a

nonlinear manipulator system.

6.1 Introduction

In chapter 5 the use of state space orbits to describe periodic motion was discussed.

Furthermore it was suggested that the periodic motion for a BCF swimming gait could

be described as a state space orbit. The advantage being that high dimensional motion

could be described by a single measurable parameter. In this chapter a deadbeat

orbital stabilisation controller will be described. This chapter will discuss a proposed

deadbeat state energy controller in order to control and stabilise the state space orbit.

Deadbeat controllers for gait generation are common amongst terrestrial walking and

hopping robots on unknown terrains. Where the necessity for balance requires a tightly

controlled limit cycle with significant exogenous disturbances.

Deadbeat control is a discrete control method that effectively requires the reduction of

the closed loop discrete transfer function for the deadbeat period between the reference

and the control output to unity. Therefore effective deadbeat control requires accurate

knowledge of system dynamics.

For terrestrial walking robots deadbeat controllers are based around known models for

the common spring loaded inverted pendulum (SLIP) (Dai and Tedrake 2012).

91

6.1. INTRODUCTION

Deadbeat controllers for underactuated single legged hopping robots have been

described in Saranli et al. (1998),Ankarali et al. (2009) and Uyanic et al. (2011).

Asano and Xiao (2012) presented a robust deadbeat control for an underactuated spoked

walker based on an extended SLIP model. Psudo-deadbeat control for a four legged

robot again based on a known SLIP model was presented in Armada et al. (1993).

Deadbeat controllers are also common in the field of power electronics, used primarily

in generation and transformation. Deadbeat controllers are often used within pulse

width modulator (PMW) control for inverters Kawamura et al. (1988). Or to achieve

accurate control over torque, flux or current in permanent magnet electric motors

(Lorenz and Valenzuela 2012; Li et al. 2012).

As mentioned before deadbeat control is a purely discrete control method, as such

there is no analogue equivalent. The time period for a deadbeat controller determines

the accuracy, if the time period is to large then between each iteration of the control

algorithm a significant amount of error may be allowed to accumulate this can have a

significant negative effect on the performance of signal tracking, for instance a steady

state disturbance would translate to a larger steady state error. However as the time

period approaches zero the deadbeat controller has to make more ‘aggressive’ control

moves to compensate the existing error within the period, meaning that a small error in

modelling could result in significant overshoot, which in turn can lead to hunting and a

complete destabilisation of the system. This means the shorter the deadbeat period the

more fragile the closed loop system will be.

In this study a deadbeat controller is derived from the discrete system model for state

energy. The approach is chosen as it encompasses the nonlinearity of the system

without the addition of excessive complexity. This provides a reliable means of

regulating state energy to test the hypothesis of energy based gait control for a robotic

fish.

92

6.2. DEADBEAT CONTROL

The remainder of this chapter will be divided into four further sections, section 6.2 will

briefly introduce deadbeat control and discuss some of its advantages. In section 6.3 a

deadbeat controller for state energy will be presented. Section 6.4 will present results

from a simulation study applying the deadbeat controller to the model form chapter 4

.Finally section 6.5 will present some and concluding remarks.

6.2 Deadbeat control

A control response is considered deadbeat if and only if, for the defined deadbeat

interval any state error present at the beginning of the interval is guaranteed to reduce

to zero steady state error at the end of the interval, irrespective of control response

during the interval. Therefore a deadbeat controller is automatically robustly stable.

However satisfaction of the deadbeat criteria can be considered fragile as it is highly

dependent on implementation accuracy. Implementation accuracy can be affected by

uncontrollable factors such as actuator noise, resolution of available digital analogue

conversion and accuracy of model.

This is mathematically equivalent to ensuring that the closed loop discrete transfer

function for the deadbeat period between n reference signals and n controllable outputs

is exactly equal to an n×n identity matrix regardless of the system coupling.

Put more simply in order to be considered deadbeat, a system with output y = Cz given

an input rn must have Czn+1 = rn, therefore the discrete closed loop transfer function

for the deadbeat period between yn+1/rn ≡ I.

For an uncertain discrete state space system with a linear objective function of the form,

zn+1 = Azn +B1wn +B2un

en = Czn− rn (6.1)

93

6.3. DEADBEAT CONTROL OF STATE ENERGY

where wn and un are uncertain and controllable inputs respectively, and en is the error

at time n. A deadbeat response can be achieved by selecting un that satisfies,

C(Azn +B2un) = rn+1 (6.2)

At each time step the existing error will then be exactly corrected. The error at any time

step will be constrained by the effect of exogenous disturbances during the previous

deadbeat period,

en+1 = CB1wn (6.3)

For a continuous time system, the maximum magnitude of the error is then determined

by size of the deadbeat period; the shorter the deadbeat period the smaller the error.

This form of deadbeat control could also be described as an analytically optimised

model predictive controller with a prediction and control horizon of 1 (Rawlings and

Mayne 2009). This strong parallel with model predictive control means that deadbeat

control can be achieved for highly nonlinear systems provided that an analytical

solution to the discrete time error function exits.

6.3 Deadbeat control of state energy

In the previous section an example of a simple deadbeat controller for a discrete time

state space system with a linear objective function was given. This section will discuss

a deadbeat controller for a system with a state energy objective function i.e. e = r−

xTQx.

For an uncertain discrete system with dynamics the form described in equation 6.1, the

system dynamic equation can be expressed as the sum of three responses. The natural

response given by Axn, the response of the system to disturbance given by B1wn and

the controllable input response given by B2un. Substituting the dynamic equation into

94

6.3. DEADBEAT CONTROL OF STATE ENERGY

the objective function yields,

en = rn− (Axn +B1wn +B2un)
TQ(Axn +B1wn +B2un) (6.4)

By separating the terms containing uncontrollable disturbance elements, the discrete

state error function given in equation 6.4 can be divided into a controllable error

function,

ecn = rn− (Axn +B2un)
TQ(Azn +B2un) (6.5)

and an uncontrollable disturbance error function of which the system controller can

have no knowledge,

edn =− (2Axn +B1wn +2B2un)
TQ(B1wn) (6.6)

therefore if un is chosen such that equation 6.5 is equal to 0 a deadbeat response will be

achieved.

6.3.1 Application to robotic fish

Deadbeat control of the model developed in chapter 4 requires the discretization of the

dynamic equation 4.14 over some deadbeat interval.

For any given state x = [q̇T qT]T , equation 4.14 can be locally linearised as,




q̇

q̈


=




0 I

H(x)−1K H(x)−1C(x)







q

q̇


+




0

H(x)−1


w+




0

H(x)−1B


u

(6.7)

where w is equivalent to the sum of the disturbance vector D from equation 4.14

and inaccuracies caused by model simplification. Equation 6.7 can be written as the

95

6.3. DEADBEAT CONTROL OF STATE ENERGY

continuous linear state space equation,

ẋ = Ãx+ B̃1w+ B̃2u (6.8)

which can in turn be discretized over a period ∆t as,

xt+∆t = eÃ∆txt + Ã−1(I− eÃ∆t)(B̃1wt + B̃2ut) (6.9)

the state energy is then given by,

E = xTQx (6.10)

Substituting Equation 6.9, gives a discrete equation for energy, in terms of current state,

and input.

Et+∆t = nTQn+nTQT2u+uTTT
2 Qn+uTTT

2 QT2u

(uTTT
2 +nT +wTTT

1)QT1w+wTTT
1 Q(T2u+n+T1w) (6.11)

Where n is the systems natural response given by,

n = eÃ∆txt

and T1 and T2 are the uncertain and controllable input responses respectively given by,

T1 = Ã−1(I− eÃ∆t)B̃1

T2 = Ã−1(I− eÃ∆t)B̃2

96

6.4. RESULTS

The controllable state energy error function will be,

ec(t+∆t) = r−nTQn+nTQT2un +uT
n TT

2 Qn+uTTT
2 QT2un (6.12)

Substituting ec(t+∆t) = 0 for a single input system equation 6.12 forms a quadratic

equation in terms of un, the solution to which will be given as,

un =
nTQT2±

√
nTQT2

2 +4TT
2 QT2(nTQn− r)

2TT
2 QT2

(6.13)

This gives two possible solutions to the deadbeat objective provided that,

nTQT2
2 +4TT

2 QT2(nTQn− r)≥ 0 (6.14)

Selection of the solution of least magnitude will result in the minimum cost deadbeat

control response for the period ∆t.

6.4 Results

The spring values were determined experimentally through trial and improvement, to

select values that result in an effective forward swimming kinematic. Eventually spring

constants for the three joints of ki = [15 20 12.5]Nm rad−1 were selected.

Giving the spring matrix,

K =




15 −15 0 0

−15 35 −20 0

0 −20 32.5 12.5

0 0 −12.5 12.5




(6.15)

97

6.4. RESULTS

The control state energy equation was selected to reflect the physical energy of the

system. The state energy matrix Q was given by,

Q =
1
2




K 0

0 J+M′diag(m)M


 (6.16)

where m is the vector of body masses J is the diagonal matrix of rotational moments of

inertia of the bodies and M is the matrix of moments given in chapter 4.

Because Q reflects the mechanical energy of the system the closed loop system response

should follow on the system transients. The system is nonlinear, however for small

perturbations in the state space, can be approximated locally by an LTI system. The

eigenvalues of the central LTI approximation of system dynamic matrix are given by,

−23.4061+255.4551i

−23.4061−255.4551i

−1.2300+69.6848i

−1.2300−69.6848i

−0.0140+17.0379i

−0.0140−17.0379i

−0.0027+1.0459i

−0.0027−1.0459i

(6.17)

Therefore the corresponding undamped system transient for the nonlinear system are

98

6.4. RESULTS

likely to be approximated by,

40Hz

11Hz

2.7Hz

0.17Hz

(6.18)

The deadbeat controller described in the previous section was applied to the simulation

described in chapter 4.

Figure 6.1: Plot of system state energy against time

An energy reference value of 0.35J was selected semi arbitrarily as it was large enough

to produce distinct tail beat motions whilst remaining within the allowable deformations

of the model. The simulation was run for 6 seconds with fluid and bodies starting from

stationary. The deadbeat control interval was set to 2×10−4s with no modification of

the control signal during the interval.

Figure 6.1 shows a plot of total system energy against time. The degradation of a high

frequency transient can be seen over the initial 4 seconds after which a low frequency

transient becomes dominant.The controller achieved the state energy control objective

99

6.4. RESULTS

with root mean square error (RMSE) of ≈ 0.0095J.

Figure 6.2: Plot of body bearing against time

Figures 6.2 shows plots of body bearing against time. It can clearly be seen that

although the controller successfully restricted the model to the set of state space orbits

described by xTQx≈ 0.35 the resultant orbital path was not fixed. Initially the system

established a stable orbit with frequency ≈ 10Hz however after 4seconds the orbital

path switched to an alternative path over the surface xTQx ≈ 0.35 with frequency

≈ 2.5Hz. This suggests that the system was initially dominated by the 11Hz undamped

transient, then due to some change in condition or degradation the motion switched to

be dominated by the 2.7Hz undamped transient. The general negative trend visible in

figure 6.2 indicates a gradual yaw motion suggesting the presence of yaw instability.

During the first 4 seconds the robotic fish experienced a mean yaw rate of 0.021rad s−1,

which increased to 0.026rad s−1 during the motion between 4 and 6 seconds.

An artificial limit of 100Nm was placed on the control inputs to emulate controller

saturation and prevent unrealistic system response. However after the initial rise

time the controller did not hit this limit. Figure 6.3 shows a plot of controller input

100

6.4. RESULTS

Figure 6.3: Plot of controller input against time

against time. The periodic spikes in control input correspond to changes in direction.

The sudden large input at ≈ 6 seconds corresponds to the point at which the mesh

deformations within the CFD solver reached the point where pressure could no longer

be resolved within the allocated iterations. The total input work was calculated as the

angular velocity of the actuated joint multiplied by the control input torque,

Work = BTq̇u (6.19)

Calculated actuator work values shown in figure 6.4 demonstrated that after initial

establishment of motion, peak power requirement to maintain motion was ≈ 31W .

Mean absolute power requirement during the first 4 seconds t was calculated as ≈

9.88W however during 4-6 seconds the requirement dropped to ≈ 3W . Although as

can be seen from figure 6.4 negative work was required during the periodic motion.

The mean negative work during the two motions i.e. the average amount of work done

to reduce total system energy was estimated as ≈ 0.98445W and 0.43W respectively

101

6.4. RESULTS

Figure 6.4: Plot of controller work against time

which was approximately 10% and 14% respectively of the total absolute work.

(a) (b)

Figure 6.5: Plot of body horizontal displacement against time (a) initial motion, (b)
secondary motion

Figure 6.5 shows a plot of lateral displacement of the three points used in figures 5.7

and 5.9. It can be seen that the lateral motions become smoother towards the aft of the

model. Suggesting that the caudal fin is experiencing smooth lateral translation. Also

it can be observed that the lateral translations of the tail are significantly larger for the

102

6.4. RESULTS

lower frequency motion than the high frequency motion. As lateral translation of the

caudal fin is essential for lift based BCF swimming this suggests that the low frequency

motion is significantly better suited to generating lift based thrust.

(a) (b)

Figure 6.6: Plot of system kinematic (a) initial motion, (b) secondary motion

Figure 6.6 shows the position of the centres of mass of each of the bodies at sample

points during the motion. It can clearly be seen that the motion envelope for the motion

during the initial motion differed significantly from the motion envelop of the motion

after 4 seconds. Whilst the motion envelope for the initial motion shows the lateral

motion was greatest at the centre of the fish, the motion envelope of the motion after

4 seconds expanded towards the anterior of the body. This was more in keeping with

optimal swimming kinematics described in Barrett (1996).

Figure 6.7 shows a plot of forward velocity of the simulated robotic fish against time,

It can be seen that both kinematics resulted in forward thrust, however the latter

kinematic resulted in significantly higher rate of acceleration ≈ 0.05ms−2 compared to

≈ 0.025ms−2.

Table 6.1 shows images of the fluid surrounding the robotic fish. Red indicates high

velocity, and blue indicates low velocity. The high velocity areas that develop alongside

the tail are indicative of vortices. The vorticies can be seen shedding and being carried

103

6.5. CONCLUDING REMARKS

Figure 6.7: Plot of forward velocity against time

away down stream as observed with fish in nature. The full animation can be found at

the following address (http://youtu.be/O3malAc0Rfg).

The vortices are focused mainly on the tail portion of the robotic fish body. However

the downstream presence of vortices is so visible due to the limited far field resolution

of the simulation study. The presence of attached vortices indicates that the robotic

fish may be benefiting from vortex peg interaction, which may be contributing to the

propulsive efficiency as suggested by Rosen (1959).

6.5 Concluding Remarks

In this chapter a deadbeat controller for state energy based on a local discretization

of the plant model for an underactuated robotic fish was presented. Simulation

results demonstrated that the controller resulted in periodic motion of the body of

the simulated robotic fish. The system experienced two distinct periodic motions

seeming to correspond to distinct system transients. Both periodic motions were on the

surface of the objective region. Therefore it can be said that the controller successfully

104

http://youtu.be/O3malAc0Rfg

6.5. CONCLUDING REMARKS

Table 6.1: Velocity of fluid surrounding the robotic fish

bounded the system to the objective region.

Results demonstrated that both the periodic motions were effective swimming gaits.

However the motion corresponding to the lower frequency transient resulted in

significantly more thrust with reduced control input cost. The higher frequency

105

6.5. CONCLUDING REMARKS

transient was associated with a significantly larger decay coefficient, the question

arises as to why a transient with such a high decay coefficient remained prevalent

within the system. A possible explanation of the initial dominance of the higher

frequency transient was perhaps that due to the sharpness of the discrete control moves

of the deadbeat controller provided high frequency stimulus which excited the transient

which would have otherwise have decayed quickly.

These results can be considered a proof of concept that the control of state energy

can lead to an effective swimming gait on an under actuated robotic fish. However

the fact the deadbeat controller chosen did not discriminate between system transients

and actively stimulated a less desirable transient suggests that the deadbeat energy

controller is a poor choice of energy controller for this particular application.

The yaw instability observed in figures 6.2 suggests that some further work is needed

in directional control. Strategies for controlling both yaw and state energy with a single

controllable input would reduce the need for ancillary systems. It is likely in this case

that the yaw instability was caused by the selection of a singular Q matrix for control.

As a result the n dimensional surface to which the controller was fixing state orbit to

was unbounded along the global yaw axis.

The presence of negative work in the controller input suggests that further improvement

can be made in the efficiency of application. The potential for an additional 10%−15%

energy saving is a clear motivation for further study. As the Q matrix was selected to

represent the physical energy of the system (mass and kinetic) the additional energy

gained to necessitate negative work must have originated in exogenous force inputs

from fluid interactions. The periodic nature of the negative work suggests that the

fluid inertia effects form a significant part of the system dynamics, however it is very

difficult to accurately model these effects in real time, furthermore such effects may

also be dependent on variable external factors such as forward velocity. This is a major

106

6.5. CONCLUDING REMARKS

problem since the deadbeat control’s dependence on modelling accuracy makes the

approach highly fragile.

In chapter 7 H∞ continuous time robust non fragile control techniques will be

investigated to minimise the effect of exogenous force inputs, modelling inaccuracies

and imperfect controller implementation on total system energy. It is hoped that by

giving the system a tolerance to modelling error, some of the negative work due

to exogenous fluid effects can be avoided. Furthermore by applying a continuous

time technique the control moves will be ‘smoother’ resulting in less high frequency

stimulation.

107

6.5. CONCLUDING REMARKS

108

Chapter 7

Design of a reduced fragility H∞

observer feedback controller for the

control of state energy

This chapter will discuss robust control techniques in conjunction with the

parametric sensitivity of closed loop system norms, with the aim of assessing

and reducing the fragility of closed loop systems.

7.1 Introduction

In chapter 6 deadbeat controller for state energy was derived from the system model

which is simple and easy to use. However results indicated that the discrete nature of

the controller resulted in a non smooth control input which excited undesirable system

transients. This chapter will investigate the application of a continuous time robust

control approach to the control of state energy applied to gait generation for the model

of the robotic fish. Specifically H∞ disturbance rejection feedback control will be used

to reduce the dependence of the closed loop system on model accuracy.

Popular state space solutions for feedback control of linear time invariant (LTI) systems

satisfying the H∞ robustness criteria can be found in Doyle et al. (1992), and Skogestad

and Postlethwaite (2007).

109

7.1. INTRODUCTION

H∞ control is widely used for noise rejection and robust position control in a wide

range of complex structures subject to exogenous forces. Examples include geometric

kinematic control of manipulator arms (Tumari et al. 2012). H∞ control of periodic

motion has revived a significant amount of interest albeit primarily with the interest

of eradicating vibration, either in the end effector of manipulator robots (Douat et al.

2011) or in high-rise buildings (Zapaterio et al. 2011) rather than generation of periodic

motion as in this application. H∞ control has also been applied to gait generation for an

ostraciiliform swimming robot (Hur et al. 2009).

However it has been suggested that some solutions to the H∞ can be described as

highly fragile (Keel and Bhattacharyya 1997). This means that small inaccuracies in

the application of the controller or small parametric modelling error can result in total

failure of the imposed robustness condition.

Several methods have been developed to incorporate additional non-fragility criteria

with the robustness criteria into the controller design phase by including an operational

envelope, where robustness is guaranteed for a specific parametric range (Kim and Oh

2007). However a critical issue with any design objective is quantification, Dorato et al.

(1999) proposed the use of phase and gain margins to quantify the fragility of closed

loop systems, however this method is limited to systems without infinite gain margin.

i.e. systems that cross the zero axis on the Bode plot once.

This study however will present a novel quantification of fragility through a sensitivity

analysis of the robustness criteria with respect to system parameters. For most systems

there is no explicit equation for the H∞ norm in terms of the system parameters,

therefore an exact derivative is not available. However a novel approach is adopted in

this study where an upper bound for the H∞ norm is derived based on the equivalence

with the furthest point from the origin of the Nyquist plot. This upper bound is

expressible as an explicit function in terms of the system parameters and therefore an

110

7.2. H∞ ROBUST ENERGY CONTROL FOR A ROBOTIC FISH

exact parametric derivative exists.

The remainder of this chapter will be divided into five further sections. Section 7.2

discusses the application of H∞ control methods to the control of energy. Section 7.3

details the derivation of an explicit function for the upper bound of the system H∞ norm

then go on to provide the derivative of said function with respect to the system dynamic

matrix for state space cases. Section 7.4 discusses the use of gradient decent to increase

the stability margin of robust closed loop systems. In section 7.5 results are presented

comparing the gradient decent optimised H∞ controller with the original H∞ controller.

Finally section 7.6 presents some concluding remarks.

