5,345 research outputs found

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Learning One Class Representations for Face Presentation Attack Detection using Multi-channel Convolutional Neural Networks

    Full text link
    Face recognition has evolved as a widely used biometric modality. However, its vulnerability against presentation attacks poses a significant security threat. Though presentation attack detection (PAD) methods try to address this issue, they often fail in generalizing to unseen attacks. In this work, we propose a new framework for PAD using a one-class classifier, where the representation used is learned with a Multi-Channel Convolutional Neural Network (MCCNN). A novel loss function is introduced, which forces the network to learn a compact embedding for bonafide class while being far from the representation of attacks. A one-class Gaussian Mixture Model is used on top of these embeddings for the PAD task. The proposed framework introduces a novel approach to learn a robust PAD system from bonafide and available (known) attack classes. This is particularly important as collecting bonafide data and simpler attacks are much easier than collecting a wide variety of expensive attacks. The proposed system is evaluated on the publicly available WMCA multi-channel face PAD database, which contains a wide variety of 2D and 3D attacks. Further, we have performed experiments with MLFP and SiW-M datasets using RGB channels only. Superior performance in unseen attack protocols shows the effectiveness of the proposed approach. Software, data, and protocols to reproduce the results are made available publicly.Comment: 15 page

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Bayesian Logic Programs

    Full text link
    Bayesian networks provide an elegant formalism for representing and reasoning about uncertainty using probability theory. Theyare a probabilistic extension of propositional logic and, hence, inherit some of the limitations of propositional logic, such as the difficulties to represent objects and relations. We introduce a generalization of Bayesian networks, called Bayesian logic programs, to overcome these limitations. In order to represent objects and relations it combines Bayesian networks with definite clause logic by establishing a one-to-one mapping between ground atoms and random variables. We show that Bayesian logic programs combine the advantages of both definite clause logic and Bayesian networks. This includes the separation of quantitative and qualitative aspects of the model. Furthermore, Bayesian logic programs generalize both Bayesian networks as well as logic programs. So, many ideas developedComment: 52 page

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot\u27s view in order to explore interaction possibilities of the scene
    • 

    corecore