7.2 H∞ robust energy control for a robotic fish

The robotic fish described by equations 4.14 can be linearised as shown in equation 6.7

and rewritten as,

ẋ = Ax+B1w+B2u

E = xTQx (7.1)

transforming this into the Laplace domain gives,

E =

[
wT uT

]



BT
1

BT
2


(sI−AT)−1Q(sI−A)−1

[
B1 B2

]



w

u


 (7.2)

The Laplace domain function for energy can then be expressed as the sum of three

functions,

E = uTBT
2 GB2u+wTBT

1 GB1w+2uTBT
2 GB1w (7.3)

where,

G = (sI−AT)−1Q(sI−A)−1 (7.4)

111

7.2. H∞ ROBUST ENERGY CONTROL FOR A ROBOTIC FISH

Assuming ||B2u||∞ � ||B1w||∞ then the energy introduced due to the third term in

equation 7.3 can be assumed to be negligible, therefore the system can be approximated

by the first two terms. Figure 7.1 shows a block diagram of the open loop system

between controllable and uncontrollable inputs and total system energy. The total

energy is given by the summation of all the sub systems, however if ||B2u|| � ||B1w||

then the contribution of the components in the dashed box will be relatively small

therefore if the system components in the dashed box are neglected a reasonable

approximation is given by the lower sub system.

wiwj

wu

uu

GB1i B′
1j Ew,i,j

G B′
2

B1

B2

≈ E

Figure 7.1: Open loop block diagram of state energy transfer function

The remaining open loop transfer function obtained by omitting the entirely

uncontrollable terms from equation 7.2 can then be expressed as,

E ≈ uTBT
2 G
[

B1 B2

]



w

u


 (7.5)

The goal is to find some stabilising state feedback controller K which ensures

robustness through bounded H∞ norm of the gain between exogenous inputs w and

state energy for the closed loop system. Substituting one of the us in equation 7.5 for

112

7.2. H∞ ROBUST ENERGY CONTROL FOR A ROBOTIC FISH

the controller output,

u = KC2x (7.6)

where C2x is the observable output of the system. Then the closed loop system energy

becomes,

E = u
[

BT
2 GB1 +

BT
2 GB2KC2GB1
1+KC2GB2

]
w (7.7)

By the multiplication inequality which holds for matrix and system ∞ norms, it can be

stated,

∣∣∣∣
∣∣∣∣u
[

BT
2 GB1 +

BT
2 GB2KC2GB1
1+KC2GB2

]∣∣∣∣
∣∣∣∣
∞

≤ ||u||∞
∣∣∣∣
∣∣∣∣
[

BT
2 GB1 +

BT
2 GB2KC2GB1
1+KC2GB2

]∣∣∣∣
∣∣∣∣
∞

(7.8)

Since it is known that ||u||∞ will be bounded by the natural constraints of the system it

remains only to find a controller K which satisfies,

∣∣∣∣
∣∣∣∣
[

B2GB1 +
B2GB2KC2GB1

1+KC2GB2

]∣∣∣∣
∣∣∣∣
∞

< ∞ (7.9)

Figure 7.2 shows the closed loop system block diagram relating uncontrollable inputs

to z. The observable output is connected to the controllable input through the controller

K via positive feedback.

Satisfying the condition described in equation 7.8 is equivalent to ensuring that the

closed loop system shown in figure 7.2 is H∞ bounded. A standard solution to this

problem can be found in Glover and Doyle (1988).

Signal tracking control requires the introduction of an additional reference input into

the system giving the system input as,

u = KC2x+a (7.10)

113

7.2. H∞ ROBUST ENERGY CONTROL FOR A ROBOTIC FISH

w

u

G

B1

B2

K

B′
2

C2

z

y

Figure 7.2: Closed loop noise rejection system block diagram

Where a is some additional input introduced. Figure 7.3 shows the closed loop system

between uncontrollable inputs w and an abstract output z with an additional reference

signal a added to the feed back signal.

Multiplying the system in figure 7.3 by u returns the system to the the closed loop

system between ua and total state energy E.

E =
BT

2 GB2C2GB2
1−C2GB2

ua (7.11)

w

u
G

B1

B2

K

B′
2

C2

z

ya
+

+

Figure 7.3: Closed loop noise rejection system with additional input block diagram

Error feedback energy control can then be achieved by implementing the closed loop

system. Figure 7.4 shows a block diagram of the closed loop system between energy

114

7.2. H∞ ROBUST ENERGY CONTROL FOR A ROBOTIC FISH

reference signal r and energy E. The error signal e is generated with negative energy

feedback. Ĝ is the closed loop system between au and E given by,

Ĝ =
BT

2 GB2C2GB2
1−C2GB2

(7.12)

and Ke is some realisable error feedback controller. The additional input a can then be

determined as a = u−1Kee. Substituting a into equation 7.10 gives,

u = KC2x+
Kee

u
(7.13)

Ĝ
-

+ e
Er

Ke
ua

Figure 7.4: Closed loop error feedback control of energy

Equation 7.13 can be solved for u via the standard quadratic formula,

u =
1
2

(
KC2x±

√
(KC2x)2 +4Kee

)
(7.14)

Like the deadbeat controller featured in chapter 6 the ± gives the controller a decision

element. For minimum cost control the least magnitude option can be taken. However

by introducing a directional bias into the decision a degree of direction control can also

be achieved. It was demonstrated in Roper et al. (2013) that such a directional bias can

deliver a degree of yaw control to an underactuated robotic fish.

115

7.3. PARAMETRIC SENSITIVITY OF H∞ NORM

7.3 Parametric Sensitivity of H∞ Norm

The ∞ norm of a system is defined as;

||G||∞ = sup
ω

|G(jω)| (7.15)

and is equivalent to the maximum distance of the Nyquist plot of G from the origin.

The H∞ robustness criteria requires ||G||∞ < ∞ for the closed loop system y = Gw,yw,

where w is the vector of uncertain disturbances affecting the system.

The localized gradient of any continuous function along a given path can be found by

the first derivative with respect to the vector of travel. So the local sensitivity of the H∞

robustness condition to perturbations in the system could be described as,

S(G) =
∂ ||G||∞

∂G
(7.16)

However since there is no explicit function for f (G) = ||G||∞ in terms of the parameters

of G (Doyle et al. 1992) an exact analytical value for S(G) cannot be found.

However using the equivalence of the ∞ norm to the maximum distance on the Nyquist

plot it is possible to define an explicit function in terms of the system parameters of G

that gives an upper bound on the ∞ norm.

Any nth order LTI system G is expressible as a series of n partial first order systems,

i.e.

G =
n

∑
i=1

Gi (7.17)

where Gi is of the form,

Gi =
b

s+a
(7.18)

116

7.3. PARAMETRIC SENSITIVITY OF H∞ NORM

where a and b belong to the set of complex values. The triangle inequality gives that,

||G||∞ ≤
n

∑
i=1
||Gi||∞ (7.19)

therefore if the norms of each of the sub systems can be determined, an upper bound

on the total system norm can be found. For a first order system the maximum distance

of the Nyquist plot from the origin is simple to find. Transformation into the frequency

domain yields.

Ĝi =
b

ω j+a
(7.20)

The H∞ norm of this sub system occurs at the ω that maximises the magnitude function.

i.e. .

||Ĝi||∞ = supω≥0

∣∣∣∣
b

ω j+a

∣∣∣∣= |b|supk

(
1

a2
r +(k2 +ai)2

)0.5

(7.21)

where ar and ar are the real and imaginary parts of a respectively and k2 = ω . This

maximum must occur when the derivative with respect to k is equal to 0. Taking the

differential of the part dependent on k,

d
dk

(
1

a2
r +(k2 +ai)2

) 1
2

=
−2k(k2 +ai)

(a2
r +(k2 +ai)2)

3
2

(7.22)

which has zeros at k = 0 and if ai ≤ 0 k =±(−ai)
1
2 . By taking the second differential

it is then trivial to show that, if ai < 0 then the point at k = 0 is a minimum, otherwise

k = 0 is a maxima. Substituting these values into equation 7.21 will yield ||Ĝi||∞

However it is well known that for a real system imaginary poles always come in

conjugate pairs i.e.

Ĝi + Ĝ∗i =
b

ω j+a
+

b∗

ω j+a∗
(7.23)

For such a conjugate pair, since one must have a maximum at ω = 0 and the other at

117

7.3. PARAMETRIC SENSITIVITY OF H∞ NORM

ω = |ai| then the maximum of the sum must lie in the frequency range, 0≤ ω ≤ |ai|.

Multiplying the partial fractions gives the second order transfer function,

Ĝi + Ĝ∗i =
ab∗+a∗b+(b+b∗)ω j
aa∗−ω2− (a+a∗)ω j

(7.24)

It can be shown that for a second order transfer function of the form,

Ĝi =
b2 +b1ω j

a2−ω2 +a1ω j
→ a1,a2,b1,b2 ∈ R (7.25)

the differential of the magnitude function will be,

d|Ĝi|
dω

=
−4ω(b2

2 +b1
1)

1
2 (ω2 + 1

2a2
1−a2)

((a2−ω2)2 +(a1ω)2)
3
2

(7.26)

which has zeros at ω = 0 and ω = (a2− 1
2a2

1)
1
2 .

Again it is trivial to show by using the second derivative that if a2 > 1
2a2

1 then ω =

(a2− 1
2a2

1)
1
2 will be a maximum. Substituting the values a2 = aa∗ and a1 =−(a+a∗)

gives, ω = real((a2
i −2a2

r)
1
2), which implies that;

argmax
ω
|Ĝi + Ĝ∗i |=





0
√

2|ar|> |ai|

a2
i −2a2

r otherwise
(7.27)

also it follows that if a transfer function G has all poles inside the region |zi| ≤ −
√

2zr,

then argωmax|Ĝ|= 0 and the ∞ norm can be calculated exactly as ||Ĝ||∞ = ∑ |Ĝi(0)|.

Figure 7.5 shows a plot of the region |zi| ≤ −
√

2zr, as zr decreases the width of the

region increases.

118

7.3. PARAMETRIC SENSITIVITY OF H∞ NORM

zr

zi

|zi| ≤ −
√
(2)zr

Figure 7.5: Complex region, which if all Eigenvalues fall within, system must have
argωmax|Ĝ(ω j)|= 0

Otherwise, an upper bound on the infinity norm is given by,

||G||∞ ≤∑
i
|Ĝi(argmax

ω
|Ĝi + Ĝ∗i |)| (7.28)

For the state space system,

ẋ = Ax+Bu

y = Cx (7.29)

Then if Λ is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors the

equivalent system,

ż = Λz+P−1Bu

y = CPz (7.30)

119

7.3. PARAMETRIC SENSITIVITY OF H∞ NORM

will be the diagonal form of the original. The frequency domain transfer function will

be given by,

Ĝ = CP(ω jI−Λ)−1P−1B (7.31)

Then if −
√

2λr > |λi| → ∀λ ∈G, substituting ω = 0 into equation 7.31 yields;

||G||∞ =−abs(CP)Λ−1abs(P−1B) (7.32)

where abs(x) means the element by element absolute value of the vector x. More

generally the upper bound on the ∞ norm can be expressed as;

||G||∞ ≤ abs(CP)abs([Ω j−Λ])−1abs(P−1B) (7.33)

where,

Ω = real{(imag(Λ)2−2real(Λ)2)
1
2} (7.34)

Critically equations 7.33 and 7.34 give a value defined explicitly in terms of the system

parameters and thus a sensitivity with respect to system parameters can be found.

If F∞(G) is defined as the upper bound on ||G||∞ given by the right hand side of equation

7.33 then if G(K) is a system expressed as a function of the matrix K

∂F∞(G)

∂K
=

∂ abs(C1P)
∂K

(
Ic⊗abs(Ω j−Λ)−1abs(P−1B1

)

+(Ir⊗abs(C1P))
∂ (Ω j+Λ)−1

∂K

(
Ic⊗abs(P−1B1

)

(
Ir⊗abs(C1P)(Ω j−Λ)−1) ∂ abs(P−1B1)

∂K
(7.35)

where ⊗ is the Kronecker product, r and c are the number of rows and columns of K

120

7.4. GRADIENT DECENT TO MINIMIZE PARAMETRIC SENSITIVITY

respectively, Ū is the matrix self differential. Ω is given by equation 7.34, and Λ and P

are the matrix of eigenvalues, and eigenvectors of the system A matrix respectively.

For a guide to the differentiation eigenvalues and eigenvectors the interested reader

is directed to Der et al. (2007). The assumption is then made that ∂F∞(G)/∂K ≈

∂ ||G||∞/∂K

7.4 Gradient decent to minimize parametric sensitivity

Closed loop system norm’s between exogenous inputs and control outputs are often

used for analysis of robustness. It may often not be desirable to minimize the said

norms as this can lead to overly conservative controllers with poor signal tracking

properties. However it is desirable to ensure that robustness conditions are non-fragile.

The proposed method here is to employ a few iterations of gradient decent. The

objective being to move away from steep regions of the space of parametric system

norms.

Figure 7.6 demonstrates how a gradient decent method could increase the stability

margin of a highly sensitive parameter. If f0 is a parameter in a robust closed loop

system and the dashed line represents the parametric value at which the robustness fails,

movement down the gradient will move the parameter away from the point of failure

and hence will increase the stability margin of the parameter increasing the allowable

error before the robustness will fail.

7.5 Results

An initial H∞ stabilising observer feedback controller was found using the state space

method from Skogestad and Postlethwaite (2007). The controller consisted of a state

observer,

˙̂x = Ãx̂+B1γ
−2BT

1 X∞x̂+B2u+Z∞L∞(C2x̂−y) (7.36)

121

7.5. RESULTS

f0

fn

f0 stability margin

fn stability margin

Figure 7.6: Gradient decent increasing stability margin

where Ã is the dynamic matrix representation of the subsystem G from equation 7.4

given by,

Ã =




AT Q

0 A


 (7.37)

B1,B2 and C2 were the system input and output matrices as shown in figure 7.2. X∞,Z∞

and L∞ are matrix parameters derived using the method in Skogestad and Postlethwaite

(2007), values for which can be found in appendix A. The value of γ = 10 was selected

through trial and error as a working norm bound.

The input signal u was then generated with the feedback of observed state, u = F∞x̂.

Where,

F∞ =

[−3.2e−02 1.2e−01 1.4e−01 1.5e−01 −1.5e−02 . . .

−9.3e−04 2.5e−01 1.1e−01 −2.9e−03 1.7e−03 . . .

9.4e−04 2.3e−04 −3.6e−03 1.9e−03 1.2e−03 3.9e−04]

122

7.5. RESULTS

Assuming perfect state observation the upper bound on the closed loop system norm

was found to be ||Ĝw,z||∞ < 12.96. That this is larger than γ is no suprise as this

is conservative upper bound. Where Ĝw,z represents the closed loop system between

uncontrollable inputs w and output z featured in figure 7.3. The parametric sensitivity

of the H∞ norm upper bound was found to be,

∂F∞(Ĝw,z)

∂F∞

=

[−1.6e+03 −2.9e+02 −9.0e+01 −2.8e+01 3.8e+02 . . .

6.8e+01 2.3e+01 5.7e+00 1.4e+01 1.4e+01 . . .

1.3e+01 1.5e+01 −3.2e+00 −5.8e+01 6.2e+01 −1.6e+02]

The frobenius norm of the parametric sensitivity matrix was found to be ≈ 1697.7.

Gradient decent was used to further optimise the F∞ matrix,

F̂∞ =

[−4.0e−02 1.2e−01 1.5e−01 1.5e−01 5.2e−02 . . .

1.1e−02 2.5e−01 1.1e−01 −4.7e−03 −2.1e−04 . . .

−9.4e−04 −1.6e−03 −1.3e−02 4.9e−02 2.7e−02 −1.4e−02]

With the corresponding local parametric sensitivity,

∂F∞(Ĝw,z)

∂F∞

=

[2.3e+00 3.7e−01 7.9e−02 3.7e−03 −7.2e+00 . . .

−1.3e+00 −4.3e−01 −1.0e−01 3.6e−01 3.9e−01 . . .

3.9e−01 3.9e−01 8.2e−01 −1.5e+00 −5.2e+00 −6.5e+00]

The frobenius norm of the local parametric sensitivity matrix was found to be

≈ 1.1477, representing a 1000 fold reduction in parametric sensitivity. Therefore

observer inaccuracies will likely be tolerated significantly better.

123

7.5. RESULTS

A high gain proportional error feedback controller of Ke = 1000 was selected for the

error signal feedback as shown in figure 7.4.

As in chapter 6 a target of 0.35J was set as the objective region, the system spring,

mass and inertia values were also the same as used in chapter 6. The controllers were

implemented at a discrete time interval of 2e− 4s and the simulation was run for 3

seconds. This shorter time interval was selected as it was long enough to visualise

multiple instances of the periodic motion yet short enough to ensure that the mesh

deformations did not prevent the pressure term in the CFD from resolving.

(a) (b)

Figure 7.7: Plot of state energy against time (a) Original H∞ state and error feedback
controller, (b) Gradient optimised H∞ controller.

The directional bias was implemented in the decision phase of the controller as follows,

u =





F∞xo+
√

(F∞xo)2+4Kee
2

∣∣∣∣
F∞xo+

√
(F∞xo)2+4Kee

2

∣∣∣∣≤
∣∣∣∣

F∞xo−
√

(F∞xo)2+4Kee
2

∣∣∣∣−0.05q1

F∞xo−
√

(F∞xo)2+4Kee
2 otherwise

(7.38)

where xo is the observer state, e is the energy error signal and q1 is the first element of

the vector of bearings q.

124

7.5. RESULTS

Figure 7.7 shows a plots of energy against time for the two controllers featured in

this chapter. The original H∞ state and error feedback controller resulted in a root

mean square error of the energy signal of 0.0579J, whereas the gradient optimised H∞

controller resulted in a root mean square error of 0.0411J.

(a) (b)

Figure 7.8: Plot of controller input signal against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller

(a) (b)

Figure 7.9: Plot of controller input power against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller

Figures 7.8 and 7.9 show plots of controller input signal and work against time for

the two controllers. It can be seen that both controllers operated largely within the

imposed torque constraints. The mean absolute work done by each of the controllers

125

7.5. RESULTS

was 3.5W for the original H∞ and 3.5W for the gradient optimised H∞ controller.

The mean negative work was found to be 0.37 and 0.42W respectively. Representing

approximately 10% and 12% negative work respectively.

(a) (b)

Figure 7.10: Plot of body bearing against time (a) Original H∞ state and error feedback
controller, (b) Gradient optimised H∞ controller

The resultant body bearing motion of the robotic fish bodies is shown in figure 7.10.

It can clearly be seen that the motion resulting from both controllers was non smooth,

containing multiple transients, i.e. multiple peaks. It can also be seen that in both

cases much of the yaw instability has been eradicated through the use of the decision

bias. The original H∞ resulted in a yaw rate of ≈ 0.029rad s−1 whereas the optimised

controller resulted in an initial yaw rate of≈ 0.05rad s−1 but stabilized after 2 seconds.

Figure 7.11 shows plots of forward velocity against time resulting from the periodic

motion generated by each of the controllers. Both controllers resulted in forward

thrust and acceleration from stationary of ≈ 0.055ms−2 and ≈ 0.061ms−2 respectively.

However it can be seen that the acceleration from the original Hin f ty started to

reduce significantly at around 1.75s however the acceleration optimised H∞ remained

approximately constant throughout the period shown.

Figures 7.12 and 7.13 show plots of body lateral displacement against time and lateral

126

7.5. RESULTS

(a) (b)

Figure 7.11: Plot of forward velocity against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller

(a) (b)

Figure 7.12: Plot of lateral translation against time (a) Original H∞ state and error
feedback controller, (b) Gradient optimised H∞ controller

displacement against longitudinal body position at samples within the time series

respectively for the motion resulting from each of the controllers. The double peaks

present in both figures 7.12 for the results from both controllers are likely an effect of

the directional bias attempting to rectify the heading. It can be seen that the motion

envelope is similar for the two controllers. Both have an expanding motion envelop in

keeping with the optimal kinematic proposed in Barrett (1996).

Table 7.1 shows the velocity of the fluid around the robotic fish during the motion

127

7.6. CONCLUDING REMARKS

(a) (b)

Figure 7.13: Resultant body kinematic (a) Original H∞ state and error feedback
controller, (b) Gradient optimised H∞ controller

experienced due to the modified H∞ controller. The vortices can be seen to be visibly

more well defined than the vortices that developed due to the deadbeat controller shown

in chapter 6. The vortices for the original H∞ controller not shown here were similar

in character. Videos of the two resultant motions can be found at (http://youtu.

be/TSdJPhPetvA) and (http://youtu.be/Dsl-wPzRSfM) for the original

H∞ controller and for the optimised H∞ respectively.

7.6 Concluding Remarks

In this chapter robust control of state energy was discussed. A closed loop disturbance

rejection controller was proposed based on a popular state space solution to the H∞

control problem for LTI systems.

Further to this an explicit parametric function was derived for an upper bound on LTI

system H∞ norm, based on an equivalence with the point of largest magnitude on the

Nyquist plot. This explicit function was then used to derive a novel function for the

parametric sensitivity of LTI system H∞ norm. It was argued that gradient decent could

be used to reduce the fragility of robust controllers. By moving parameters down the

128

http://youtu.be/TSdJPhPetvA
http://youtu.be/TSdJPhPetvA
http://youtu.be/Dsl-wPzRSfM

7.6. CONCLUDING REMARKS

Table 7.1: Velocity of fluid surrounding the robotic fish

norm gradients it was theorised that stability margins could be significantly increased.

Gradient decent optimisation of an H∞ disturbance rejection controller resulted in a

reduction in the local parametric sensitivity of the closed loop H∞ norm by a factor of

≈ 1000.

Simulations were run with both the original H∞ disturbance rejection controller and the

gradient decent optimised version of the same controller.

129

7.6. CONCLUDING REMARKS

Results demonstrated that both controllers resulted in periodic motion that resulted

in forward thrust. However the optimised controller resulted in slightly improved

disturbance rejection characteristics, due to a reduction in parametric reliance on

observer accuracy and reduction in the norm of the closed loop system between

disturbances and energy.

The controller demonstrated periodic inaccuracy. One possible explanation for the

reduction in accuracy is the simplistic nature of error feedback control. Whilst for

an nth order LTI system with an (n−1)th order linear objective region the response of

error to a given state space movement remains constant for all points in the state space.

For lower dimensional or non-linear objective region such as the control of state energy

the response of the error to a given state space movement is dependent on the state

position relative to the objective region. This idea will be explored further in chapter

8.

130

Chapter 8

An alternative error energy control

This chapter will give details of a novel alternative error metric, for feedback

control of system energy.

8.1 Introduction

In chapter 7 a method for reducing the parametric sensitivity of closed loop

system norms was presented. By reducing the parametric sensitivity, the controller

performance becomes less dependent on model and controller implementation

accuracy. However the results presented in chapter 7 demonstrated significant periodic

error suggesting that the linear controller applied was unable to fully compensate for

the nonlinear nature of the objective region.

This chapter will attempt to derive an improved error feedback mechanism. Capable of

adapting to nonlinear control objectives without adding unnecessary complexity to the

controller.

Error feedback controllers such as proportional integral and derivative (PID) rely

strongly on the consistency of the response of the error to a given input. However if

the response of the error to a given input is inconsistent due to a nonlinearity in the

objective region, i.e. at some points positive input results in positive error movement

and at other points positive input results in negative error movement. Then a linear

dynamic error feedback controller will not guarantee global stability. One possible

131

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

solution is to adapt the controller to the local input response (Wang et al. 2003). This

can be achieved through sliding mode control (Yu and Kaynak 2009) or through online

adaptive control (Jha et al. 2011). However the approach taken in this study is to adapt

the definition of the error to ensure that the response of the error to input remains

constant. This allows the error to be regulated through a single fixed controller.

Furthermore this also allows the actual controller element to be easily interchanged

whilst maintaining the ability to adapt to the local error response.

In this chapter a novel alternative error metric will be defined for use in feedback control

tasks with nonlinear objective regions. An explicit equation for calculating this error

metric for error in state energy will be derived and it will be demonstrated that a robust

controller can be found using the proposed alternative error feedback.

The remainder of this chapter is divided into three further sections, section 8.2 defines

3 different measures of error and explain the choice of error metric for this chapter.

Section 8.3 discusses robust control using the proposed alternative error feedback.

Section 8.4 presents simulation results with the alternative error metric feedback

controller. Finally section 8.5 presents a summary and concluding remarks.

8.2 Alternative Error Metrics for Feedback Control

For a given energy reference signal Er, the objective region will be some nonlinear

surface on Rn. Since it is known that a system cannot possess negative mechanical

energy, it is necessarily true that Q is symmetrical positive semi-definite. As a result

the problem can always be simplified by the state space transformation z = Q
1
2 x. The

control objective region can then be expressed as zTz = Er which is equivalent to a

hyper-sphere in Rn of radius r = E0.5
r . So the objective is essentially converted to

controlling radius of z from the origin i.e. |z|= r where r2 = Er. For clarity from

this point forward the state space variable z will be used in place of x to signify

132

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

that this transformation has already been made. While numerous control techniques

for linear control objectives already exist such as proportional integral differential

(PID) error feedback or linear quadratic regulator (LQR). These techniques are not

necessarily ideal for radius control objectives. Methods used to date for the control

of energy in mechanical systems have been based heavily on linear control objective

methods, such as linear state feedback (Spong 1996) or a PD error feedback with

gravity compensation (Ortega et al. 2001). The problem with direct state or measured

error feedback occurs when there is no available control move in the direction of least

error or the response of the error to a given input is highly inconsistent. This can be

seen more clearly if the two following definitions are made;

Definition 1: Measurable error (e); the minimum distance between the current state

and the control objective region, equivalent to the numerical difference between output

and reference signal.

Definition 2: Control vector error (ê); the minimum distance from the current state to

the objective region along the direction of available controllable input vectors.

From Definition 1: measurable error for the radial control problem is given by the

equation,

e = r−|z| (8.1)

It can be easily seen that for a 1 dimensional z the response of the measured error to an

increase in z is dependent on the sign of z.

For a radial objective function it can be shown that the control vector error is governed

by the equation,

ê(r, |z|,θ) = sign(cosθ)(r2−|z|2 sin2
θ)

1
2 −|z|cosθ (8.2)

133

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

As illustrated by figure 8.1, where θ is the minimum angle between available inputs

and minimum direction of travel towards objective region. It can be seen that |ê| ≥ |e|

for all combinations of system, objective region and state.

x

Cx = r

θ
B

e

ê

Figure 8.1: Linear state space objective problem

In the case of a linear control objective as illustrated by figure 8.1 the difference

between e and ê is easily calculable as e = ê(cosθ). The response of e to a given

movement along the vector B remains constant for all states. Therefore feeding back

e will always result in an input proportional to the distance needed to be travelled

through the state space to reach the objective region. However in the case of a radius

control objective the relationship between measurable e and ê is nonlinearly dependent

on the current state. The response of e to a given movement along B̃ is nonlinearly

dependent on the state. This suggests that e or any linear state combination would be

a poor choice for feedback control. However it can be seen that the local response of

ê to a given movement along B̃ is constant for all states. This suggests feeding back ê

will result in the controller consistently providing an input proportional to the distance

needed to be travelled through the state space to reach the objective. This is illustrated

134

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

|z| = r

|z|

e

r

θ

0

B̃

êz

Figure 8.2: Quadratic state space objective problem

in figure 8.2 where measurable error e is the minimum distance to the curved objective

function |z| = r the available controllable direction of travel is B̃. The control vector

error is the distance to be travelled along B̃ to reach the objective region.

As can be seen from equation 8.2 the control vector error becomes complex when

r2 < |z|2 sin2
θ which is equivalent to a situation where no available input intersects

with the objective region.

One could argue that if no available path intersects with the objective the best course

would be to move along the path that minimizes the error. This is illustrated in figure

8.3 where the available input B̃ does not intersect with the objective region. Therefore

ẽ represents a motion along B̃ to the point of minimum error. This can be reflected by

a minor refinement of the error metric definition.

Definition 3: Best case control vector error (BCCVE) (ẽ); the minimum distance from

the current state to a point of minimum measured error along the direction of available

controllable input vectors.

135

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

|z|

0

e

ẽ

z

r

|z| = r

Figure 8.3: Quadratic state space objective problem with no controllable intersect

Thus whilst an intersect between the available controllable input vector and the

objective region exists ê ≡ ẽ, where no intersect exists ẽ gives the distance along the

available input vector to the point of minimum error as shown in figure 8.3. Thus for a

radial objective function it can be shown to be given by −|z|cosθ . Hence ẽ will then

be governed by the equation,

ẽ(r, |z|,θ) = sign(cosθ)real((r2−|z|2 sin2
θ)

1
2)−|z|cosθ (8.3)

Figure 8.4 shows a three dimensional plot of ẽ against state magnitude for the region

|z| ∈ {0−3} and angle for the region θ ∈ {0−π}rad, with an objective of r = 1. From

this plot three distinguishable regions of the state space can clearly be seen. The surface

136

8.2. ALTERNATIVE ERROR METRICS FOR FEEDBACK CONTROL

Figure 8.4: ẽ(1, |z|,θ)

enclosed by a parabola to the right of the plot represents the region r2 < |z|2 sin2
θ ,

where no intersecting solution exists. To the left hand side of the plot a distinction can

be made between the region where the most positive intersection of the objective region

is nearest, and where the most negative intersection of the objective region is nearest.

Between these two regions lies a discontinuity, where both intersections are equidistant.

It is also noteworthy that e is equivalent to the two dimensional cross section of this plot

at θ = 0 i.e. e ≡ ẽ(r, |z|,0). For a single controllable input system equation 8.3 can be

expressed as a function of state as;

ẽ = (r,z,B) = sign(BTz)real



(

r2− zTz+
BTzBTz

BTB

) 1
2


− BTz

|B| (8.4)

In a case where multiple inputs are available equation 8.4 could be used to obtain a ẽ

value for each available input, which would allow for multiple actuators to be employed

137

8.3. ALTERNATIVE ERROR ROBUST FEEDBACK CONTROL

in energy signal tracking without the risk of negative work.

8.3 Alternative error robust feedback control

In the previous section distinctions between measurable error e, control vector error

ê and minimum best case control vector error ẽ were made and it was demonstrated

that for a radial state space control objective the relationship between state z and ẽ is

the non-continuous nonlinear dependency given in equation 8.4. Here the feedback

of ẽ will be considered for the control of energy in a linear state space systems with

unstructured uncertainty.

For a linear time invariant (LTI) differential inclusion, representing a mechanical

system with unstructured uncertainty defined as,

ż = Az+B1w+B2u (8.5)

Where w and u represent uncertain and controllable input signals respectively, B1 and

B2 represent the uncontrollable and controllable input vectors respectively and the state

vector z has already undergone a transformation as described in the previous section.

The energy equation is given as a quadratic relation to state and is given by,

E = zTz (8.6)

The objective region is E = r2 which is equivalent to |z| = r. However the available

control actions are restricted to acting along the controllable input vector B2. The best

case control vector error ẽ can then be calculated as a function of state with equation

8.4. Separating the linear and nonlinear components of equation 8.4 as,

ẽ(r,z,B) = ẽnl + ẽl ≡ sign(BTz)real



(

r2− zTz+
BTzBTz

BTB

) 1
2


− BTz

|B| (8.7)

138

8.3. ALTERNATIVE ERROR ROBUST FEEDBACK CONTROL

where,

ẽnl = sign(BTz)real



(

r2− zTz+
BTzBTz

BTB

) 1
2


 (8.8)

and,

ẽl =−
BTz
|B| (8.9)

It can be observed that the nonlinear component lies in the region r ≤ ẽnl ≤ r and so

can be expressed, ẽnl = rδ s.tδ ∈ R{−1≤ δ ≤ 1}. As ẽnl is bounded and when |z| � r

only has a value if θ ≈ 0, then |z| � r implies ẽl � ẽnl . The nonlinear component

ẽnl can thus be treated as a linearly independent bounded disturbance. Robust control

of energy requires that there exists no possible disturbance that can cause the system

energy to become unbounded. The square root of the average power of a time varying

signal u(t) is denoted pow(u(t)) and given by the function,

pow(u(t)) = lim
T→∞

(
1

2T

∫ T

−T
u(t)T u(t) dt

) 1
2

(8.10)

A time varying signal u(t) is described as a power signal if and only if the average

power is bounded i.e. pow(u(t)) < ∞. Robust control of the total system energy is

equivalent to requiring that the signal of energy storing states z(t) is a power signal, i.e.

pow(z(t))< ∞ for all possible exogenous input signals w(t).

If all exogenous inputs are mechanical disturbances it can be safely assumed that they

will be finite power events, therefore it is known that pow(w(t)) < ∞. For a linear

time invariant system, y(t) = Gu(t) the power signals are related by the system H∞

norm i.e. pow(y(t)) = ||G||∞ pow(u(t)). The goal is then to find a controller K

such that the closed loop system between exogenous inputs and the state vector Gz,w

is H∞ bounded. Although there are a number of well known methods (Doyle et al.

1992; Basar and Bernhard 2008; Skogestad and Postlethwaite 2007) for finding state

139

8.4. RESULTS

feedback controllers satisfying the closed loop H∞ control objective. For simplicity in

this study a 2nd order realisable controller will be sought. Supposing K is a realisable

LTI,

ẋk = Akxk +Bkẽ (8.11)

Combining equations 4.14, 8.4 and 8.11 the closed loop system with ẽ feedback will

have the form,




ẋk

ż


=




Ak −BkBT
2 /|B2|

B2Ck A−B2DkBT
2 /|B2|







xk

z


+




Bk

B2Dk


 ẽnl +




0

B1


w

(8.12)

which can be expressed as the sum of two LTIs,

z =
[

Gz,ẽnl Gz,w

]



ẽnl

w


 (8.13)

As it is known that |ẽnl| ≤ r ∀z ∈ Rn it must necessarily be true that pow(ẽnl(t)) ≤ r,

for signal tracking the objective is equivalent to ensuring pow(z(t)) = r, therefore zero

error energy tracking can be achieved only if ||Gz,ẽnl ||∞ ≥ 1.

8.4 Results

The robotic fish model was once again simulated with the same parameters used in

chapter 6. The state energy reference signal of 0.35J was selected. The controller was

simulated discretely with the control signal updated at intervals of 2×10−4s.

140

8.4. RESULTS

Figure 8.5: Plot of system energy against time

The BCCVE signal was fed into the control system defined by,




ẋ1

ẋ2


=




0 1

−17.123 2.709







x1

x2


+




0

1


 ẽ

u =

[
1 0

]



x1

x2


+87.847ẽ (8.14)

when combined with the robotic fish system this gives a closed loop infinity norm

||Gz,w||∞ ≤ 7.9. It is noteworthy that the controller features a large direct proportional

feedback element.

Figure 8.5 shows a plot of total system energy against time. The controller achieved the

state energy control objective with root mean square error (RMSE) of ≈ 0.026356J.

The input signal generated by the controller and the corresponding input work signal

can be seen in figures 8.6 and 8.7 respectively. It can be seen that the required input

torque did not exceed 10Nm, and aside from a high initial work rate, once the periodic

141

8.4. RESULTS

Figure 8.6: Plot of controller input against time

Figure 8.7: Plot of controller work against time

motion was established peak work was no more than 10W . The mean absolute power

input requirement was ≈ 2.98W and the mean negative work was ≈ 0.17W . This

constituted ≈ 5.7% of the total absolute work.

The resultant motion like that experienced with the deadbeat controller demonstrated

yaw instability. The rate of yaw for the selected time interval was ≈ 0.066rad s−1.

Figure 8.8 shows a plot of body bearing against time for the resultant motion, corrected

for change in heading. It can be seen that the resultant motion was approximately

2.5Hz.

142

8.4. RESULTS

Figure 8.8: Plot of body bearing against time (corrected for global yaw).

Figure 8.9: Plot of forward velocity against time

Figure 8.9 shows a plot of forward velocity against time. It can be seen that the

kinematic resulted in effective forward thrust, resulting in an acceleration from rest

of ≈ 0.056ms−2.

Figure 8.10 shows plots of the body lateral displacement against time and the body

143

8.5. CONCLUSIONS

(a) (b)

Figure 8.10: (a) Plot of body lateral translation against time, (b) Plot of system
kinematic

position time series for the resultant motion. It can be seen from figure 8.10 (b) that

the motion envelope increases towards the anterior of the body in keeping with the

suggested kinematic shape used in Barrett (1996).

Table 8.1 shows the velocity of the fluid around the robotic fish during the motion

resultant from the alternative error feedback controller. Vortices can be seen shedding

from the tail and travelling down stream in the flow. In keeping with observations of

biological fish swimming (Rosen 1959). A video of the resultant motion can be found

at (http://youtu.be/jwAHzje-CqI).

8.5 Conclusions

In this chapter a novel alternative error metric was defined for use with nonlinear state

space objectives. It was argued that this error metric herein referred to as best case

control vector error (BCCVE) forms a more logical choice for error feedback for

control towards non-linear objective regions within the state space as it maintains a

more constant response to control inputs across the state space than more traditional

measured error metric.

144

http://youtu.be/jwAHzje-CqI

8.5. CONCLUSIONS

Table 8.1: Velocity of fluid surrounding the robotic fish

Furthermore an explicit equation of state was derived for this metric for state energy

control objectives. It was then demonstrated that robust control can be achieved using

the proposed BCCVE feedback, provided that the closed loop system around the linear

component of the error function was robustly stable with respect to both exogenous

145

8.5. CONCLUSIONS

inputs and nonlinear components of the error metric function.

The results demonstrated that the resultant controller bounded the system to the

objective region more tightly than the robust state feedback controller from chapter

7. Without stimulating the high frequency transient like the deadbeat controller from

chapter 6.

Furthermore there was a significant reduction in negative work from the deadbeat

controller, suggesting improved efficiency.

The presence of yaw instability suggests that BCCVE feedback should be used in

conjunction with an ancillary yaw stabilisation. The lack of a decision element in the

control algorithm as featured in both the deadbeat and robust state feedback controller

precludes the integration of decision based yaw stabilisation as used in chapter 7.

146

Chapter 9

Analysis of results

This chapter will analyse the results presented throughout this thesis with a

goal of identifying the best choice of controller for energy based gait generation

for a robotic fish.

9.1 Introduction

In chapter 4 a simple robotic fish was modelled as a free floating kinematic chain. Fluid

solid interactions were interoperated into the model via a finite element computational

fluid dynamic (CFD) simulation coupled with the partial differential equation (PDE)

solver used to resolve the solid body dynamics. In chapter 5 a novel mechanism for

gait generation over the simulated system was proposed, where the motion would be

determined by a combination of system dynamics and the control of a state energy

equation rather than explicit geometric control of motion. Whilst chapters 6, 7 and

8 presented three different state energy controllers. Each with distinct benefits and

weaknesses.

This chapter aims to analyse the results presented within this thesis. The controllers

will be compared against key performance criteria. With a goal of selecting the best

controller for energy based gait generation for an underactuated robotic fish.

The remainder of this chapter is divided into three further sections. Section 9.2

discusses the limitations of the simulation study. Section 9.3 will compares and

147

9.2. LIMITATIONS OF SIMULATION STUDY

contrast results from the previous three chapters, discussing possible causes and

potential measures for improvement. Finally section 9.4 presents some concluding

remarks based on the analysis presented herein.

9.2 Limitations of simulation study

The simulations study described in chapter 4 included a three dimensional CFD model

coupled with a solver for the PDE’s representing the solid mechanics of the robotic fish.

Limitations on available computing power and memory restricted the maximum spatial

and time resolution of the simulations. The explicit coupling between the fluid and

structure models also imposes limitations on the accuracy of the resultant model

outputs. However it is assumed that the model produces an approximation of the

expected dynamics of the system. No physical model validation has been carried out

to verify the accuracy of the model.

Although the CFD component of the model resolves the flow around the body in three

dimensions, symmetry was forced across the central horizontal plane. This artificially

restricted the fluid induced torques acting on the bodies to yaw inducing torques. As

a consequence no comment can be made from this study regarding the roll or pitch

stability of the proposed approach.

The total time frame of each simulation was limited by a combination of the temporal

resolution, and the maximum deformation allowable on the CFD mesh. Therefore it

was decided that the simulations would focus on initial motion from rest. This proved

that the motions generated could accelerate the robotic fish from static. Owing to

the time frame of the sample only approximate comment can be made on what the

maximum forward swimming speed would have been.

Although the methods presented in chapters 7 and 8 were continuous methods due

to the constraints of computerised simulation all controllers within the thesis were

148

9.3. COMPARISON OF CONTROLLER PERFORMANCE

implemented discretely. The control interval was kept the same for all simulations

making the comparisons drawn in this chapter like for like.

9.3 Comparison of controller performance

Within this thesis four different controllers were used to regulate the state energy of the

robotic fish in simulations. The system response and resultant robotic fish behaviour

differed significantly depending on the choice of controller.

In chapter 6 a deadbeat controller was put forward which at each iteration solved

the discrete time energy equation to find the exact input u to move to a zero error

state from the existing state. This deadbeat controller ignored the presence of system

disturbances thus made no allowance to compensate for them at each time. However as

deadbeat control does not allow the propagation of existing error it can therefore could

be considered universally robust.

In chapter 7 popular robust control techniques were adapted to generate an H∞ noise

rejecting error feedback controller for the control of state energy. This controller was

then further optimised using a novel parametric sensitivity of norm based gradient

decent to produce a reduced fragility disturbance rejection error feedback controller,

with the aim of reducing the effect of parametric uncertainty on the system response to

disturbance.

Finally in chapter 8 an alternative error metric controller was defined, which used

a novel error metric definition to ensure that the response of error to a given input

remained constant despite nonlinearity of the objective region.

Simulations were run for a period of 3s with the exception on the deadbeat controller

where reduced initial velocity allowed the simulation to run for 6s.The controllers were

each allowed to provide a single control input to be updated at intervals of 2× 10−4s.

All the controllers were given identical control objectives, i.e. to regulate the state

149

9.3. COMPARISON OF CONTROLLER PERFORMANCE

energy given by E = xTQx to 0.35J, where the matrix Q was kept constant. The

passive objective of the controllers was to produce an effective/efficient swimming gait

for the robotic fish.

Figure 9.1: Plot comparing energy against time for candidate controllers over 3
seconds

Comparing the controllers on performance the stated control objective reveals that the

deadbeat controller was the most effective regulator of energy returning a root mean

square error (RMSE) of ≈ 0.0095J. The alternative error metric controller performed

second best with RMSE ≈ 0.0263J. The original H∞ disturbance rejection error

feedback controller and the gradient optimised H∞ disturbance rejection error feedback

controllers performed worst with RMSE of ≈ 0.0579 and ≈ 0.0411 respectively.

The poor performance of the original H∞ and the gradient optimised H∞ controllers

was perhaps largely due to periodic disturbance caused by the nonlinearity of the

control objective region which causes variation in the error response to a given input.

Figure 9.1 shows a plot of state energy against time for the four controllers. It can

clearly be seen that the dead band for the energy response to the deadbeat controller

is significantly smaller than the dead band for the other controllers. The two H∞

150

9.3. COMPARISON OF CONTROLLER PERFORMANCE

controllers have the widest dead band.

Figure 9.2 shows a close-up of the initial rise of each of the energy signals from rest. It

can be seen that with the exception of the deadbeat controller all the other controllers

result in approximately the same initial ramp up. The alternative energy controller

however falls short of the objective at the first peak.

Figure 9.2: Plot comparing energy against time for candidate controllers from rest

Despite the excellent performance of the deadbeat controller on the stated objective

it arguably performed worst on the passive objective. By introducing high frequency

stimulation into the system through ‘non smooth’ control. High frequency transients

which would have otherwise dissipated quickly were maintained in the motion. As a

result the orbital path followed by the deadbeat controller for the first 4 seconds required

a mean energy expenditure of≈ 10W significantly more than the orbital paths followed

by the other controllers. The original and the optimised H∞ required an average of ≈

3.5W and≈ 0.355W respectively. The alternative error controller required only 2.98W .

After a period of 4s the deadbeat controller did however eventually allow the higher

frequency transient to dissipate, after which the controller followed a similar orbital

151

9.3. COMPARISON OF CONTROLLER PERFORMANCE

path to the other controllers with a mean energy requirement of only 2.56W . This

lower energy cost being perhaps due to the remaining presence of turbulence in the

surrounding fluid from the earlier high frequency motion.

Figure 9.3: Plot comparing work against time for candidate controllers

Figure 9.4: Plot comparing work against time for candidate controllers (without
deadbeat)

Figures 9.3 and 9.4 show plots of the input power of each of the controllers against

152

9.3. COMPARISON OF CONTROLLER PERFORMANCE

time for a selected time period. It can be seen that the alternative error controller power

series lacks the positive and negative spikes characteristic in the power series from the

H∞ controllers.

The avoidance of negative work was one of the motivations stated for using physical

energy to regulate the motion. However simulation results revealed that choice of

controller had a significant effect on how successfully the system avoided negative

work. The initial orbital path followed by the deadbeat controller resulted in an average

of ≈ 0.984W of negative work, constituting ≈ 10% of the total absolute work input of

the controller. After the switch in orbital path this dropped to ≈ 0.43W of negative

work however this now constituted ≈ 15% of the mean absolute work. The best

performing controller in terms of eradicating negative work was the alternative error

metric controller, which resulted in≈ 0.17W of mean negative work, which constituted

5.7% of the total work. The original and optimised H∞ controller resulted in mean

negative work of ≈ 0.37W and ≈ 0.33W respectively constituting ≈ 12% and ≈ 10%

negative work respectively. The high level of negative work in the deadbeat controller

was likely due to overshoot caused by modelling inaccuracy. On the other hand the

negative work from the H∞ controller was likely originated in overshoots due to the

inconsistency of the error response to a given response. The reduced fragility H∞

controller performed marginally better than the original H∞ controller in this respect.

Figure 9.5 shows a plot of the bearing of the robotic fish head for each of the

simulations. It can clearly be seen that the alternative error feedback results in

significantly increased rates of yaw. It is interesting to note also that it is the only one

of the four controllers to initiate with positive yaw oscillation, yet still results in yaw

in the same direction. This could suggest that the mesh chosen has a tendency to cause

negative yaw motion.

The yaw stability was also identified as a significant issue. For forward swimming it is

153

9.3. COMPARISON OF CONTROLLER PERFORMANCE

Figure 9.5: Plot comparing forward section bearing against time for candidate
controllers

desirable to ensure the global yaw is kept to a minimum. However all the controllers to

some degree experienced global yaw in the resultant motion. The largest yaw rate was

experienced by the alternative error controller which experienced a global yaw rate of

0.067rad s−1.The deadbeat controller resulted in an initial yaw rate of 0.021rad s−1

during the initial motion, increasing to 0.026rad s−1 after the switch of orbital path. In

order to try to address the yaw issue the H∞ controllers included a direction bias in the

decision element of the controller. The original H∞ controller resulted in a yaw rate of

0.029rad however after experiencing an initial yaw rate of 0.02rad s−1 the optimised

H∞ controller seemed to stabilise in yaw due to the directional bias. The yaw rate is

thought to be determined by a combination of the yaw stability and the initial yaw

inputs generated when establishing the periodic motion.

Figure 9.6 shows a plot of forward velocity against time for the four controllers.

As all three controllers resulted in motion that caused forward locomotion all three

controllers could be said to have produced ‘effective’ swimming gaits. However

154

9.3. COMPARISON OF CONTROLLER PERFORMANCE

Figure 9.6: Plot comparing forward velocity against time for candidate controllers

comparing the velocities 3s into the simulation reveals that the choice of controller had

significant effect on the resultant swimming speed. The fastest was with the optimised

H∞ controller reaching 0.173ms−1 followed by the original H∞ controller which

reached 0.170ms−1 and the alternative error metric controller reaching 0.157ms−1 and

finally the deadbeat controller reaching 0.0825ms−1. However correcting for direction

of heading gives, 0.188ms−1 for the modified H∞, 0.1836ms−1 for the alternative error,

0.171ms−1 for the original H∞ and 0.0825ms−1 for the deadbeat.

Figure 9.7 shows a plot of heading corrected velocity. It can be seen that whilst

the H∞ controllers seem to initially have resulted in a faster swimming motion, after

around 1.5s the alternative error controller catches up. This is perhaps partially due

to interference from the course correction element integrated into the H∞ controllers

causing a less optimal gait.

Comparing cost of transport over the first 3 seconds, given by,

cost o f transport =
∫ 3

0 |work| dt
∫ 3

0 velocity dt
(9.1)

155

9.3. COMPARISON OF CONTROLLER PERFORMANCE

Figure 9.7: Plot comparing velocity corrected for heading against time for candidate
controllers

unsurprisingly revealed that the deadbeat controller performed worst ≈ 222Jm−1. The

original and modified H∞ controllers resulted in a cost of transport of ≈ 37.8Jm1 and

≈ 38.1Jm−1. The alternative error metric controller performed best with≈ 31.89Jm−1.

However it must be observed that the H∞ controllers may have performed better in the

absence of the directional bias in the controller.

Figure 9.8 Compares the resultant vortices from the four controllers. It can be seen that

the deadbeat controller resulted in much less well defined vortices. This could be due

to the high frequency input from the discrete controller disrupting vortex formation.

Based on the rate of acceleration experienced by the fish during the 3 seconds simulated

and the steady state coefficient of drag of the geometry given in chapter 4 as cd ≈

0.04468. It is possible to project the final velocity that the fish would have reached

before drag forces balanced with thrust would have been ≈ 0.95ms−1.

Figure 9.9 shows how this projected velocity fits in with the reported BCF swimmers

in chapter 3. It can be seen that the projected velocities lie in good correlation with the

156

9.4. CONCLUDING REMARKS

(a) (b)

(c) (d)

Figure 9.8: A comparison of resultant vortices (a) Deadbeat controller, (b) H∞

(original), (c) H∞ (optimised), (d) alternative error

more sucessful robotic BCF swimmers reported. Furthermore the projections suggest

that the swimming gait is significantly more optimal than those achieved by other

underactuated devices.

A summary of the results presented within this thesis can be found in table 9.1.

9.4 Concluding Remarks

In this chapter a comparison was made between the simulation results presented in

chapters 6, 7 and 8. The comparison demonstrated that the choice of controller has a

significant effect not only on the accuracy of the energy control, but also on the resultant

orbital path through the state space. This in turn has a significant effect on the fitness

for purpose as an energy based gait regulator for a robotic fish.

157

9.4. CONCLUDING REMARKS

(Anderson: 1999)

(Kumph: 2000)

(Hirata: 2000) (Hirata: 2000)

(Dogangil: 2005) (Alvardo: 2007)

(Liang: 2005)

(Wang: 2010)

(Nakashima:

2004)

(This Study)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

S
p

e
e

d
 L

/s

Frequency Hz

Figure 9.9: A graph showing the relationship between maximum tail beat frequency
and resultant speed for BCF swimmers reported in this thesis

Table 9.1: Summary of Controller Performance

Deadbeat H∞ H∞ Alternative
(original) (gradient optimised) Error

RMSE (J) 0.0095 0.0579 0.0411 0.0263
¯|work| (W) 9.88/2.56 3.5 3.55 2.98

¯work−ve
(W) 0.984/0.43 0.37 0.33 0.17

yaw (rad s−1) 0.021/0.026 0.029 0.02 0.066
v* (ms−1) 0.0825 0.171 0.188 0.1836
ā (ms−2) 0.027/0.058 0.054 0.061 0.056

COT # (Jm−1) 222 37.6 38.2 31.9
* velocity after 3 seconds

Cost of transport

The deadbeat controller offered the most accurate control of state energy, and therefore

in terms of the stated control objective function could be described as the most

successful controller. However the deadbeat controller performed poorly with regards

to the passive objective of generating an efficient effective stable gait for a robotic

fish. Whilst the gait produced was effective in generating propulsion the efficiency

158

9.4. CONCLUDING REMARKS

was relatively poor and proved to be unstable in terms of fixing the orbit. The high

level of negative work and the excitation of undesired transients resulting from the non

smooth input make the deadbeat control a poor choice for energy based control of an

underactuated robotic fish.

The H∞ disturbance rejecting error feedback controller, resulted in a more predictable

motion, however at the cost of controller accuracy. The sensitivity optimised H∞

controller, performed better than the original H∞ disturbance rejection controller,

improving both accuracy and reducing the amount of negative work. It is suggested

that whilst such a controller may be a good choice for swimming in a lamina flow,

the disturbance rejection aspect may prevent the robot fish from benefiting from

vortex interactions in a turbulent flow, negating a significant proportion of the original

motivation behind the selection of energy based control.

The alternative error metric controller outperformed both H∞ controllers in terms of the

accuracy of the error control, achieving a further reduction in the negative work, whilst

avoiding stimulation of undesired transients, this controller suffered the greatest degree

of yaw instability, this was perhaps due to the lack of a decision phase where a direction

bias could be introduced. It is clear that the alternative error metric controller is the

best choice for energy based control of an underactuated robotic fish gait however an

ancillary yaw stabilisation such as adjustable dorsal/anal fins as used by fish in nature

may be required. A possible alternative considered is the reshaping of the objective

region.

The speed projections although somewhat crude are very promising comparing very

favourably against other BCF type robotic fish reviewed in the literature, significantly

out performing other single actuator underactuated swimmers.

159

9.4. CONCLUDING REMARKS

160

Chapter 10

Conclusions and further work

This chapter presents conclusions drawn form this study and recommendations

for future work.

10.1 Summary of thesis and contributions

The stated aim of this study was to develop biomimetic marine propulsion capable

of mimicking the way fish and cetaceans in nature harness unsteady fluid effects to

increase efficiency. Towards this goal the following contributions have been made,

Chapter 3 presented an extensive review of the available, assessing trends in the

development of biomimetic propulsion systems. The review revealed a generalised

trend in BCF robotic swimmers towards simpler under actuated devices and identified

gait generation as a critical factor in biomimetic propulsion.

Chapter 4 described a simulation platform to enable offline experimentation and

optimisation of a simplified BCF type robotic fish. The model was based on a four link

free floating kinematic chain surrounded by an incompressible fluid. Fluid interactions

were integrated through a 3D finite element CFD simulation. This model was then

used in the simulations featured throughout the thesis.

Chapter 5 detailed a novel method for the generation of gaits for underactuated robotic

fish based on the control of energy. By treating the gait as a state space orbit, high

dimensional periodic motion could be regulated through a single observable output.

161

10.1. SUMMARY OF THESIS AND CONTRIBUTIONS

Chapter 6 presented a proof of concept study demonstrating that the aforementioned

novel gait generation tactic can produce an effective swimming gait for a BCF type

robotic fish. A simple model based deadbeat controller was derived to regulate the

energy. Results presented demonstated that an energy regulated state space orbit could

produce an effective swimming gait for a robotic fish.

Chapter 7 described an improved state energy controllers based on robust control

techniques and a novel technique to determine the parametric derivative of system

norms. The resultant controller was robust and with non fragile disturbance rejection

allowing for significant unmodeled disturbance from unsteady fluid effects and

unmodelled dynamics.

Chapter 8 featured a further improved state energy controller based on a novel

alternative error metric allowing error feedback linear controllers to more effectively

regulate systems with nonlinear objectives. By altering the measure of error to ensure

that the response of the system error to a given control input remains constant the

number of control problems solvable with a simple error feedback controller is vastly

increased.

Chapter 9 provided an assessment of the four proposed controllers featured within

this thesis with a view to determine fitness for purpose. Findings demonstrated the

importance of controller selection in resultant system performance.

Further to these contributions towards the stated aim during the course of this study the

following Contributions to Knowledge have been made which it believed may be of

wider interest.

A parameter differentiable upper bound on the H∞ norm of an LTI system was derived.

Allowing the local parametric gradient of the H∞ norm to be approximated. This is

thought to be of wider interest to the robust control community for applications such as

162

10.2. CONCLUDING REMARKS

the design of nonfragile robust systems with infinite phase margin.

Also an alternative error metric for error feedback control of systems with nonlinear

objective region was defined and an explicit function of state to quantify the

aforementioned error metric for a state energy control objective was derived. This is

though to be of wider interest to the control of linear dynamic systems with nonlinear

objectives.

10.2 Concluding remarks

This study has followed a bottom up approach to biomimicry in that rather than copying

a swimming gait from nature which could be considered a top down approach. This

study has focused on a method to mimic the mechanisms used in nature to produce an

effective swimming gait.

10.3 Recommendations for future work

Yaw stabilisation is key to developing the methods described within this thesis to

practical applications. Whilst with the H∞ controllers presented direction bias did go

some way towards yaw stabilisation, full control over yaw is desirable. This could

possibly be achieved through the reshaping of the objective region to discourage global

yaw either through alternative choice of the energy matrix Q or possibly through the

integration of two of more intersecting energy objective functions. It is possible that

the best case control vector error definition could be expanded to achieve this to some

degree with a single controllable input.

Experimental validation of the simulations presented within this thesis would also help

to strengthen the arguments presented herein.

The results presented within this thesis only included acceleration from rest and did not

give an accurate indication of maximum speed achievable. Further investigation into

163

10.3. RECOMMENDATIONS FOR FUTURE WORK

swimming at speeds would be desirable.

It is believed that further optimisation of the spring values and energy objective function

could yield more optimal swimming kinematics.

164

Appendix A

H∞ controller Parameters

Parameters for H∞ controller presented in chapter 7

165

X
∞

  

2.
4e

+
00

1.
6e

+
00

1.
4e

+
00

1.
3e

+
00

1.
7e
−

02
−

4.
6e
−

02
−

1.
2e
−

01
−

1.
1e
−

01
1.

5e
−

04
−

1.
1e
−

04
−

3.
8e
−

05
−

1.
6e
−

06
7.

7e
−

01
1.

3e
−

01
4.

3e
−

02
1.

0e
−

02

1.
6e

+
00

4.
7e

+
00

4.
9e

+
00

4.
6e

+
00

−
9.

7e
−

02
3.

0e
−

01
6.

6e
−

01
3.

5e
−

01
−

7.
4e
−

04
8.

2e
−

04
2.

1e
−

05
−

1.
2e
−

04
7.

4e
−

01
1.

6e
−

01
5.

8e
−

02
1.

5e
−

02

1.
4e

+
00

4.
9e

+
00

6.
9e

+
00

8.
0e

+
00

−
3.

9e
−

02
2.

2e
−

02
3.

8e
−

01
8.

7e
−

01
−

7.
0e
−

04
−

4.
5e
−

05
4.

9e
−

04
2.

4e
−

04
7.

3e
−

01
1.

6e
−

01
6.

5e
−

02
1.

7e
−

02

1.
3e

+
00

4.
6e

+
00

8.
0e

+
00

1.
0e

+
01

−
4.

7e
−

02
2.

9e
−

01
−

1.
4e
−

01
3.

5e
−

01
−

5.
6e
−

04
−

7.
5e
−

04
6.

8e
−

04
6.

2e
−

04
7.

2e
−

01
1.

6e
−

01
6.

8e
−

02
1.

9e
−

02

1.
7e
−

02
−

9.
7e
−

02
−

3.
9e
−

02
−

4.
7e
−

02
6.

6e
+

01
−

3.
4e

+
02

−
7.

4e
+

01
8.

4e
+

01
−

3.
1e

+
00

1.
9e

+
00

8.
6e
−

01
1.

7e
−

01
1.

2e
−

03
−

1.
4e
−

03
−

7.
1e
−

04
−

1.
9e
−

04

−
4.

6e
−

02
3.

0e
−

01
2.

2e
−

02
2.

9e
−

01
−

3.
4e

+
02

2.
6e

+
03

−
1.

4e
+

03
−

2.
8e

+
03

1.
2e

+
01

−
1.

1e
+

01
−

1.
7e

+
00

7.
2e
−

01
−

2.
4e
−

03
4.

2e
−

03
2.

1e
−

03
5.

8e
−

04

−
1.

2e
−

01
6.

6e
−

01
3.

8e
−

01
−

1.
4e
−

01
−

7.
4e

+
01

−
1.

4e
+

03
4.

7e
+

03
2.

4e
+

03
1.

3e
+

01
−

2.
6e

+
00

−
7.

1e
+

00
−

3.
2e

+
00

−
9.

9e
−

03
9.

3e
−

03
4.

6e
−

03
1.

1e
−

03

−
1.

1e
−

01
3.

5e
−

01
8.

7e
−

01
3.

5e
−

01
8.

4e
+

01
−

2.
8e

+
03

2.
4e

+
03

1.
9e

+
04

1.
2e

+
01

4.
3e

+
00

−
9.

4e
+

00
−

7.
2e

+
00

−
1.

1e
−

02
8.

3e
−

03
5.

7e
−

03
1.

8e
−

03

1.
5e
−

04
−

7.
4e
−

04
−

7.
0e
−

04
−

5.
6e
−

04
−

3.
1e

+
00

1.
2e

+
01

1.
3e

+
01

1.
2e

+
01

3.
5e
−

01
−

1.
8e
−

01
−

1.
2e
−

01
−

3.
5e
−

02
9.

3e
−

06
−

1.
2e
−

05
−

7.
0e
−

06
−

2.
0e
−

06

−
1.

1e
−

04
8.

2e
−

04
−

4.
5e
−

05
−

7.
5e
−

04
1.

9e
+

00
−

1.
1e

+
01

−
2.

6e
+

00
4.

3e
+

00
−

1.
8e
−

01
1.

2e
−

01
5.

2e
−

02
9.

3e
−

03
−

5.
9e
−

06
8.

7e
−

06
2.

8e
−

06
1.

4e
−

07

−
3.

8e
−

05
2.

1e
−

05
4.

9e
−

04
6.

8e
−

04
8.

6e
−

01
−

1.
7e

+
00

−
7.

1e
+

00
−

9.
4e

+
00

−
1.

2e
−

01
5.

2e
−

02
4.

6e
−

02
1.

7e
−

02
−

4.
8e
−

06
2.

8e
−

06
2.

8e
−

06
1.

1e
−

06

−
1.

6e
−

06
−

1.
2e
−

04
2.

4e
−

04
6.

2e
−

04
1.

7e
−

01
7.

2e
−

01
−

3.
2e

+
00

−
7.

2e
+

00
−

3.
5e
−

02
9.

3e
−

03
1.

7e
−

02
8.

6e
−

03
−

1.
5e
−

06
1.

4e
−

07
1.

1e
−

06
6.

5e
−

07

7.
7e
−

01
7.

4e
−

01
7.

3e
−

01
7.

2e
−

01
1.

2e
−

03
−

2.
4e
−

03
−

9.
9e
−

03
−

1.
1e
−

02
9.

3e
−

06
−

5.
9e
−

06
−

4.
8e
−

06
−

1.
5e
−

06
2.

8e
−

01
4.

8e
−

02
1.

6e
−

02
3.

9e
−

03

1.
3e
−

01
1.

6e
−

01
1.

6e
−

01
1.

6e
−

01
−

1.
4e
−

03
4.

2e
−

03
9.

3e
−

03
8.

3e
−

03
−

1.
2e
−

05
8.

7e
−

06
2.

8e
−

06
1.

4e
−

07
4.

8e
−

02
9.

0e
−

03
3.

2e
−

03
7.

8e
−

04

4.
3e
−

02
5.

8e
−

02
6.

5e
−

02
6.

8e
−

02
−

7.
1e
−

04
2.

1e
−

03
4.

6e
−

03
5.

7e
−

03
−

7.
0e
−

06
2.

8e
−

06
2.

8e
−

06
1.

1e
−

06
1.

6e
−

02
3.

2e
−

03
1.

2e
−

03
2.

9e
−

04

1.
0e
−

02
1.

5e
−

02
1.

7e
−

02
1.

9e
−

02
−

1.
9e
−

04
5.

8e
−

04
1.

1e
−

03
1.

8e
−

03
−

2.
0e
−

06
1.

4e
−

07
1.

1e
−

06
6.

5e
−

07
3.

9e
−

03
7.

8e
−

04
2.

9e
−

04
7.

5e
−

05

  

166

Z
∞

L
∞

  

1.
5e
−

06
9.

0e
−

07
5.

4e
−

07
2.

0e
−

07
5.

2e
−

06
9.

5e
−

07
3.

4e
−

07
8.

5e
−

08

1.
5e
−

06
9.

2e
−

07
5.

5e
−

07
2.

0e
−

07
5.

2e
−

06
9.

6e
−

07
3.

4e
−

07
8.

6e
−

08

1.
6e
−

06
9.

2e
−

07
5.

5e
−

07
2.

0e
−

07
5.

2e
−

06
9.

6e
−

07
3.

4e
−

07
8.

6e
−

08

1.
6e
−

06
9.

2e
−

07
5.

5e
−

07
2.

0e
−

07
5.

3e
−

06
9.

7e
−

07
3.

4e
−

07
8.

7e
−

08

−
3.

8e
−

06
−

2.
3e
−

06
−

1.
6e
−

06
−

3.
8e
−

07
4.

8e
−

06
7.

6e
−

07
2.

2e
−

07
4.

5e
−

08

−
3.

8e
−

06
−

2.
4e
−

06
−

1.
6e
−

06
−

3.
9e
−

07
4.

9e
−

06
7.

7e
−

07
2.

3e
−

07
4.

6e
−

08

−
3.

8e
−

06
−

2.
4e
−

06
−

1.
6e
−

06
−

3.
9e
−

07
4.

9e
−

06
7.

7e
−

07
2.

3e
−

07
4.

6e
−

08

−
3.

8e
−

06
−

2.
4e
−

06
−

1.
6e
−

06
−

3.
9e
−

07
4.

9e
−

06
7.

7e
−

07
2.

3e
−

07
4.

6e
−

08

−
2.

3e
+

01
2.

5e
+

01
−

6.
1e

+
00

2.
2e

+
00

−
2.

5e
−

01
−

6.
5e
−

01
−

1.
5e
−

01
−

2.
3e
−

02

2.
5e

+
01

−
9.

5e
+

01
8.

7e
+

01
−

1.
8e

+
01

1.
9e
−

01
1.

8e
−

01
−

4.
6e
−

01
−

3.
0e
−

02

−
6.

1e
+

00
8.

7e
+

01
−

1.
7e

+
02

8.
8e

+
01

9.
5e
−

02
3.

4e
−

01
2.

7e
−

01
−

3.
2e
−

01

2.
2e

+
00

−
1.

8e
+

01
8.

8e
+

01
−

7.
3e

+
01

2.
9e
−

02
8.

9e
−

02
3.

1e
−

01
3.

7e
−

01

−
2.

5e
−

01
1.

9e
−

01
9.

5e
−

02
2.

9e
−

02
−

1.
2e

+
00

−
1.

8e
−

01
−

5.
4e
−

02
−

1.
2e
−

02

−
6.

5e
−

01
1.

8e
−

01
3.

4e
−

01
8.

9e
−

02
−

1.
8e
−

01
−

9.
3e
−

02
−

3.
3e
−

02
−

6.
2e
−

03

−
1.

5e
−

01
−

4.
6e
−

01
2.

7e
−

01
3.

1e
−

01
−

5.
4e
−

02
−

3.
3e
−

02
−

3.
1e
−

02
−

9.
2e
−

03

−
2.

3e
−

02
−

3.
0e
−

02
−

3.
2e
−

01
3.

7e
−

01
−

1.
2e
−

02
−

6.
2e
−

03
−

9.
2e
−

03
−

8.
2e
−

03

  

167

168

Appendix B

Simmulation Study

This appendix contains details of the specific hardware and software used for

all simulation studies featured throughout this the thesis.

Table B.1: Hardware

model Dell Latitude E6220
processor Intel core i3 2.1GHz

ram 4GB

Table B.2: Software

Operating System Ubuntu 12.04.02
CFD OpenFoam version 2.0.1
ODE Octave version 3.6.2

B.1 OpenFoam Case files
The following section gives the Octave case files used in verbatim form. Approximate runtime for simulation on the above described hardware was 2days s−1 .

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}
// * //

169

B.1. OPENFOAM CASE FILES

application snappyHexMesh;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 100;

deltaT 1;

writeControl runTime;

writeInterval 1;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object snappyHexMeshDict;

}
// * //

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to ’snap’ the mesh boundary to the surface
geometry
{

Fish.stl
{
type triSurfaceMesh;
name Fish;
}

// Head.stl
// {

// type triSurfaceMesh;
// name Head;
// }

// Middle.stl
// {

// type triSurfaceMesh;
// name Middle;
// }

// Tail.stl
// {
// type triSurfaceMesh;

// name Tail;
// }

};

170

B.1. OPENFOAM CASE FILES

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

// Refinement parameters
// ~~~~~~~~~~~~~~~~~~~~~

// If local number of cells is >= maxLocalCells on any processor
// switches from from refinement followed by balancing
// (current method) to (weighted) balancing before refinement.
maxLocalCells 3000000;

// Overall cell limit (approximately). Refinement will stop immediately
// upon reaching this number so a refinement level might not complete.
// Note that this is the number of cells before removing the part which
// is not ’visible’ from the keepPoint. The final number of cells might
// actually be a lot less.
maxGlobalCells 3000000;

// The surface refinement loop might spend lots of iterations refining just a
// few cells. This setting will cause refinement to stop if <= minimumRefine
// are selected for refinement. Note: it will at least do one iteration
// (unless the number of cells to refine is 0)
minRefinementCells 10;

// Allow a certain level of imbalance during refining
// (since balancing is quite expensive)
// Expressed as fraction of perfect balance (= overall number of cells /
// nProcs). 0=balance always.
maxLoadUnbalance 0.10;

// Number of buffer layers between different levels.
// 1 means normal 2:1 refinement restriction, larger means slower
// refinement.
nCellsBetweenLevels 3;

// Explicit feature edge refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies a level for any cell intersected by its edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.
features
(

//{
// file "someLine.eMesh";
// level 2;
//}

);

// Surface based refinement
// ~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies two levels for every surface. The first is the minimum level,
// every cell intersecting a surface gets refined up to the minimum level.
// The second level is the maximum level. Cells that ’see’ multiple
// intersections where the intersections make an
// angle > resolveFeatureAngle get refined up to the maximum level.

refinementSurfaces
{

Fish
{
level (5 5);
}

// Head
// {

// Surface-wise min and max refinement level
// level (4 4);

// }
// Middle
// {
// level (4 4);
// }
// Tail
// {
// level (4 4);
// }

}

// Resolve sharp angles
resolveFeatureAngle 30;

171

B.1. OPENFOAM CASE FILES

// Region-wise refinement
// ~~~~~~~~~~~~~~~~~~~~~~

// Specifies refinement level for cells in relation to a surface. One of
// three modes
// - distance. ’levels’ specifies per distance to the surface the
// wanted refinement level. The distances need to be specified in
// descending order.
// - inside. ’levels’ is only one entry and only the level is used. All
// cells inside the surface get refined up to the level. The surface
// needs to be closed for this to be possible.
// - outside. Same but cells outside.

refinementRegions
{

Fish
{
mode distance;
// Hress
//levels 4((0.15 5)(0.3 4)(0.6 3)(1.2 2));
//LRes
levels 3((0.2 4)(0.5 3)(1 2));
}

// Head
// {
// mode distance;

// levels ((0.5 3));
// }

// Middle
// {

// mode distance;
// levels ((0.5 3));

// }
// Tail

// {
// mode distance;

// levels ((0.5 3));
// }

}

// Mesh selection
// ~~~~~~~~~~~~~~

// After refinement patches get added for all refinementSurfaces and
// all cells intersecting the surfaces get put into these patches. The
// section reachable from the locationInMesh is kept.
// NOTE: This point should never be on a face, always inside a cell, even
// after refinement.
locationInMesh (1.11 0.01 0.23);

allowFreeStandingZoneFaces true;

}

// Settings for the snapping.
snapControls
{

//- Number of patch smoothing iterations before finding correspondence
// to surface
nSmoothPatch 3;

//- Relative distance for points to be attracted by surface feature point
// or edge. True distance is this factor times local
// maximum edge length.
tolerance 4.0;

//- Number of mesh displacement relaxation iterations.
nSolveIter 30;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;

}

// Settings for the layer addition.
addLayersControls
{

// Are the thickness parameters below relative to the undistorted
// size of the refined cell outside layer (true) or absolute sizes (false).
relativeSizes true;

// Per final patch (so not geometry!) the layer information
layers

172

B.1. OPENFOAM CASE FILES

{

Fish_Link_1
{

nSurfaceLayers 1;
}

Fish_Link_2
{

nSurfaceLayers 1;
}

Fish_Link_3
{

nSurfaceLayers 1;
}
Fish_Link_4
{

nSurfaceLayers 1;
}
Fish_Joint_1
{
nSurfaceLayers 1;
}
Fish_Joint_2
{
nSurfaceLayers 1;
}
Fish_Joint_3
{
nSurfaceLayers 1;
}

}

// Expansion factor for layer mesh
expansionRatio 1.0;

//- Wanted thickness of final added cell layer. If multiple layers
// is the thickness of the layer furthest away from the wall.
// See relativeSizes parameter.
finalLayerThickness 0.3;

//- Minimum thickness of cell layer. If for any reason layer
// cannot be above minThickness do not add layer.
// Relative to undistorted size of cell outside layer.
minThickness 0.1;

//- If points get not extruded do nGrow layers of connected faces that are
// also not grown. This helps convergence of the layer addition process
// close to features.
nGrow 1;

// Advanced settings

//- When not to extrude surface. 0 is flat surface, 90 is when two faces
// make straight angle.
featureAngle 30;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 3;

// Number of smoothing iterations of surface normals
nSmoothSurfaceNormals 1;

// Number of smoothing iterations of interior mesh movement direction
nSmoothNormals 3;

// Smooth layer thickness over surface patches
nSmoothThickness 10;

// Stop layer growth on highly warped cells
maxFaceThicknessRatio 0.5;

// Reduce layer growth where ratio thickness to medial
// distance is large
maxThicknessToMedialRatio 0.3;

// Angle used to pick up medial axis points
minMedianAxisAngle 130;

// Create buffer region for new layer terminations
nBufferCellsNoExtrude 0;

// Overall max number of layer addition iterations
nLayerIter 50;

}

// Generic mesh quality settings. At any undoable phase these determine

173

B.1. OPENFOAM CASE FILES

// where to undo.
meshQualityControls
{

//- Maximum non-orthogonality allowed. Set to 180 to disable.
maxNonOrtho 65;

//- Max skewness allowed. Set to <0 to disable.
maxBoundarySkewness 20;
maxInternalSkewness 4;

//- Max concaveness allowed. Is angle (in degrees) below which concavity
// is allowed. 0 is straight face, <0 would be convex face.
// Set to 180 to disable.
maxConcave 80;

//- Minimum projected area v.s. actual area. Set to -1 to disable.
minFlatness 0.5;

//- Minimum pyramid volume. Is absolute volume of cell pyramid.
// Set to a sensible fraction of the smallest cell volume expected.
// Set to very negative number (e.g. -1E30) to disable.
minVol 1e-10;

minTetQuality 1e-30;
//- Minimum face area. Set to <0 to disable.
minArea -1;

//- Minimum face twist. Set to <-1 to disable. dot product of face normal
//- and face centre triangles normal
minTwist 0.02;

//- minimum normalised cell determinant
//- 1 = hex, <= 0 = folded or flattened illegal cell
minDeterminant 0.001;

//- minFaceWeight (0 -> 0.5)
minFaceWeight 0.02;

//- minVolRatio (0 -> 1)
minVolRatio 0.01;

//must be >0 for Fluent compatibility
minTriangleTwist -1;

// Advanced

//- Number of error distribution iterations
nSmoothScale 4;
//- amount to scale back displacement at error points
errorReduction 0.75;

}

// Advanced

// Flags for optional output
// 0 : only write final meshes
// 1 : write intermediate meshes
// 2 : write volScalarField with cellLevel for postprocessing
// 4 : write current intersections as .obj files
debug 0;

// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1E-6;

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}
// * //

application pimpleDyMFoam;

174

B.1. OPENFOAM CASE FILES

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 2e-4;

writeControl adjustableRunTime;

writeInterval 1e-2;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep false;

maxCo 0.05;

libs (
"libOpenFOAM.so"
"libExeFunc.so"
"libFilePPvf.so"
"libBodyInfo.so"
"libmytvfriv.so"
"libMyFilePPvf.so"
);

functions
{

body1
{

type bodyInfo;
functionObjectLibs ("libBodyInfo.so");
outputControl timeStep;
outputInterval 1;
patch (Fish_Link_1);
pName p;
UName U;

rhoName rhoInf;
log true;
rhoInf 1000;

}
body2

{
type bodyInfo;
functionObjectLibs ("libBodyInfo.so");
outputControl timeStep;
outputInterval 1;
patch (Fish_Link_2);
pName p;
UName U;

rhoName rhoInf;
log true;
rhoInf 1000;

}
body3

{
type bodyInfo;
functionObjectLibs ("libBodyInfo.so");
outputControl timeStep;
outputInterval 1;
patch (Fish_Link_3);
pName p;
UName U;

rhoName rhoInf;
log true;
rhoInf 1000;

}
body4

{
type bodyInfo;
functionObjectLibs ("libBodyInfo.so");
outputControl timeStep;

175

B.1. OPENFOAM CASE FILES

outputInterval 1;
patch (Fish_Link_4);
pName p;
UName U;

rhoName rhoInf;
log true;
rhoInf 1000;

}
executable

{
type ExeFunc;
functionObjectLibs ("libExeFunc.so");
outputControl timeStep;
outputInterval 1;

Executable "octave OctExe/Fish.m";
}

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.1
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object fvSchemes;

}
// * //

ddtSchemes
{

default Euler;
}

gradSchemes
{

default Gauss linear;
grad(p) Gauss linear;
grad(U) Gauss linear;

}

divSchemes
{

default none;
div(phi,U) Gauss linearUpwind grad(U);
div(phi,k) Gauss limitedLinear 1;
div(phi,omega) Gauss limitedLinear 1;
div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

default Gauss linear limited 0.5;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
pcorr ;
p;

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

176

B.1. OPENFOAM CASE FILES

\\ / O peration	Version: 2.0.1
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object fvSolution;

}
// * //

solvers
{

pcorr
{

solver GAMG;
tolerance 0.02;
relTol 0;
smoother GaussSeidel;
nPreSweeps 2;
nPostSweeps 8;
cacheAgglomeration on;
agglomerator faceAreaPair;
nCellsInCoarsestLevel 10;
mergeLevels 1;

}

p
{

$pcorr
tolerance 1e-7;
relTol 0.01;

}

pFinal
{

$p;
nPostSweeps 10;

tolerance 1e-7;
relTol 0;

}

"(U|k|omega)"
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-06;
relTol 0.1;

}

"(U|k|omega)Final"
{

$U;
tolerance 1e-06;
relTol 0;

}

cellDisplacement
{

solver GAMG;
tolerance 1e-5;
relTol 0;
smoother GaussSeidel;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;

}
}

PIMPLE
{

correctPhi yes;
nOuterCorrectors 2;
nCorrectors 8;
nNonOrthogonalCorrectors 0;

}

relaxationFactors
{

p 0.3;
"(U|k|omega)" 0.7;

}

cache
{

grad(U);
}

177

B.1. OPENFOAM CASE FILES

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object motionProperties;

}
// * //

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver displacementLaplacian;

diffusivity inverseDistance 7(Fish_Joint_1 Fish_Joint_2 Fish_Joint_3 Fish_Link_1 Fish_Link_2 Fish_Link_3 Fish_Link_4);

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object RASProperties;

}
// * //

RASModel kOmegaSST;

turbulence on;

printCoeffs on;

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object turbulenceProperties;

}
// * //

simulationType RASModel;

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	

178

B.1. OPENFOAM CASE FILES

---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField;
object k;

}
// * //

#include "include/initialConditions"

dimensions [0 2 -2 0 0 0 0];

internalField uniform $turbulentKE;

boundaryField
{

bound_2
{

type inletOutlet;
inletValue $internalField;
value $internalField;

}

bound_3
{

type kqRWallFunction;
value $internalField;

}
bound_1
{

type fixedValue;
value $internalField;

}

mirror
{

type symmetryPlane;
}

"Fish_.*"
{

type kqRWallFunction;
value $internalField;

}

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField;
location "0";
object nut;

}
// * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{

"Fish_.*"
{

type nutkWallFunction;
value uniform 0;

}

bound_1
{

179

B.1. OPENFOAM CASE FILES

type calculated;
value uniform 0;

}
bound_2

{
type calculated;
value uniform 0;

}
bound_3

{
type nutkWallFunction;
value uniform 0;

}
mirror
{

type symmetryPlane;
}
}
}
}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField;
object epsilon;

}
// * //

#include "include/initialConditions"

dimensions [0 0 -1 0 0 0 0];

internalField uniform $turbulentOmega;

boundaryField
{

bound_2
{

type inletOutlet;
inletValue $internalField;
value $internalField;

}

bound_3
{

type omegaWallFunction;
value $internalField;

}
bound_1
{

type fixedValue;
value $internalField;

}

mirror
{

type symmetryPlane;
}

"Fish_.*"
{

type omegaWallFunction;
value $internalField;

}

}

// *** //

180

B.1. OPENFOAM CASE FILES

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class volScalarField;
object p;

}
// * //

dimensions [0 2 -2 0 0 0 0];
#include "include/initialConditions"
internalField uniform $pressure;

boundaryField
{

"Fish_.*"
{

type zeroGradient;
}

bound_1
{

type zeroGradient;
}

bound_2
{

type fixedValue;
value $internalField;

}

bound_3
{

type zeroGradient;
}

mirror
{

type symmetryPlane;
}

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class volVectorField;
object U;

}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

"Fish_.*"
{

type movingWallVelocity;
value uniform (0 0 0);

}

bound_1
{
type myTimeVaryingUniformInletOutlet;
timeDataFileName "OctExe/Flow.dat";

value $internalField;
}

181

B.1. OPENFOAM CASE FILES

bound_2
{

type inletOutlet;
inletValue uniform (0 0 0);
value $internalField;

}
bound_3
{
type fixedValue;

value uniform (0 0 0);
}

mirror
{

type symmetryPlane;
}

}

// *** //

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class pointVectorField;
location "0.01";
object pointDisplacement;

}
// * //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField
{

Fish_Joint_1
{

type fileBend;
timeDataFileName "OctExe/Joint1.dat";
timeDataFile2Name "OctExe/Joint1V.dat";
bdist 0.1;
angle0 0;
axis (0 0 1);
origin (0 0 0);
value uniform (0 0 0);

}
Fish_Joint_2

{
type fileBend;
timeDataFileName "OctExe/Joint2.dat";
timeDataFile2Name "OctExe/Joint2V.dat";
bdist 0.05;
angle0 0;
axis (0 0 1);
origin (-0.14 0 0);
value uniform (0 0 0);

}
Fish_Joint_3

{
type fileBend;
timeDataFileName "OctExe/Joint3.dat";
timeDataFile2Name "OctExe/Joint3V.dat";
bdist 0.025;
angle0 0;
axis (0 0 1);
origin (-0.28 0 0);
value uniform (0 0 0);

}
Fish_Link_1

{
type fileDisplacment;
timeDataFileName "OctExe/bod1.dat";
angle0 0;
axis (0 0 1);
origin (0.242194 0 0);
value uniform (0 0 0);

}

182

B.2. OCTAVE ODE SOLVING SCRIPT

Fish_Link_2
{

type fileDisplacment;
timeDataFileName "OctExe/bod2.dat";
angle0 0;
axis (0 0 1);
origin (-0.0618 0 0);
value uniform (0 0 0);

}
Fish_Link_3
{

type fileDisplacment;
timeDataFileName "OctExe/bod3.dat";
angle0 0;
axis (0 0 1);
origin (-0.193 0 0);
value uniform (0 0 0);

}
Fish_Link_4
{

type fileDisplacment;
timeDataFileName "OctExe/bod4.dat";
angle0 0;
axis (0 0 1);
origin (-0.349 0 0);
value uniform (0 0 0);

}
"bound.*"
{

type fixedValue;
value uniform (0 0 0);

}
mirror
{

type symmetryPlane;
}

}

// *** //

B.2 Octave ODE solving script
The following section gives the octave script files used in this thesis in verbatim form.

Fish.m

1;
cd OctExe
dir
fishModel

Dt = dt/ceil(dt/1e-6);
HinfReader
%contQuad
%fuzzyCont
for i=1:ceil(dt/1e-6)
Hinf

Plant

endfor
ObsWR
record

fishModel.m

1;
state = myReader("state");
bod1= myReader("../body1/bodyInfoOut.dat");
bod2= myReader("../body2/bodyInfoOut.dat");
bod3= myReader("../body3/bodyInfoOut.dat");
bod4= myReader("../body4/bodyInfoOut.dat");
B = [1;-1;0;0];
dt=bod1(1,1);

coms = [0.2422 -0.06175 -0.193 -0.349];
mass = [19.18 3.226 1.155 0.288];
J=[4.07e-1 0 0 0;0 1.336e-3 0 0;0 0 2.2e-4 0;0 0 0 1.797e-4];

183

B.2. OCTAVE ODE SOLVING SCRIPT

Hinge=[0 -0.14 -0.28];
l= [(coms(1)-Hinge(1)) (Hinge(1)-coms(2)) (coms(2)-Hinge(2)) (Hinge(2)-coms(3)) (coms(3)-Hinge(3)) (Hinge(3)-coms(4))];
L =[l(1) 0 0 0;

l(2) l(3) 0 0;
0 l(4) l(5) 0;

0 0 l(6) 0];
mm = [mass(1) 0 0 0;mass(1) mass(2) 0 0;mass(1) mass(2) mass(3) 0];

T2= L(:,1:3)*mm;

M= [sum(mass(2:4))*l(1) sum(mass(2:4))*l(2)+(mass(3)+mass(4))*l(3) (mass(3)+mass(4))*l(4)+mass(4)*l(5) mass(4)*l(6);
-mass(1)*l(1) -mass(1)*l(2)+(mass(3)+mass(4))*l(3) (mass(3)+mass(4))*l(4)+mass(4)*l(5) mass(4)*l(6);
-mass(1)*l(1) -mass(1)*l(2)-(mass(1)+mass(2))*l(3) -(mass(1)+mass(2))*l(4)+mass(4)*l(5) mass(4)*l(6);
-mass(1)*l(1) -mass(1)*l(2)-(mass(1)+mass(2))*l(3) -(mass(1)+mass(2))*l(4)-(sum(mass(1:3)))*l(5) -sum(mass(1:3))*l(6)];

M*=1/sum(mass);

K = [16 -15 0 0;-15 35 -20 0;0 -20 32.5 -12.5;0 0 -12.5 12.5];
Ks= K;

Ks(1,1)=-Ks(1,2);

LinAM = [17.8528 4.8774 2.5494 7.8239];
RotAM = [2.777319 0.180589 0.070902 0.344297];

Q= 0.5*[Ks zeros(4);zeros(4) J+M’*(diag(mass))*M];
Qc = 0.5*[K zeros(4);zeros(4) J+M’*(diag(mass))*M];;

damp = 0.01*[0.5 0 0 0;0 1 -1 0;0 -1 2 -1;0 0 -1 1];
t= state(1);
q= state(2:5)’;
dq = state(6:9)’;
dx = state(10);
dy = state(11);
vx = state(12);
vy = state(13);
tcost = state(14);
ybar = state(15);
u=state(16);
x=[q;dq];
oldF= myReader("Fstore");
lax=5;
f1 =(lax*oldF(1:3)+bod1(2:4)+bod1(5:7))/(lax+1);
f2 =(lax*oldF(4:6)+bod2(2:4)+bod2(5:7))/(lax+1);
f3 =(lax*oldF(7:9)+bod3(2:4)+bod3(5:7))/(lax+1);
f4 =(lax*oldF(10:12)+bod4(2:4)+bod4(5:7))/(lax+1);
m1 =(lax*oldF(13:15)+bod1(8:10)+bod1(11:13))/(lax+1);
m2 =(lax*oldF(16:18)+bod2(8:10)+bod2(11:13))/(lax + 1);
m3 =(lax*oldF(19:21)+bod3(8:10)+bod3(11:13))/(lax + 1);
m4 =(lax*oldF(22:24)+bod4(8:10)+bod4(11:13))/(lax + 1);

% Write Fstore
fid = fopen("Fstore","w") ;
fprintf(fid,"%g ",[f1 f2 f3 f4 m1 m2 m3 m4]);
fclose(fid);

Ax = (f1(1)+f2(1)+f3(1) + f4(1))/sum(mass);
Ay = (f1(2)+f2(2)+f3(2) + f4(2))/sum(mass);

Plant.m

1;
Ht = J+ sin(diag(q))*T2*M*sin(diag(q))+diag(cos(q))*T2*M*diag(cos(q));
Ct =-sin(diag(q))*T2*M*diag(cos(q))+diag(cos(q))*T2*M*sin(diag(q));
Ct = Ct*diag(dq) - damp ;

Rfpx= -mm*(ones(4,1)*Ax -[f1(1);f2(1);f3(1);f4(1)]./mass’);
Rfpy= -mm*(ones(4,1)*Ax -[f1(2);f2(2);f3(2);f4(2)]./mass’);

D = [m1(3);m2(3);m3(3);m4(3)]-sin(diag(q))*L(:,1:3)*Rfpx + diag(cos(q))*L(:,1:3)*Rfpy ;

if abs(det(Ht))>1e-10
H2 = Ht^(-1);
else
H2= (J+ T2*M)^(-1);
endif
At = [zeros(4) eye(4);-H2*K H2*(Ct)];
Ats = [zeros(4) eye(4);-H2*Ks H2*(Ct)];
EA = real(e^(Ats*Dt));
xt=EA*x;
xt+= real(At^(-1)*(EA-eye(8))*([zeros(4,1);H2*D] +[zeros(4,1);H2*B*u]));

%for i=1:3
%if (abs(xt(i+3)*D(i)/x(i+3))<1e2)

184

B.2. OCTAVE ODE SOLVING SCRIPT

%D(i)= xt(i+3)*D(i)/x(i+3);
%endif
%endfor
x=EA*x;
x+= real(At^(-1)*(EA-eye(8))*([zeros(4,1);H2*D] +[zeros(4,1);H2*B*u]));

dx += vx*Dt + 0.5*Ax*Dt^2;
dy += vy*Dt + 0.5*Ay*Dt^2;

vx+= Ax*Dt;
vy+= Ay*Dt;
q=x(1:4);
dq=x(5:8);

t+=Dt;
tcost = (tcost + 500*Dt*u*[1 -1 0 0] *dq)/(1+500*Dt);
ybar = (ybar +300*Dt*x’*Q*x)/(1+300*Dt);

record.m

xdiss = M *(cos(q)-ones(4,1));
ydiss = M*sin(q);

% Write State
fid = fopen("state","w") ;
fprintf(fid,"%g ",[t,x’,dx,dy,vx,vy,tcost,ybar,u]);
fclose(fid);

% Write coms
fid = fopen("../body1/bodyInfoIn.dat","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[coms(1)+dx+xdiss(1) dy+ydiss(1) 0]);
fprintf(fid,")");
fclose(fid);
fid = fopen("../body2/bodyInfoIn.dat","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[coms(2)+dx+xdiss(2) dy+ydiss(2) 0]);
fprintf(fid,")");
fclose(fid);
fid = fopen("../body3/bodyInfoIn.dat","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[coms(3)+dx+xdiss(3) dy+ydiss(3) 0]);
fprintf(fid,")");
fclose(fid);

% Write point displacments
fid = fopen("bod1.dat","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[x(1) dx+xdiss(1) dy+ydiss(1)]);
fprintf(fid,")");
fclose(fid);
fid = fopen("bod2.dat","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[x(2) dx+xdiss(2) dy+ydiss(2)]);
fprintf(fid,")");
fclose(fid);
fid = fopen("bod3.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(3) dx+xdiss(3) dy+ydiss(3)]);
fprintf(fid,")");
fclose(fid);
fid = fopen("bod4.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(4) dx+xdiss(4) dy+ydiss(4)]);
fprintf(fid,")");
fclose(fid);
fid = fopen("Joint1V.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(1)-x(2) 0 0]);
fprintf(fid,")");
fclose(fid);
fid = fopen("Joint2V.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(2)-x(3) 0 0]);
fprintf(fid,")");
fclose(fid);
fid = fopen("Joint3V.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(3)-x(4) 0 0]);
fprintf(fid,")");
fid = fopen("Joint1.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(1)-(x(1)-x(2))/2 dx+xdiss(1)-l(1)*cos(x(1))+l(1) dy+ydiss(1)-l(1)*sin(x(1))]);
fprintf(fid,")");

185

B.2. OCTAVE ODE SOLVING SCRIPT

fclose(fid);
fid = fopen("Joint2.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(2)-(x(2)-x(3))/2 dx+xdiss(2)-l(3)*cos(x(2))+l(3) dy+ydiss(2)-l(3)*sin(x(2))]);
fprintf(fid,")");
fclose(fid);
fid = fopen("Joint3.dat","w");
fprintf(fid,"(");
fprintf(fid,"%e ",[x(3)-(x(3)-x(4))/2 dx+xdiss(3)-l(5)*cos(x(3))+l(5) dy+ydiss(3)-l(5)*sin(x(3))]);
fprintf(fid,")");
fclose(fid);
fid = fopen("record.dat","a");
fprintf(fid,"(");
fprintf(fid,"%g ",[t+dt,dt,x’,dx,dy,vx,vy,u]);
fprintf(fid,") \n");
fclose(fid);

fid = fopen("Flow.dat", "w");
fprintf(fid, "inletValue uniform (%g 0 0);", -5*dx);
fclose(fid);
fid = fopen("Dist.dat","a");
fprintf(fid, "(")
fprintf(fid, "%g ", [t+dt D’]);
fprintf(fid,") \n");
fclose(fid);

B.2.1 Deadbeat Controller

contQuad.m

1;

Ht = J+ sin(diag(q))*T2*M*sin(diag(q))+diag(cos(q))*T2*M*diag(cos(q));
Ct =-sin(diag(q))*T2*M*diag(cos(q))+diag(cos(q))*T2*M*sin(diag(q));
Ct = Ct*diag(dq) - damp ;

if abs(det(Ht))>1e-10
H2 = Ht^(-1);
else
H2= (J+ T2*M)^(-1);
endif
At = [zeros(4) eye(4);-H2*K H2*(Ct)];
Ats = [zeros(4) eye(4);-H2*Ks H2*(Ct)];
EA = real(e^(Ats*dt));
xt=EA*x;
Bt= real(At^(-1)*(EA-eye(8))*([zeros(4,1);H2*B]));

a= Bt’*Q*Bt;
b= 2*Bt’*Q*xt;
c= xt’*Q*xt -0.35;

rot =(b^2-4*a*c)^(0.5);
if isreal(rot)
uP= (-b+rot)/(2*a);
uM= (-b-rot)/(2*a);

if abs(uP)<abs(uM)
u=uP;
else
u=uM;
endif

else
u= -0.1*b/(2*a);
endif

if abs(u)>100
u=100*u/abs(u);
endif

B.2.2 H∞ Controller

HinfMat.m

H=J+ T2*M;

Damp = 0.1*diag(mass);
A1 = [zeros(4) eye(4);-H^(-1)*K -H^(-1)*(0.0001*Ks)];

186

B.2. OCTAVE ODE SOLVING SCRIPT

Q= 0.5*[K zeros(4,4);zeros(4,4) J+M’*diag(mass)*M];
A2= [A1’ Q;zeros(8) A1];
qs = [0.1 0.3 0.3 0.3];

difH=diag(cos(qs))*T2*M*diag(cos(qs))+diag(sin(qs))*T2*M*diag(sin(qs))-T2*M;
Kdiff = (H +difH)^(-1)*difH*H^(-1)*K;

Kerr =abs(diag(sum(Kdiff’))*max(qs));

%B1=[[zeros(8,4);Kerr] zeros(12,4);zeros(4) 0.1*H^(-1)*diag(mass)];

B2 = [zeros(12,1);H^(-1)*B];
B1= [[zeros(8);eye(8)]];

C1=[[zeros(4,1);H^(-1)*B]’ zeros(1,8)];
C2=[zeros(8) eye(8)];

HinfSetup.m

fishModel
HinfMat

con1=con2=con3=0;
gam=100;
while(con1+con2+con3)<3
[r p] = size(B1);
[r q] = size(B2);
R = [-gam^(-2)*eye(p) zeros(p,q);zeros(q,p) eye(q)]^-1;

X22= MyCare(A2,[B1 B2],C1,R);
con1=defPos2(X22);
[p r] = size(C1);
[q r] = size(C2);
R = [-gam^(-2)*eye(p) zeros(p,q);zeros(q,p) eye(q)]^-1;

Y22= MyCare(A2,[C1’ C2’],B1’,R);
con2 = defPos2(Y22);
F22= -B2’*X22;
con3 = (max(real(eig(A2+B2*F22)))<0);
gam *= 1.5;
endwhile
gam/=1.5;
L22= -Y22*C2’;
Z22= (eye(16)-gam^(-2)*Y22*X22)^(-1);

function printArray(in,fid)
[a b]= size(in);
for i=1:a
fprintf(fid,"%g ",in(i,:))
fprintf(fid,"\n")
endfor
endfunction

fid = fopen("HinfPara","w") ;
printArray(gam,fid);
printArray(F22,fid);
printArray(X22,fid);
printArray((Z22*L22)’,fid);
fclose(fid);

HinfReader.m

gub = myReader("HinfPara");
[a b]=size(gub);
gam=gub(1,1);
F22= gub(2,:);
X22=gub(3:18,:);
ZL = (gub(19:a,:))’;
HinfMat
Nbar = rscale(A2,B2,C1,0,F22);
A4=A2+B2*F22;
EA4 = real(expm(A4*Dt));
obsu = myReader("observer");
obs=obsu(1:16)’;
u=obsu(17);

Hinf.m

1;

sk = -C1*A4^(-1)*B2;
Ed = u*B’*dq - dq’*Damp*dq;

187

B.2. OCTAVE ODE SOLVING SCRIPT

error = (0.35-x’*Q*x)*1000;
de = max(abs(B’*dq),0.1);

if ((F22*obs)^2+4*(error)>=0)

uP=0.5*real(F22*obs) +0.5*((F22*obs)^2+4*(error))^0.5;
uM=0.5*real(F22*obs) -0.5*((F22*obs)^2+4*(error))^0.5;
else
uP=uM=real(F22*obs);
endif

LS = -0.05*[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]*obs;

if abs(uP)<(abs(uM)+LS)
u=uP;
else
u=uM;
endif

if u>10
u=10;
endif
if u<-10
u=-10;
endif

Corr=x;

if t>0.5
Corr -=0.025*[1;1;1;1;0;0;0;0];
endif
if t>1
Corr -=0.05*[1;1;1;1;0;0;0;0];
endif
if t>2
Corr -=0.1*[1;1;1;1;0;0;0;0];
endif
obs=EA4*obs;

obs+= A4^(-1)*(EA4-eye(16))*([B1 B2]*[gam^(-2)*B1’*X22*obs;u]+ZL*(C2*obs - Corr));

ObsWR.m

fid = fopen("observer","w");
fprintf(fid,"(");
fprintf(fid,"%g ",[obs;u]);
fprintf(fid,")");
fclose(fid);

B.2.3 H∞ Optimiser

script.m

1;
Dt =1;
fishModel;
HinfSetup;
HinfReader;

SysCL = ss(A2+B2*F22,B1,C1);
Estimator = ss(A2+B1*(gam^-2)*B1’*X22+ZL*C2+B2*F22,ZL,F22);
AP = [A2 B2*F22;-ZL*C2 Estimator.a];
BP = [B1;B1*0];
CP = [C1 C1*0];

dACLdF22=[];
for i=1:length(F22)
dACLdF22 = [dACLdF22 zeros(16,i-1) B2 zeros(16,16-i)];
endfor

count = 0;
delta =0.01;
for i=1:50
[ddA norms]= dHinfdA(A2+B2*F22,B1,C1);
ddF = matChainRule(ddA,dACLdF22,A4);
F22 -= delta*max(abs(F22))*ddF/max(abs(ddF));
SysCL = ss(A2+B2*F22,B1,C1);

188

B.2. OCTAVE ODE SOLVING SCRIPT

cost(i) = norm(SysCL,inf);
fragility(i) = norm(ddF,"fro");
if cost(i)>cost(i)
count +=1;
elsedd
count =0;
endif
if count>5
count = 0;
delta *=0.1;
endif

endfor

plot(cost)

function printArray(in,fid)
[a b]= size(in);
for i=1:a
fprintf(fid,"%g ",in(i,:))
fprintf(fid,"\n")
endfor
endfunction

fid = fopen("HinfPara","w") ;
printArray(gam,fid);
printArray(F22,fid);
printArray(X22,fid);
printArray((Z22*L22)’,fid);
fclose(fid);

function [out norms] = dHinfdA(A,B,C)
[r c]=size(A);
[k n]=size(B);
[m f]=size(C);
[P L] = eig(A);
[dL dV V]=dEVdA(A);
B1 = zeros(size(B(:,1)));
for s=1:n
B1 +=B(:,s);
endfor
B=B1;
[k n]=size(B);

Omeg = real((imag(L)^2 - 2*real(L)^2).^0.5);

norms = abs(C*P)*abs((Omeg*i-L)^-1)*abs(P^-1*B);

[dump index]= sort(norms);

nor=dump(m);
C = C(index(m),:);
[m f]=size(C);

if norm(Omeg,"fro")==0
dOmeg = zeros(c^2);
else
dOmeg = kron(eye(r) ,Omeg^-1)*(kron(eye(r),imag(L))*imag(dL) - 2*kron(eye(c),real(L))*real(dL));
endif

dOmeg;
[dr di]= dabsdA((Omeg*i-L)^-1);
size(dr);
F1r = matChainRule(dr,real(dmAdA((Omeg*i-L))),(Omeg*i-L)^-1);
F1i = matChainRule(di,imag(dmAdA((Omeg*i-L))),(Omeg*i-L)^-1);
F2r = matChainRule(F1r,real(dOmeg*i -dL),Omeg*i-L);
F2i = matChainRule(F1i,imag(dOmeg*i -dL),Omeg*i-L);

Component1=kron(eye(r),abs(C*P))*(F2r +F2i)*kron(eye(c),abs(P^-1*B));
[dr di]= dabsdA(C*V);

F1r = matChainRule(dr,real(kron(eye(r),C)*dV),C);
F1i = matChainRule(di,imag(kron(eye(r),C)*dV),C);
Component2=(F1r+F1i)*kron(eye(c),abs((Omeg*i-L)^-1)*abs(V^-1*B));

[dr di]= dabsdA((V^-1)*B);

F1r = matChainRule(dr,real(dmAdA(V)*kron(eye(c),B)),B);
F1i = matChainRule(di,imag(dmAdA(V)*kron(eye(c),B)),B);

F2r = matChainRule(F1r,real(dV),V);
F2i = matChainRule(F1i,imag(dV),V);

Component3= kron(eye(r),abs(C*V)*abs((Omeg*i-L)^-1))*(F2r+F2i);

out=Component1 + Component2 + Component3;
endfunction

189

B.2. OCTAVE ODE SOLVING SCRIPT

function [dL dV V]=dEVdA(A)
[r c]=size(A);
[P L] = eig(A);
X=P;
R=P^-1;
Y=conj((P^-1)’);
dL=zeros(c^2);
for i=1:c
[trash ind]=sort(abs(X(:,i)).*abs(Y(:,i)));
m=ind(c);
gam(i)=1/X(m,i);
M(i)=m;
endfor

for i=1:c

TdL = dEdA(A,i);

for l=1:r
for m=1:c
dL((l-1)*c +i,(m-1)*c+i) += TdL(l,m);
endfor
endfor
endfor
for f=1:r
for g=1:c
dA=E(r,c,f,g);
for k=1:r
for l=1:c

if k!=l
C(k,l)=R(k,:)*dA*P(:,l)*gam(l)/(gam(k)*(L(l,l)-L(k,k)));
else
C(k,l)=0;
endif

endfor

endfor
for K=1:r
C(k,k)= -sum(X(M(k),:).*gam.*C(:,k)’);
endfor
dV((f-1)*c+1:f*c,(g-1)*c+1:g*c)=X*C;
endfor
endfor
V= P*diag(gam);
endfunction

function out=dEdA(In,k)

[V E]= eig(In);
k;
R=V;
L=(R^-1);

out= (R(:,k)*L(k,:))’;
%out=(V(:,1)*((V^-1)(1,:)))’;
endfunction

function out = dmAdA(A)
[r m] =size(A);

out = -kron(eye(r),A^-1)*kronMat(r,m)*kron(eye(m),A^-1);

endfunction

function [dreal dimag]=dabsdA(A)
[n m]=size(A);

ref1 = sign(real(A));
ref2 = sign(imag(A));
for i=1:n
for j=1:m
if abs(real(A(i,j)))==0
dreal((i-1)*n+i,(j-1)*m+j)=0;

else
dreal((i-1)*n+i,(j-1)*m+j)=real(A(i,j))/abs(A(i,j));

endif
if abs(imag(A(i,j)))==0
dimag((i-1)*n+i,(j-1)*m+j)=0;

190

B.3. ADDITIONAL OPENFOAM SOURCE CODE

else
dimag((i-1)*n+i,(j-1)*m+j)=imag(A(i,j))/abs(A(i,j));

endif
endfor
endfor

endfunction

function out=matChainRule(dAdB,dBdM,B)
[a b]=size(dBdM);
[r c]=size(B);
[f g]=size(dAdB);
n=f/r;
m=g/c;
k=a/r;
l=b/c;

out = kron(eye(k),dAdrowB(dAdB,B))*kron(dcolBdM(dBdM,B),eye(m));
endfunction

B.2.4 Alternative error metric control

1;
ContState = myReader("contState")’;
target =0.35;

Ht = J+ T2*M;
Bt=[zeros(4,1);Ht^-1*B];
dprod = (x’*Qc*Bt)/(norm(Qc^0.5*x,2)*norm(Qc^0.5*Bt,2));

orth = 1-acos(abs(dprod))/pi;
par =acos(abs(dprod))/pi;
orth =0;
par = 1;
en = sqrt(x’*Qc*x);
err = orth*sqrt(target-en^2)+par*(target^0.5-en);

et = -Bt’*Qc*x/(Bt’*Qc*Bt)^0.5 +real(sign(Bt’*Qc*x)*(target-x’*Qc*x +Bt’*Qc*x*Bt’*Qc*x/(Bt’*Qc*Bt))^0.5);

cont =[17.1282 -2.7093 87.8466];
%cont=[-5.9877e-01 1.9421e+00 4.9839e+01];

Cont = ss([0 1;-cont(1:2)],[0;1],[1 0],cont(3));
ContState = real(expm(Cont.a*Dt)*ContState + Cont.a^-1*(eye(2)-expm(Cont.a*Dt))*Cont.b*et);
if abs(ContState(1))>1e5
ContState(1)=0;
endif
if abs(ContState(2))>1e5
ContState(2)=0;
endif

u=(Cont.c*ContState + Cont.d*et);

fid = fopen("contState","w") ;
fprintf(fid,"%g ",ContState’);
fclose(fid);

if u>10
u=10;
endif
if u<-10
u=-10;
endif

B.3 Additional OpenFoam Source code
/*---*\

========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

191

B.3. ADDITIONAL OPENFOAM SOURCE CODE

\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "bodyInfo.H"
#include "volFields.H"
#include "dictionary.H"
#include "Time.H"

#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "incompressible/LES/LESModel/LESModel.H"

#include "basicThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "compressible/LES/LESModel/LESModel.H"

#include "IFstream.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

defineTypeNameAndDebug(bodyInfo, 0);
}

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::bodyInfo::bodyInfo
(

const word& name,
const objectRegistry& obr,
const dictionary& dict,
const bool loadFromFiles

)
:

name_(name),
obr_(obr),
active_(true),
log_(false),

pName_(word::null),
UName_(word::null),
rhoName_(word::null),

patchname_(word::null)

{

read(dict);

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::bodyInfo::~bodyInfo()
{}

192

B.3. ADDITIONAL OPENFOAM SOURCE CODE

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

// Read the dictionary and substitute values
void Foam::bodyInfo::read(const dictionary& dict)
{

if (active_)
{

log_ = dict.lookupOrDefault<Switch>("log", false);
const fvMesh& mesh = refCast<const fvMesh>(obr_);
// ***Patches for solid bodies****//

// patchSet_ =
// mesh.boundaryMesh().patchSet(wordList(dict.lookup("patch")));

dict.readIfPresent("directForceDensity", directForceDensity_);

if (directForceDensity_)
{

// Optional entry for fDName
fDName_ = dict.lookupOrDefault<word>("fDName", "fD");

// Check whether fDName exists, if not deactivate forces
if
(

!obr_.foundObject<volVectorField>(fDName_)
)
{

active_ = false;
WarningIn("void forces::read(const dictionary& dict)")
<< "Could not find " << fDName_ << " in database." << nl

<< " De-activating forces."
<< endl;

}
}
else
{

// Optional entries U and p
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");

// Check whether UName, pName and rhoName exists,
// if not deactivate forces
if
(

!obr_.foundObject<volVectorField>(UName_)
|| !obr_.foundObject<volScalarField>(pName_)
|| (

rhoName_ != "rhoInf"
&& !obr_.foundObject<volScalarField>(rhoName_)

)
)
{

active_ = false;

WarningIn("void forces::read(const dictionary& dict)")
<< "Could not find " << UName_ << ", " << pName_;

if (rhoName_ != "rhoInf")
{

Info<< " or " << rhoName_;
}
Info<< " in database." << nl << " De-activating forces."

<< endl;
}
// Reference density needed for incompressible calculations
rhoRef_ = readScalar(dict.lookup("rhoInf"));
// Reference pressure, 0 by default
pRef_ = dict.lookupOrDefault<scalar>("pRef", 0.0);

}
patchname_= wordList(dict.lookup("patch"));
//dict.readIfPresent("COM", COM_);
}
}

void Foam::bodyInfo::makeFile()
{

// Create the forces file if not already created
if (OutFilePtr_.empty() || InFilePtr_.empty())
{

if (debug)
{

Info<< "Creating bodyInfo file." << endl;
}

// File update
if (Pstream::master())
{

fileName bodyInfoDir;

193

B.3. ADDITIONAL OPENFOAM SOURCE CODE

word startTimeName =
obr_.time().timeName(obr_.time().startTime().value());

if (Pstream::parRun())
{

// Put in undecomposed case (Note: gives problems for
// distributed data running)
bodyInfoDir = obr_.time().path()/".."/name_;

}
else
{

bodyInfoDir = obr_.time().path()/name_;
}

// Create directory if does not exist.
mkDir(bodyInfoDir);

// Open new file at start up

InFileName_ = bodyInfoDir/(type() + "In.dat");
OutFileName_ = bodyInfoDir/(type() + "Out.dat"); // Changed

// Add headers to output data
writeFileHeader();

}
}

}

void Foam::bodyInfo::writeFileHeader()
{
//InFilePtr_() << "(0 0 0)" << endl;
}

void Foam::bodyInfo::execute()
{

// Do nothing - only valid on write
}

void Foam::bodyInfo::end()
{

// Do nothing - only valid on write
}

void Foam::bodyInfo::write()
{

if (active_)
{

// Create the forces file if not already created
makeFile();

scalar DT =obr_.time().deltaTValue();

if (Pstream::master())
{

IFstream dataStream(InFileName_);
vector COF

(
dataStream

);

OutFilePtr_.reset(new OFstream(OutFileName_));

OutFilePtr_() << "Delta T: " << DT << " Forces and Moments :" << getForceMoments(COF) << endl;

}
}

}

//***calculate the forces for the given body****//
Foam::forces::forcesMoments Foam::bodyInfo::getForceMoments(vector COF)
{
dictionary forcesDict;

forcesDict.add("patches", patchname_);
forcesDict.add("rhoInf", rhoRef_);
forcesDict.add("rhoName", rhoName_);
forcesDict.add("CofR", COF);
forces f("forces", obr_, forcesDict);
forces::forcesMoments fm = f.calcForcesMoment();

return fm;

194

B.3. ADDITIONAL OPENFOAM SOURCE CODE

}

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::bodyInfo

Description
Calculates the forces and moments by integrating the pressure and
skin-friction forces over a given list of patches.

Member function calcForcesMoment()calculates and returns the forces and
moments.

Member function forces::write() calls calcForcesMoment() and writes the
forces and moments into the file \<timeDir\>/forces.dat

SourceFiles
forces.C
IOforces.H

---/

#ifndef bodyInfo_H
#define bodyInfo_H

#include "List.H"
#include "vector.H"
#include "Vector2D.H"
#include "primitiveFieldsFwd.H"
#include "volFieldsFwd.H"
#include "HashSet.H"
#include "Tuple2.H"
#include "OFstream.H"
#include "Switch.H"
#include "pointFieldFwd.H"
#include "forces.H"
// * //

namespace Foam
{

// Forward declaration of classes
class objectRegistry;
class dictionary;
class mapPolyMesh;

/*---*\
Class forces Declaration

---/

class bodyInfo
{
public:

// list of vectors

typedef List<vector> vectorVec;
typedef List<wordList> PatchList;
typedef Tuple2<vector, tensor> positionState;
typedef Tuple2<positionState, vectorVec> stateData;
//typedef struct sixMat { scalar e[6][6];} sixMat;
//typedef struct sixVec { scalar e[6];}sixVec;

195

B.3. ADDITIONAL OPENFOAM SOURCE CODE

//typedef required for force calculations

typedef Tuple2<vector, vector> pressureViscous;

// Tuple which holds the forces (.first()) and moment (.second)
// pressure/viscous forces Tuples.
typedef Tuple2<pressureViscous, pressureViscous> forcesMoments;

protected:

// Private data

//- Name of this set of forces,
// Also used as the name of the probes directory.
word name_;
const objectRegistry& obr_;
//- on/off switch
bool active_;

//- Switch to send output to Info as well as to file
Switch log_;
// Read from dictionary

labelHashSet patchSet_;

wordList patchname_;

//- Name of pressure field
word pName_;
//- Name of velocity field
word UName_;
//- Name of density field (optional)
word rhoName_;
//- Is the force density being supplied directly?
Switch directForceDensity_;
//- The name of the force density (fD) field
word fDName_;
//- Reference density needed for incompressible calculations
scalar rhoRef_;
//- Reference pressure
scalar pRef_;
//- Centre of rotation

// File writing info
fileName InFileName_;

fileName OutFileName_;
;

//- Forces/moment file ptr
autoPtr<OFstream> InFilePtr_;

autoPtr<OFstream> OutFilePtr_;

// Private Member Functions

//- If the forces file has not been created create it
void makeFile();
void getForces();

//- Output file header information
virtual void writeFileHeader();

//- Calculates the present system energy (not including added mass)

// Calclate state data objects from q vectors

forcesMoments getForceMoments(vector);

//- Disallow default bitwise copy construct
bodyInfo(const bodyInfo&);

//- Disallow default bitwise assignment
void operator=(const bodyInfo&);

196

B.3. ADDITIONAL OPENFOAM SOURCE CODE

public:

//- Runtime type information
TypeName("bodyInfo");

// Constructors

//- Construct for given objectRegistry and dictionary.
// Allow the possibility to load fields from files
bodyInfo
(

const word& name,
const objectRegistry&,
const dictionary&,
const bool loadFromFiles = false

);

//- Destructor
virtual ~bodyInfo();

// Member Functions

//- Return name of the set of forces
virtual const word& name() const
{

return name_;
}

//- Read the forces data
virtual void read(const dictionary&);

//- Execute, currently does nothing
virtual void execute();

//- Execute at the final time-loop, currently does nothing
virtual void end();

//- Write the forces
virtual void write();

//- Calculate and return forces and moment
// virtual void calcfunctionVariable() const;

//- Update for changes of mesh
virtual void updateMesh(const mapPolyMesh&)
{}

//- Update for changes of mesh
virtual void movePoints(const pointField&)
{}

};

// * //

} // End namespace Foam

// * //

#endif

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

197

B.3. ADDITIONAL OPENFOAM SOURCE CODE

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "bodyInfoFunctionObject.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

defineNamedTemplateTypeNameAndDebug(bodyInfoFunctionObject, 0);

addToRunTimeSelectionTable
(

functionObject,
bodyInfoFunctionObject,
dictionary

);
}

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Typedef
Foam::bodyInfoFunctionObject

Description
FunctionObject wrapper around forces to allow them to be created via the
functions entry within controlDict.

SourceFiles
forcesFunctionObject.C

---/

#ifndef bodyInfoFunctionObject_H
#define bodyInfoFunctionObject_H

#include "bodyInfo.H"
#include "OutputFilterFunctionObject.H"

// * //

namespace Foam
{

typedef OutputFilterFunctionObject<bodyInfo> bodyInfoFunctionObject;
}

// * //

#endif

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation |

198

B.3. ADDITIONAL OPENFOAM SOURCE CODE

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "ExeFunc.H"
#include "volFields.H"
#include "dictionary.H"
#include "Time.H"

#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "incompressible/LES/LESModel/LESModel.H"

#include "basicThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "compressible/LES/LESModel/LESModel.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

defineTypeNameAndDebug(ExeFunc, 0);
}

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::ExeFunc::ExeFunc
(

const word& name,
const objectRegistry& obr,
const dictionary& dict,
const bool loadFromFiles

)
:

name_(name),
obr_(obr),
active_(true),
log_(false),

ExeFuncFilePtr_(NULL)
{

read(dict);
}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::ExeFunc::~ExeFunc()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::ExeFunc::read(const dictionary& dict)
{

if (active_)
{

log_ = dict.lookupOrDefault<Switch>("log", false);

199

B.3. ADDITIONAL OPENFOAM SOURCE CODE

Executable_ = dict.lookupOrDefault<string>("Executable", "myfun.m");

}
}

void Foam::ExeFunc::makeFile()
{

// Create the forces file if not already created
if (ExeFuncFilePtr_.empty())
{

if (debug)
{
// Info<< "Creating ExeFunc file." << endl;
}

// File update
if (Pstream::master())
{

fileName ExeFuncDir;
word startTimeName =

obr_.time().timeName(obr_.time().startTime().value());

if (Pstream::parRun())
{

// Put in undecomposed case (Note: gives problems for
// distributed data running)
ExeFuncDir = obr_.time().path()/".."/name_/startTimeName;

}
else
{

ExeFuncDir = obr_.time().path()/name_/startTimeName;
}

// Create directory if does not exist.
// mkDir(ExeFuncDir);

// Open new file at start up
// ExeFuncFilePtr_.reset(new OFstream(ExeFuncDir/(type() + ".dat")));

// Add headers to output data
// writeFileHeader();

}
}

}

void Foam::ExeFunc::writeFileHeader()
{

if (ExeFuncFilePtr_.valid())
{

ExeFuncFilePtr_()
<< "# This" << tab
<< "Not Strictly Necessary"
<< endl;

}
}

void Foam::ExeFunc::execute()
{

// Do nothing - only valid on write
}

void Foam::ExeFunc::end()
{

// Do nothing - only valid on write
}

void Foam::ExeFunc::write()
{

if (active_)
{

// Create the forces file if not already created
// makeFile();

// Call the calculation Function
system(Executable_);

if (Pstream::master())
{

if (log_)
{

200

B.3. ADDITIONAL OPENFOAM SOURCE CODE

}
}

}
}

Foam::ExeFunc::functionVariable Foam::ExeFunc::calcfunctionVariable() const
{
scalar t=obr_.time().value();

functionVariable fm
(

vector
(

5*Foam::sin(4*t),
3*Foam::sin(2*t),
5*Foam::sin(4*t)

),
vector
(

5*Foam::sin(4*t),
3*Foam::sin(2*t),
5*Foam::sin(4*t)

)

);

return fm;
}

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
Foam::ExeFunc

Description
Calculates the forces and moments by integrating the pressure and
skin-friction forces over a given list of patches.

Member function calcForcesMoment()calculates and returns the forces and
moments.

Member function forces::write() calls calcForcesMoment() and writes the
forces and moments into the file \<timeDir\>/forces.dat

SourceFiles
forces.C
IOforces.H

---/

#ifndef ExeFunc_H
#define ExeFunc_H

#include "List.H"
#include "vector.H"
#include "Vector2D.H"
#include "primitiveFieldsFwd.H"
#include "volFieldsFwd.H"
#include "HashSet.H"
#include "Tuple2.H"
#include "OFstream.H"
#include "Switch.H"
#include "pointFieldFwd.H"

201

B.3. ADDITIONAL OPENFOAM SOURCE CODE

// * //

namespace Foam
{

// Forward declaration of classes
class objectRegistry;
class dictionary;
class mapPolyMesh;

/*---*\
Class forces Declaration

---/

class ExeFunc
{
public:

// Tuple which holds the pressure (.first()) and viscous (.second) forces
typedef Tuple2<vector, vector> functionVariable;

// Tuple which holds the forces (.first()) and moment (.second)
// pressure/viscous forces Tuples.

// typedef Tuple2<pressureViscous, pressureViscous> forcesMoments;

//- Sum operation class to accumulate the pressure, viscous forces and moments
class sumOp
{
public:

functionVariable operator()
(

const functionVariable& fm1

) const
{

return functionVariable
(

functionVariable
(

fm1
)

);
}

};

protected:

// Private data

//- Name of this set of forces,
// Also used as the name of the probes directory.
word name_;

const objectRegistry& obr_;

//- on/off switch
bool active_;

//- Switch to send output to Info as well as to file
Switch log_;

// Read from dictionary

string Executable_;

//- Forces/moment file ptr
autoPtr<OFstream> ExeFuncFilePtr_;

// Private Member Functions

//- If the forces file has not been created create it
void makeFile();

//- Output file header information
virtual void writeFileHeader();

//- Disallow default bitwise copy construct
ExeFunc(const ExeFunc&);

//- Disallow default bitwise assignment

202

B.3. ADDITIONAL OPENFOAM SOURCE CODE

void operator=(const ExeFunc&);

public:

//- Runtime type information
TypeName("ExeFunc");

// Constructors

//- Construct for given objectRegistry and dictionary.
// Allow the possibility to load fields from files
ExeFunc
(

const word& name,
const objectRegistry&,
const dictionary&,
const bool loadFromFiles = false

);

//- Destructor
virtual ~ExeFunc();

// Member Functions

//- Return name of the set of forces
virtual const word& name() const
{

return name_;
}

//- Read the forces data
virtual void read(const dictionary&);

//- Execute, currently does nothing
virtual void execute();

//- Execute at the final time-loop, currently does nothing
virtual void end();

//- Write the forces
virtual void write();

//- Calculate and return forces and moment
virtual functionVariable calcfunctionVariable() const;

//- Update for changes of mesh
virtual void updateMesh(const mapPolyMesh&)
{}

//- Update for changes of mesh
virtual void movePoints(const pointField&)
{}

};

// * //

} // End namespace Foam

// * //

#endif

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

203

B.3. ADDITIONAL OPENFOAM SOURCE CODE

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "ExeFuncFunctionObject.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{

defineNamedTemplateTypeNameAndDebug(ExeFuncFunctionObject, 0);

addToRunTimeSelectionTable
(

functionObject,
ExeFuncFunctionObject,
dictionary

);
}

// *** //

/*---*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation
License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Typedef
Foam::ExeFuncFunctionObject

Description
FunctionObject wrapper around forces to allow them to be created via the
functions entry within controlDict.

SourceFiles
forcesFunctionObject.C

---/

#ifndef ExeFuncFunctionObject_H
#define ExeFuncFunctionObject_H

#include "ExeFunc.H"
#include "OutputFilterFunctionObject.H"

// * //

namespace Foam
{

typedef OutputFilterFunctionObject<ExeFunc> ExeFuncFunctionObject;
}

// * //

#endif

// *** //

204

List of references.

Alvardo, P. V. y. (2007), Design of Biomimetic Compliant Devices for Locomotion in
Liquid Environments, PhD thesis, Massachusetts Institute of Technology.

Anderson, J. M. (1996), Vorticity Control for Efficient Propulsion, PhD thesis,
Massachusetts Institute of Technology.

Anderson, J. M. and Chhabra, N. K. (2001), Maneuvering and stability performance of
a robotic tuna, in ‘Symposium on Stability and Manuveuverability: Anual meeting
of the Scociety for Integrative and Comparative Biology’, Chicago, Illinois, USA,
pp. 118–126.

Anderson, J. M. and Kerrebrock, P. A. (2000), ‘The Vorticity control Unmanned
Undersea Vehicle (VCUUV); An Autonomouse Robot Tuna.’, Draper Technology

Digest pp. 63–70.

Ankarali, M. M., Arslan, O. and Saranli, U. (2009), A analytical solution to the stance
dynamics of pasive spring-loaded inverted pendulum with damping, in ‘12th Int
Conference on Climbing and Walking Robots and the Support Technologies for
Mobile Machines (CLAWAR’ 09)’, Istanbul, Turkey.

Aquarium, N. (2011), ‘Black ghost knifefish’.
URL: http://nationalaquarium.wordpress.com/

Aracil, J., Gordillo, F. and Acosta, J. A. (2002), Stabilization of oscillations in the
inverted pendulum, in L. Basañez and J. A. de la Puente, eds, ‘Proceedings of the
15th IFAC World Congress, 2002’, Vol. 15, IFAC, Barcelona, Spain.

Armada, M. A., Aliane, N., de Santos, P. G. and Jimenez, M. A. (1993), Controller
tuning for a four-legged locomotion robot, in ‘Proceedings of International
Conference on Systems, Man and Cybernetics ’Systems Engineering in the Service
of Humans”, IEEE, Madrid, Spain, pp. 89–93.

Asano, F. and Xiao, X. (2012), Output deadbeat control approaches to fast convergent
gait generation of underactuated spoked walker, in ‘IEEE/SICE International
Symposiup on System Integration’, Fukuoka, Japan, pp. 265–270.

205

Astrom, K. J. and Furuta, K. (2000), ‘Swinging up a pendulum by energy control’,
Automatica 36, 287–295.

AUVAC (2013), ‘Autonomous Undersea Vehicle Applications Center’.
URL: http://auvac.org/explore-database/

Bainbridge, R. (1958), ‘The Speed of Swimming of Fish As Related to Size and to
the Frequency and Amplitude of the Tail Beat’, Journal of Experimental Biology

35, 109–133.

Bal, S. and Kinnas, S. A. (2002), ‘A bem for the prediction of free surface effects on
the cavitating hydrofoils’, Computational Mechanics 28, 260–274.

Bandyopadhyay, P. R. (2005), ‘Trends in Biorobotic Autonomous Undersea Vehicles’,
IEEE Journal of Oceanic Engineering 30, 109–139.

Barrett, D. S. (1994), The Design of a Flexible Hull Undersea Vehicle Propelled by an
Oscillating Foil, Master’s thesis, Department of Ocean Engineering Massachusetts
Institute of Technology.

Barrett, D. S. (1996), Propulsive Efficiency of a Flexible Hull Underwater Vehicle, PhD
thesis, Department of Ocean Engineering Massachusetts Institute of Technology.

Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A. and Wolfgang,
M. J. (1999), ‘Drag reduction in fish-like locomotion’, Jounal of Fluid Mechanics

392, 183–212.

Barton, I. E. (1998), ‘Comparison of simple and psio-type algorithms for transient
flows’, International Journal for Numerical Methods in Fluids 26, 459–483.

Basar, T. and Bernhard, P. (2008), H∞ - optimal control and related minmax design

problems, 2nd edn, Birkhauser, Boston.

Beal, D. N. (2003), Propulsion through Wake Synchronization using a Flapping foil,
PhD thesis, Massachusetts Institute of Technology.

Benyus, J. M. (1997), Biomimicry, Harper Collins, New York, USA.

Blidberg, D. R. (2001), The Development of Autonomous Underwater Vehicles (AUV);
A Breif Summary, in ‘IEEE ICRA’, Vol. 4, Seoul, Korea.

206

Brower, T. P. L. (2006), Design of a Manta Ray Inspires Underwater Propulsive
Mechanism For Long Range, Low Power Operation, Master’s thesis, Tufts
University.

Budiyono, A. (2009), ‘Advances in Unmanned Underwater Vehicles Technologies:
Modeling, control and guidance perspectives’, Indian Journal of Marine Sciences

38(3), 282–295.

Cai, Y., Bi, S. and Zheng, L. (2010), ‘Design and Experiments of a Robotic Fish
Imitating Cow-Nosed Ray’, Journal of Bionic Engineering 7, 120–126.

Childress, S. (1981), Mechanics of Swimming and Flying, Cambridge University Press,
Cambridge, UK.

Cho, J. L. (1997), Electronic Subsystems of a Free-Swimming Robotic Fish, Master’s
thesis, Massachusetts Institute of Technology.

Choe, K. and Kim, K. J. (2006), ‘Polyacrylonitrile linear actuators: Chemomechanical
and electro-chemomechanical properties’, Sensors and Actuators A 126, 165–172.

Collar, P. G., Babb, R. J., Michel, J.-L., Brisset, L. and Kilpatrick, I. M. (1994), Systems
research for unmanned autonomous underwater vehicles, in ‘OCEANS ’94. ’Oceans
Engineering for Today’s Technology and Tomorow’s Preservation.”, Vol. 1, Brest,
France, pp. I/158–I/163.

Corfield, S. and Hillenbrand, C. (2003), Technology and Applications for Unmanned

Underwater Vehicles, Taylor and Francis, London, chapter Defence Applications for
Unmanned Underwater Vehicles, pp. 161–178.

Crespi, A., Latch, D., Pasquire, A. and Ijspeerd, A. J. (2008), ‘Controlling swimming
and crawling in a fish robot using a central pattern generator’, Autonomous Robots

25(1-2), 3–13.

Cubero, S. N. (2012), ‘Design concepts for a hybrid swimming and walking vehicle’,
Procedia Engineering 41, 1211–1220.

Dai, H. and Tedrake, R. (2012), Optimizing robust limit cycles for legged locomotion
on unknown terrain, in ‘Proceedings of the 51st IEEE International Conference on
Decission and Control’, Maui, Hawaii, pp. 1207–1213.

207

Danson, E. F. S. (2003), Technology and Applications of Autonomous Underwater

Vehicles, Taylor and Francis, London, UK, chapter AUV Tasks in the Offshore
Industry, pp. 127–138.

de Wit, C. C., Espiau, B. and Urrea, C. (2002), Orbital stabilization of underactuated
mechanical systems, in L. Basañez and J. A. de la Puente, eds, ‘Proceedings of the
15th IFAC World Congress,’, Vol. 15, IFAC, Barcelona, Spain.

Der, N. P. V., Morsche, H. G. T. and Mattheij, R. R. M. (2007), ‘Computation of
eigenvalue and eigenvector derivitives for a general complex-valued eigensystem’,
Electronic Journal of Linear Algebra 16, 300–314.

Dogangil, G., Ozcicek, E. and Kuzucu, A. (2005a), Design, Construction, and
Control of a Robotic Dolphin, in ‘IEEE International Onference on Robotics and
Biomimetics’, Shatin, Hong Kong, pp. 51–56.

Dogangil, G., Ozcicek, E. and Kuzucu, A. (2005b), Modeling, Simulation, and
Development of a Robotic Dolphin Prototype, in ‘IEEE International Conference
on Mechatronics and Automation’, pp. 952–957.

Dorato, P., Famularo, D. and Abdallh, C. T. (1999), ‘Analytic phase margin design’,
IEEE Transactions on Automatic Control 44(10), 1894–1900.

Douat, L. R., Queinnec, I., Garcia, G., Michelin, M. and Pierrot, F. (2011), h∞

control applied to vibraion minimization of the parallel robot par2, in ‘International
Conference on Control Applications (CCA)’, IEEE, Denver, CO, USA, pp. 947–952.

Doyle, J. C., Francis, B. A. and Tannenbaum, A. R. (1992), Feedback Control Theory,
Dover Publications.

Engineering, B. (2009), ‘GhostSwimmer’.
URL: http://www.boston-engineering.com/media/pdfs/TS1166-Robo_Atherton.pdf

Epstein, M., Colgate, J. E. and MacIver, M. A. (2006), Generating Thrust with a
biologically inspired robotic ribbon fin, in ‘IEEE/RSJ International Conference on
Intelligent Robots and Systems,’, Beijing, China, pp. 2412–2417.

Festo (2007), ‘Aqua Ray’.
URL: http://www.festo.com/rep/en-us_us/assets/pdf/Aqua_ray_en.pdf

208

Festo (2009), ‘AquaPenguin; Brochure’.
URL: http://www.festo.com/net/en-us_us/downloads/Download.ashx?lnk=29113/AquaPenguin_en.pdf

Fish, F. E. (1996), ‘Transitions from Drag-based to Lift-based Propulsion in
Mammalian Swimming’, American Zoologist 36, 628–641.

Fish, F. E. (2002), Balancing Requiremants for Stability and Manuverability in
Cetaceans, in ‘Symposium on Stability and Manuverability; Annual Meeting of the
Society fro Integrative and Comparative Biology’, Vol. 42, Chicago, Illinois, USA,
pp. 85–93.

Fish, F. E. (2006), ‘The myth and reality of Gray’s paradox: implication of dolphin
drag reduction for technology.’, Bioinspiraion and Biomimetics 1, R17–R25.

Georgiades, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Sim,
R., Torres, L. A., Zhang, P., Buehler, M., Dudek, G., Jenkin, M. and Milios, E.
(2004), AQUA: an aquatic walking robot, in ‘IEEE/RSJ International Conference on
Intelligent Robots and Systems,’, Sendai, Japan, pp. 3525–3531.

Glover, K. and Doyle, J. C. (1988), State-space formulae for all atabilizing controllers
that satisfy an H_{\infty}-norm bound and relation to risk sensitivity, in ‘Systems &
Control Letters 11’, pp. 167–172.

GMBH, M. (2013), ‘NiTinol The metal with a Mind’.
URL: http://www.memory-metalle.de/

Gray, J. (1936), ‘Studies in animal locomotion: VI. the propulsive powers of dolphin’,
Journal of Experimental Biology 13, 192–199.

Griffiths, G., Jamieson, J., Mitchell, S. and Rutherford, K. (2004), Energy Storage for
long endurance AUVs, in ‘Proc. Advances in Technologies for Underwater Vvehicles
conference, IMarEST’, London, UK.

Guo, J. (2006), Advances in Unmanned Marine Vehicles, The Institution of
Electrical Engineers, Stevenage, UK, chapter 12; Guidance and control of a
biomimetic-autonomous underwater vehicle, pp. 256–276.

Guo, S., Fukuda, T., Kato, N. and Oguro, K. (1998), Development of underwater
microrobot using ICPF actuators, in ‘Proceedins of the 1998 IEEE International
Conference on Robotics and Automation’, Leuven, Belgium, pp. 1829–1834.

209

Haertling, G. H. (1999), ‘Ferroelectric ceramics; history and technology’, Journal of

the American Ceramics Society 82(4), 797–818.

Harper, K. A., Berkemeier, M. D. and Grace, S. (1998), ‘Modeling the Dynamics of
Spring-Driven Oscillating-Foil Propulsion’, IEEE Journal Of Ocianic Engineering

23(3), 285–297.

Hirata, K. (2000), ‘Fish Robot home page.’.
URL: http://www.nmri.go.jp/eng/khirata/fish/

Hirata, K., Takimoto, T. and Tamura, K. (2000), Study on turning performance of a fish
robot, in ‘First International Symposium on Aqua Bio-Mechanisms’, pp. 287–292.

Hu, H. (2006), Biologically Inspired Design of Autonomous Robotic Fish at Essex, in

‘BioIEEE SMC UK-RI Chapter Conference, on Advances in Cybernetic Systems’,
Sheffield, UK, pp. 3–8.

Hu, Q., Hedgepeth, D. R., Xu, L. and Tan, X. (2009), A Framework for Modeling
Steady Turining of Robotic Fish, in ‘IEEE International Conference on Robotics and
Automation’, Kobe, Japan, pp. 2669–2674.

Hu, Y., Wang, L., Yu, J., Huo, J. and Jia, Y. (2008), Development and Control of
Dolphin-like Underwater Vehicle, in ‘American Control Conference’, Seattle, WA,
USA, pp. 2858–2863.

Hur, M., Kang, T., Chan, W. L. and Choi, J.-M. (2009), ‘h∞ controller design of an
ostraciiform swimming fish robot’, Indian Journal of Marine Science 38, 302–307.

iRobot Corporation (2010), ‘Transphibian’.
URL: http://www.irobot.com/gi/maritime/Transphibian

Jha, N., Singh, U., Saxena, T. K. and Kapoor, A. (2011), ‘Online adaptive contro
for nonlinear processes under the influence of external disturbance’, International

Journal of Artificial Intelligence and Expert Systems (IJAE) 2(2), 36–46.

Jordi, C., Michel, S. and Fink, E. (2010), ‘Fish-like propulsion of an airship with
planar membrane dielectric elastometer actuators’, Bioinspiration and Biomimetics

5, 26007.

Kato, N. (2000), ‘Control Performance in the Horizontal Plane of a Fish Robot With
Mechanical Pectoral Fins’, IEEE Journal Of Ocianic Engineering 25(1), 121–130.

210

Kawamura, A., Haneyoshi, T. and Hoft, R. G. (1988), ‘Deadbeat controlled pwm
inverter with parameter estimation using only voltage sensor’, Power Electronics,

IEEE Transactions on 3(2), 118–125.

Keel, L. H. and Bhattacharyya, S. P. (1997), ‘Robust, fragile, or optimal?’, IEEE

Transactions on Automatic Control 42(8), 1098–1105.

Kim, B., Kim, D.-H., Jung, J. and Park, J.-O. (2005), ‘A biomimetic undulatory
tadpole robot using ionic polymerï£¡metal composite actuators’, Smart Materials

and Structures 14, 1–7.

Kim, J.-H. and Oh, D.-C. (2007), ‘Robust non-fragile h∞ control for descriptor
systems with parameter uncertains and time delay’, International Journal of Control,

Automation, and Systems 5(1), 8–14.

Kinnas, S. A. and Fine, N. E. (1993), ‘A numerical analysis of the flow around two
and three dimensioal partially cavitating hydrofoils’, Journal of Fluid Mechanics

254, 151–181.

Kumph, J. M. (2000), Maneuvering of a Robotic Pike, Master’s thesis, Massachusetts
Intstitute of Technology.

Lee, H.-J., Jong, Y.-J., Change, L.-M. and Wu, W.-L. (2009), ‘Propulsion stratergy
analysis of high-speed swordfish’, Transactions of the Japan Society for Aeronautical

and Space Science 52(175), 11–20.

Li, N., Ming, Y. and Dian-guo, X. (2012), Deadbeat predictive current control for
pmsm, in ‘Power Electronics and Motion Control Conference (EPE/PEMC)’, IEEE,
Novi Sad, Serbia, pp. LS6b.1–1 – LS6b.1–6.

Liang, J., Wang, T., Wang, S., Zou, D. and Sun, J. (2005), Experiment of Robofish
Aided Underwater Archaeology, in ‘IEEE International Conference on Robotics and
Biomimetics’, Shatin, China, pp. 499–504.

Licht, S. C. (2008), Biomimetic Oscillating Foil Propulsion to Enhance Underwater
Vehicle Agility and Manuverability, PhD thesis, Massachusetts Institute of
Technology.

Licht, S., Polidoro, V., Flores, M., Hover, F. S. and Triantafyllou, M. S. (2004), ‘Design
and Projected Performance of a Flapping Foil Auv’, IEEE Journal Of Ocianic

Engineering 29(3), 786–794.

211

Lindsey, C. C. (1978), Fish physiology, Academic Press, New York, chapter Form,
function, and locomatory habits in fish., pp. 1–100.

Liu, J. (2005), ‘Essex robotic fish’.
URL: http://cswww.essex.ac.uk/staff/hhu/jliua/

Liu, J. (2007), Modelling and Online Optimization of Robotic Fish Behaviours, PhD
thesis, University of Essex.

Logics, E. (2013), ‘Subsea Glider with Fin Ray Effect’.
URL: http://www.evologics.de/en/products/glider/index.html

Long, J. H. J., Schumacher, J., Livingston, N. and Kemp, M. (2006), ‘Four flippers or
two? Tetrapodal swimming with an aquatic robot’, Bioinspiraion and Biomimetics

1, 20–29.

Long, J. H. and Nipper, K. S. (1996), ‘The importance of body stifness in undulatory
propulsion’, American Zoologist 36, 678–694.

Lorenz, R. D. and Valenzuela, M. A. (2012), Time optimal and loss minimizing
deadbeat-direct torque and flux control or interior permanent magnet sysncronous
machines, in ‘Energy Conversion Congress and Exposition (ECCE)’, IEEE,
Masison, WI, USA, pp. 2568–2575.

Low, K. H. and Willy, A. (2006), ‘Biomimetic Motion Planning of an Undulating
Robotic Fish Fin’, Journal of Vibration and Control 12, 1337–1359.

Mason, R. (2003), Fluid Locomotion and Trajectory Planning for Shape-Changing
Robots, PhD thesis, California Institute of Technology.

Mirfakhrai, T., Madden, J. D. W. and Baughman, R. H. (2007), ‘Polymer artificial
Muscles’, Materials today 10(4), 30–38.

Mittal, R. (2004), ‘Computational Modeling in Bio-Hydrodymanics: Trends,
Chalenges and Recent Advances’, IEEE Journal Of Ocianic Engineering

29, 595–604.

Mukherjee, R. (1993), ‘Control of free-flying underactuated space manipulators
to equilibrium manifolds’, IEEE Transactions on Robotcs and Automation

9(5), 561–570.

212

Nakashima, M. and Ono, K. (2002), Neurotechnology for Biomimetic Robots, MIT
Press, Cambridge, USA, chapter Development and Experiment of Two-Joint Dolphin
Robot, pp. 309–324.

Nakashima, M., Takashi, Y. and Ono, K. (2004), Bio-mechanisms of Swimming and

Flying, Springer, chapter Three-Dimensional Maneuverability of the Dolphin Robot,
pp. 79–92.

Ortega, R., van der Schaft, A. J., Mareels, I. and Maschke, B. (2001), ‘Putting energy
back in control’, IEEE Control Systems Magazine pp. 18–33.

Pabst, D. A. (1996), ‘Springs in Swimming Animals’, American Zoologist 36, 723–735.

Pedro, G., Suleman, A. and Djilali, N. (2003), ‘A numerical study of the Propulsive
efficiency of a flapping hydrofoil’, International Journal for Numerical Methods in

Fluids 42, 493–526.

Rawlings, J. B. and Mayne, D. Q. (2009), Model Predictive Control: Theory and

Design, Nob Hill Publishing, Madiosn, Wisconsin, USA.

Roper, D., Sharma, S., Sutton, R. and Culverhouse, P. (2013), ‘Oscillation and
dirrection contorol stratergies for a robotic fish’, Underwater Technology Journal

31(3), 67–76.

Rosen, M. W. (1959), Water Flow about a Swimming Fish, Master’s thesis, University
of California.

Saranli, U., Schwind, W. J. and Koditschek, D. E. (1998), Toward control of
a multi-jointed, monoped runner, in ‘International Conference on Robotics and
Automation’, Leuven, Belgium, pp. 2676–2682.

Schnerr, G. H. (2003), Numerical Simulations of Incompressible Flows, Worl Scientific
Publishing, chapter Modeling and ccomputation of unsteady cavitating flows based
on bubble dynamics, pp. 544–574.

Sfakiotakis, M., Lane, D. M. and Davies, J. B. C. (1999), ‘Review of Fish
Swimming Modes for Aquatic Locomotion’, IEEE Journal of Oceanic Engineering

24(2), 237–252.

Sharkh, S. M. A. (2003), Technology and applications of Autonomous Underwater

Vehicles, Taylor and Francis, chapter Propulsion Systems for AUVs, pp. 109–125.

213

Shinjo, N. (2005), Investigations into the use of Shape Memory Alloy for Biomimetic
Propulsion of Underwater Vehicles, PhD thesis, Florida Institute of Technology.

Shiriaev, A., Perram, J. W. and de Wit, C. C. (2005), ‘Constructive tool for orbital
stabilization of underactuated nonlinear systems: Virtual constraints approach’,
IEEE Transactions on Automatic Control 50(8), 1164–1176.

Simons, D. G., Bergers, M. M. C., Henrion, S., Hulzenga, J. I. J., Jutte, R. W., Pas,
W. M. G., van Schravendijk, M., Vercruyssen, T. G. A. and Wilken, A. P. (2009), A
highly versatile autonomous underwater vehicle with biomechanical propulsion, in

‘IEEE Oceans 2009-Europe’, Delft, Netherlands, pp. 1–6.

Siochi, E. J., John B. Anders, J., Cox, D. E., Jegley, D. C., Robert L. Fox and Katzberg,
S. J. (2002), Biomimetics for NASA Langley Research Center – Year 2000 Report
of Findings From a Six-Month Survey, Technical memorandum, NASA Langley
Research Center.

Skogestad, S. and Postlethwaite, I. (2007), Multivariable Feedback Control; Analysis

and Design, 2nd edn, Wiley.

Spierts, I. L. Y. and Leeuwen, J. L. V. (1999), ‘Kinematics and muscle dynamics
of c and s-starts of carp (cyprinus carpio l.)’, Journal of Experimental Biology

202, 393–406.

Spong, M. (1996), Energy based control of a class of underactuated mechanical
systems., in ‘IFAC world Congress’, San Francisco, United States, pp. 431–435.

Stefanini, C., Orlandi, G., Menciassi, A. and Ravier, Y. (2006), A mechanism
for biomimetic acutationin lampray-like robots, in ‘Biomedical Robotics and
Biomechantronics’, Pisa, Italy, pp. 579–584.

Stevenson, P. and Graham, D. (2003), Technology and applications of Autonomous

Underwater Vehicles, Taylor and Francis, chapter Advanced materials and their
influence on the structural design of AUVs, pp. 77–91.

Stommel, H. (1989), ‘The Slocum Mission’, Oceanography 2, 22–25.

Suleman, A. and Crawford, C. (2008), ‘Design and testing of a biomimetic tuna using
shape memory alloy induced propulsion’, Computers & Structures 86(3-5), 491–499.

214

Suleman, A. and Crawford, C. (2009), Underwater Vehicles, INTECH, chapter Studies
on Hydrodynamic Propulsion of a Biomimetic Tuna, pp. 459–486.
URL: http://sciyo.com/books/show/title/underwater_vehicles

Terzopoulos, D., Tu, X. and Grzeszczuk, R. (1994), ‘Artificial fishes; autonomous
locomotion, perception, behavior, and learning in a simulated physical world’,
Artificial Life 1(4), 327–350.

Tondu, B., S.Mathe and Emirkhaniankibben, R. (2010), ‘Low pH-range control of
McKibben polmeric artificial muscle’, Sensors and Actuators A 159, 73–78.

Triantafyllou, M. S., Techet, A. H. and Hover, F. S. (2003), Review of Experimental
Work in Biomimetic Foils, Technical report, Office of Naval Research (USA).

Triantafyllou, M. S. and Triantafyllou, G. S. (1995), ‘An Efficient Swimming
Machine’, Scientific American 272(3), 64–71.

Tumari, M. Z. M., Saealal, M. S., Ghazali, M. R., Zawawi, M. A. and Shah, L. H. A.
(2012), ‘H-infinity controller based on lmi region for flexible robot manipulator’,
Resrarch Journl of Applied Science 7, 275–281.

Uyanic, I., Saranli, U. and Morgul, O. (2011), Adaptive control fo a spring-mass
hopper, in ‘IEEE International Conference on Robotics and Automation’, Shanghai,
China, pp. 2138–2143.

Wang, T., Wen, L., Liang, J. and Wu, G. (2010), ‘Fuzzy Vorticity Control of
a Biomimetic Robotic Fish Using a Flapping Lunate Tail’, Journal of Bionic

Engineering 7, 56–65.

Wang, Y., Guan, Z.-H. and Wang, H. O. (2003), ‘Feedback and adaptive control for the
syncronization of chen system via a single variable’, Prhysics Letters A 312, 34–40.

Watts, C. M. (2009), A Comparison Study of Biologically Inspired Propulsion Systems
for an Autonomous Underwater Vehicle, PhD thesis, University of Glasgow.

Weihs, D. (2001), ‘Stabiity versus manuverability in aquatic locomotion’, Integrative

and Comparative Biology 42(1), 127–134.

Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K. P. and
Triantafyllou, M. S. (1999), ‘Near-Body Flow Dynamics in Swimming Fish’,
Journal of Experimental Biology 202, 2303–2327.

215

Yu, J., Hu, Y., Huo, J. and Wang, L. (2007), An Adjustable Scotch Yoke Mechanism for
Robotic Dolphin, in ‘IEEE International Conference on Robotics and Biomimetics’,
Sanya, China, pp. 513–518.

Yu, J., Wang, M., Su, Z., Tan, M. and Zhang, J. (2011), Dynamic modeling and its
application for a cpg-coupled robotic fish, in ‘IEEE International conference on
Robotics and Automation’, Shanghai, China, pp. 159–164.

Yu, X. and Kaynak, O. (2009), ‘Sliding-mode control with soft computing: A survey’,
IEEE Transactions on Industrial Electronics 56(9), 3275–3285.

Zapaterio, M., Karimi, H. R. and Luo, N. (2011), ‘Semiactive vibration control
of nonlinear structures through adaptive backstepping techniques with h∞

performance’, International Journal of System Science 42, 853–861.

Zhang, D., Hu, D., Shen, L. and Xie, H. (2008), ‘Design of an artificial bionic neural
network to control fish-robot’s locomotion’, Neurocomputing 71, 648–654.

Zhang, W., Guo, S.-X. and Asaka, K. (2006), ‘A New Type of Hybrid Fish-like
Microrobot’, International Journal of Automation and Computing 4, 358–365.

Zhong, W. and Rock, H. (2001), Energy and passivity based control of the double
inverted pendulum on a cart., in ‘IEEE International Conference on Control
Applications’, Mexico City, pp. 896–901.

Zhou, C., Tan, M., Gu, N., Cao, Z., Wang, S. and Wang, L. (2008), ‘The Design and
Implementation of a Biomimetic Robotic Fish’, International Journal of Advanced

Robotic Systems 5(2), 185–192.

216

Bound copies of published papers.

217

	Abstract
	Acknowledgements
	Author's declaration
	Nomenclature
	Introduction
	Motivations
	Objectives
	Contributions
	List of publications
	Outline of thesis

	Swimming in Nature
	Introduction
	Summary of biological swimming modes
	Lift and Drag
	Periodic Motion
	Manoeuvrability
	Vortecies in Swiming
	Concluding Remarks

	Literature Review
	Introduction
	Traditional Unmanned Underwater Vehicles
	Biomimetic Swimming Machines
	Discussion
	Concluding remarks

	Modelling of a robotic fish
	Introduction
	Modelling a robotic fish as a free floating kinematic chain
	Overview of Simulation Study
	Concluding Remarks

	Energy based gait generation for an underactuated robotic fish
	Introduction
	State space orbit as a gait
	Concluding Remarks

	Deadbeat state energy controller
	Introduction
	Deadbeat control
	Deadbeat control of state energy
	Results
	Concluding Remarks

	Design of a reduced fragility H observer feedback controller for the control of state energy
	Introduction
	H robust energy control for a robotic fish
	Parametric Sensitivity of H Norm
	Gradient decent to minimize parametric sensitivity
	Results
	Concluding Remarks

	An alternative error energy control
	Introduction
	Alternative Error Metrics for Feedback Control
	Alternative error robust feedback control
	Results
	Conclusions

	Analysis of results
	Introduction
	Limitations of simulation study
	Comparison of controller performance
	Concluding Remarks

	Conclusions and further work
	Summary of thesis and contributions
	Concluding remarks
	Recommendations for future work

	H controller Parameters
	Simmulation Study
	OpenFoam Case files
	Octave ODE solving script
	Additional OpenFoam Source code

	Glossary
	List of references.
	Bound copies of published papers.

